9,529 research outputs found

    A Framework for Symmetric Part Detection in Cluttered Scenes

    Full text link
    The role of symmetry in computer vision has waxed and waned in importance during the evolution of the field from its earliest days. At first figuring prominently in support of bottom-up indexing, it fell out of favor as shape gave way to appearance and recognition gave way to detection. With a strong prior in the form of a target object, the role of the weaker priors offered by perceptual grouping was greatly diminished. However, as the field returns to the problem of recognition from a large database, the bottom-up recovery of the parts that make up the objects in a cluttered scene is critical for their recognition. The medial axis community has long exploited the ubiquitous regularity of symmetry as a basis for the decomposition of a closed contour into medial parts. However, today's recognition systems are faced with cluttered scenes, and the assumption that a closed contour exists, i.e. that figure-ground segmentation has been solved, renders much of the medial axis community's work inapplicable. In this article, we review a computational framework, previously reported in Lee et al. (2013), Levinshtein et al. (2009, 2013), that bridges the representation power of the medial axis and the need to recover and group an object's parts in a cluttered scene. Our framework is rooted in the idea that a maximally inscribed disc, the building block of a medial axis, can be modeled as a compact superpixel in the image. We evaluate the method on images of cluttered scenes.Comment: 10 pages, 8 figure

    Spectral comparison of large urban graphs

    Get PDF
    The spectrum of an axial graph is proposed as a means for comparison between spaces, particularly for measuring between very large and complex graphs. A number of methods have been used in recent years for comparative analysis within large sets of urban areas, both to investigate properties of specific known types of street network or to propose a taxonomy of urban morphology based on an analytical technique. In many cases, a single or small range of predefined, scalar measures such as metric distance, integration, control or clustering coefficient have been used to compare the graphs. While these measures are well understood theoretically, their low dimensionality determines the range of observations that can ultimately be drawn from the data. Spectral analysis consists of a high dimensional vector representing each space, between which metric distance may be measured to indicate the overall difference between two spaces, or subspaces may be extracted to correspond to certain features. It is used for comparison of entire urban graphs, to determine similarities (and differences) in their overall structure. Results are shown of a comparison of 152 cities distributed around the world. The clustering of cities of similar properties in a high dimensional space is discussed. Principal and nonlinear components of the data set indicate significant correlations in the graph similarities between cities and their proximity to one another, suggesting that cultural features based on location are evident in the city form and that these can be quantified by the proposed method. Results of classification tests show that a city’s location can be estimated based purely on its form. The high dimensionality of the spectra is beneficial for its utility in data-mining applications that can draw correlations with other data sets such as land use information. It is shown how further processing by supervised learning allows the extraction of relevant features. A methodological comparison is also drawn with statistical studies that use a strong correlation between human genetic markers and geographical location of populations to derive detailed reconstructions of prehistoric migration. Thus, it is suggested that the method may be utilised for mapping the transfer of cultural memes by measuring comparison between cities

    Context-sensitive interpretation of natural language location descriptions : a thesis submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy in Information Technology at Massey University, Auckland, New Zealand

    Get PDF
    People frequently describe the locations of objects using natural language. Location descriptions may be either structured, such as 26 Victoria Street, Auckland, or unstructured. Relative location descriptions (e.g., building near Sky Tower) are a common form of unstructured location description, and use qualitative terms to describe the location of one object relative to another (e.g., near, close to, in, next to). Understanding the meaning of these terms is easy for humans, but much more difficult for machines since the terms are inherently vague and context sensitive. In this thesis, we study the semantics (or meaning) of qualitative, geospatial relation terms, specifically geospatial prepositions. Prepositions are one of the most common forms of geospatial relation term, and they are commonly used to describe the location of objects in the geographic (geospatial) environment, such as rivers, mountains, buildings, and towns. A thorough understanding of the semantics of geospatial relation terms is important because it enables more accurate automated georeferencing of text location descriptions than use of place names only. Location descriptions that use geospatial prepositions are found in social media, web sites, blogs, and academic reports, and georeferencing can allow mapping of health, disaster and biological data that is currently inaccessible to the public. Such descriptions have unstructured format, so, their analysis is not straightforward. The specific research questions that we address are: RQ1. Which geospatial prepositions (or groups of prepositions) and senses are semantically similar? RQ2. Is the role of context important in the interpretation of location descriptions? RQ3. Is the object distance associated with geospatial prepositions across a range of geospatial scenes and scales accurately predictable using machine learning methods? RQ4. Is human annotation a reliable form of annotation for the analysis of location descriptions? To address RQ1, we determine the nature and degree of similarity among geospatial prepositions by analysing data collected with a human subjects experiment, using clustering, extensional mapping and t-stochastic neighbour embedding (t-SNE) plots to form a semantic similarity matrix. In addition to calculating similarity scores among prepositions, we identify the senses of three groups of geospatial prepositions using Venn diagrams, t-sne plots and density-based clustering, and define the relationships between the senses. Furthermore, we use two text mining approaches to identify the degree of similarity among geospatial prepositions: bag of words and GloVe embeddings. By using these methods and further analysis, we identify semantically similar groups of geospatial prepositions including: 1- beside, close to, near, next to, outside and adjacent to; 2- across, over and through and 3- beyond, past, by and off. The prepositions within these groups also share senses. Through is recognised as a specialisation of both across and over. Proximity and adjacency prepositions also have similar senses that express orientation and overlapping relations. Past, off and by share a proximal sense but beyond has a different sense from these, representing on the other side. Another finding is the more frequent use of the preposition close to for pairs of linear objects than near, which is used more frequently for non-linear ones. Also, next to is used to describe proximity more than touching (in contrast to other prepositions like adjacent to). Our application of text mining to identify semantically similar prepositions confirms that a geospatial corpus (NCGL) provides a better representation of the semantics of geospatial prepositions than a general corpus. Also, we found that GloVe embeddings provide adequate semantic similarity measures for more specialised geospatial prepositions, but less so for those that have more generalised applications and multiple senses. We explore the role of context (RQ2) by studying three sites that vary in size, nature, and context in London: Trafalgar Square, Buckingham Palace, and Hyde Park. We use the Google search engine to extract location descriptions that contain these three sites with 9 different geospatial prepositions (in, on, at, next to, close to, adjacent to, near, beside, outside) and calculate their acceptance profiles (the profile of the use of a preposition at different distances from the reference object) and acceptance thresholds (maximum distance from a reference object at which a preposition can acceptably be used). We use these to compare prepositions, and to explore the influence of different contexts. Our results show that near, in and outside are used for larger distances, while beside, adjacent to and at are used for smaller distances. Also, the acceptance threshold for close to is higher than for other proximity/adjacency prepositions such as next to, adjacent to and beside. The acceptance threshold of next to is larger than adjacent to, which confirms the findings in ‎Chapter 2 which identifies next to describing a proximity rather than touching spatial relation. We also found that relatum characteristics such as image schema affect the use of prepositions such as in, on and at. We address RQ3 by developing a machine learning regression model (using the SMOReg algorithm) to predict the distance associated with use of geospatial prepositions in specific expressions. We incorporate a wide range of input variables including the similarity matrix of geospatial prepositions (RQ1); preposition senses; semantic information in the form of embeddings; characteristics of the located and reference objects in the expression including their liquidity/solidity, scale and geometry type and contextual factors such as the density of features of different types in the surrounding area. We evaluate the model on two different datasets with 25% improvement against the best baseline respectively. Finally, we consider the importance of annotation of geospatial location descriptions (RQ4). As annotated data is essential for the successful study of automated interpretation of natural language descriptions, we study the impact and accuracy of human annotation on different geospatial elements. Agreement scores show that human annotators can annotate geospatial relation terms (e.g., geospatial prepositions) with higher agreement than other geospatial elements. This thesis advances understanding of the semantics of geospatial prepositions, particularly considering their semantic similarity and the impact of context on their interpretation. We quantify the semantic similarity of a set of 24 geospatial prepositions; identify senses and the relationships among them for 13 geospatial prepositions; compare the acceptance thresholds of 9 geospatial prepositions and describe the influence of context on them; and demonstrate that richer semantic and contextual information can be incorporated in predictive models to interpret relative geospatial location descriptions more accurately

    Recurrence networks - A novel paradigm for nonlinear time series analysis

    Get PDF
    This paper presents a new approach for analysing structural properties of time series from complex systems. Starting from the concept of recurrences in phase space, the recurrence matrix of a time series is interpreted as the adjacency matrix of an associated complex network which links different points in time if the evolution of the considered states is very similar. A critical comparison of these recurrence networks with similar existing techniques is presented, revealing strong conceptual benefits of the new approach which can be considered as a unifying framework for transforming time series into complex networks that also includes other methods as special cases. It is demonstrated that there are fundamental relationships between the topological properties of recurrence networks and the statistical properties of the phase space density of the underlying dynamical system. Hence, the network description yields new quantitative characteristics of the dynamical complexity of a time series, which substantially complement existing measures of recurrence quantification analysis

    Spectral Image Segmentation with Global Appearance Modeling

    Full text link
    We introduce a new spectral method for image segmentation that incorporates long range relationships for global appearance modeling. The approach combines two different graphs, one is a sparse graph that captures spatial relationships between nearby pixels and another is a dense graph that captures pairwise similarity between all pairs of pixels. We extend the spectral method for Normalized Cuts to this setting by combining the transition matrices of Markov chains associated with each graph. We also derive an efficient method that uses importance sampling for sparsifying the dense graph of appearance relationships. This leads to a practical algorithm for segmenting high-resolution images. The resulting method can segment challenging images without any filtering or pre-processing
    • …
    corecore