148,230 research outputs found

    Bridging Minds: A Mixed Methodology to Assess Networked Flow

    Get PDF
    The main goal of this contribution is to present a methodological framework to study Networked Flow, a bio-psycho-social theory of collective creativity applying it on creative processes occurring via a computer network. First, we draw on the definition of Networked Flow to identify the key methodological requirements of this model. Next, we present the rationale of a mixed methodology, which aims at combining qualitative, quantitative and structural analysis of group dynamics to obtain a rich longitudinal dataset. We argue that this integrated strategy holds potential for describing the complex dynamics of creative collaboration, by linking the experiential features of collaborative experience (flow, social presence), with the structural features of collaboration dynamics (network indexes) and the collaboration outcome (the creative product). Finally, we report on our experience with using this methodology in blended collaboration settings (including both face-to-face and virtual meetings), to identify open issues and provide future research directions

    Flow-Aware Elephant Flow Detection for Software-Defined Networks

    Get PDF
    Software-defined networking (SDN) separates the network control plane from the packet forwarding plane, which provides comprehensive network-state visibility for better network management and resilience. Traffic classification, particularly for elephant flow detection, can lead to improved flow control and resource provisioning in SDN networks. Existing elephant flow detection techniques use pre-set thresholds that cannot scale with the changes in the traffic concept and distribution. This paper proposes a flow-aware elephant flow detection applied to SDN. The proposed technique employs two classifiers, each respectively on SDN switches and controller, to achieve accurate elephant flow detection efficiently. Moreover, this technique allows sharing the elephant flow classification tasks between the controller and switches. Hence, most mice flows can be filtered in the switches, thus avoiding the need to send large numbers of classification requests and signaling messages to the controller. Experimental findings reveal that the proposed technique outperforms contemporary methods in terms of the running time, accuracy, F-measure, and recall

    Building fault detection data to aid diagnostic algorithm creation and performance testing.

    Get PDF
    It is estimated that approximately 4-5% of national energy consumption can be saved through corrections to existing commercial building controls infrastructure and resulting improvements to efficiency. Correspondingly, automated fault detection and diagnostics (FDD) algorithms are designed to identify the presence of operational faults and their root causes. A diversity of techniques is used for FDD spanning physical models, black box, and rule-based approaches. A persistent challenge has been the lack of common datasets and test methods to benchmark their performance accuracy. This article presents a first of its kind public dataset with ground-truth data on the presence and absence of building faults. This dataset spans a range of seasons and operational conditions and encompasses multiple building system types. It contains information on fault severity, as well as data points reflective of the measurements in building control systems that FDD algorithms typically have access to. The data were created using simulation models as well as experimental test facilities, and will be expanded over time

    Generation and quality control of lipidomics data for the alzheimers disease neuroimaging initiative cohort.

    Get PDF
    Alzheimers disease (AD) is a major public health priority with a large socioeconomic burden and complex etiology. The Alzheimer Disease Metabolomics Consortium (ADMC) and the Alzheimer Disease Neuroimaging Initiative (ADNI) aim to gain new biological insights in the disease etiology. We report here an untargeted lipidomics of serum specimens of 806 subjects within the ADNI1 cohort (188 AD, 392 mild cognitive impairment and 226 cognitively normal subjects) along with 83 quality control samples. Lipids were detected and measured using an ultra-high-performance liquid chromatography quadruple/time-of-flight mass spectrometry (UHPLC-QTOF MS) instrument operated in both negative and positive electrospray ionization modes. The dataset includes a total 513 unique lipid species out of which 341 are known lipids. For over 95% of the detected lipids, a relative standard deviation of better than 20% was achieved in the quality control samples, indicating high technical reproducibility. Association modeling of this dataset and available clinical, metabolomics and drug-use data will provide novel insights into the AD etiology. These datasets are available at the ADNI repository at http://adni.loni.usc.edu/
    corecore