2 research outputs found

    Composition and Self-Adaptation of Service-Based Systems with Feature Models

    Get PDF
    The adoption of mechanisms for reusing software in pervasive systems has not yet become standard practice. This is because the use of pre-existing software requires the selection, composition and adaptation of prefabricated software parts, as well as the management of some complex problems such as guaranteeing high levels of efficiency and safety in critical domains. In addition to the wide variety of services, pervasive systems are composed of many networked heterogeneous devices with embedded software. In this work, we promote the safe reuse of services in service-based systems using two complementary technologies, Service-Oriented Architecture and Software Product Lines. In order to do this, we extend both the service discovery and composition processes defined in the DAMASCo framework, which currently does not deal with the service variability that constitutes pervasive systems. We use feature models to represent the variability and to self-adapt the services during the composition in a safe way taking context changes into consideration. We illustrate our proposal with a case study related to the driving domain of an Intelligent Transportation System, handling the context information of the environment.Work partially supported by the projects TIN2008-05932, TIN2008-01942, TIN2012-35669, TIN2012-34840 and CSD2007-0004 funded by Spanish Ministry of Economy and Competitiveness and FEDER; P09-TIC-05231 and P11-TIC-7659 funded by Andalusian Government; and FP7-317731 funded by EU. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Optimizing decomposition of software architecture for local recovery

    Get PDF
    Cataloged from PDF version of article.The increasing size and complexity of software systems has led to an amplified number of potential failures and as such makes it harder to ensure software reliability. Since it is usually hard to prevent all the failures, fault tolerance techniques have become more important. An essential element of fault tolerance is the recovery from failures. Local recovery is an effective approach whereby only the erroneous parts of the system are recovered while the other parts remain available. For achieving local recovery, the architecture needs to be decomposed into separate units that can be recovered in isolation. Usually, there are many different alternative ways to decompose the system into recoverable units. It appears that each of these decomposition alternatives performs differently with respect to availability and performance metrics. We propose a systematic approach dedicated to optimizing the decomposition of software architecture for local recovery. The approach provides systematic guidelines to depict the design space of the possible decomposition alternatives, to reduce the design space with respect to domain and stakeholder constraints and to balance the feasible alternatives with respect to availability and performance. The approach is supported by an integrated set of tools and illustrated for the open-source MPlayer software
    corecore