2,303 research outputs found

    Interactivity Improves Usability of Geographic Maps for Visually Impaired People

    Get PDF
    International audienceTactile relief maps are used by visually impaired people to acquire mental representation of space, but they retain important limitations (limited amount of information, braille text, etc.). Interactive maps may overcome these limitations. However, usability of these two types of maps had never been compared. It is then unknown whether interactive maps are equivalent or even better solutions than traditional raised-line maps. This study presents a comparison of usability of a classical raised-line map vs. an interactive map composed by a multi-touch screen, a raised-line overlay and audio output. Both maps were tested by 24 blind participants. We measured usability as efficiency, effectiveness and satisfaction. Our results show that replacing braille with simple audio-tactile interaction significantly improved efficiency and user satisfaction. Effectiveness was not related to the map type but depended on users' characteristics as well as the category of assessed spatial knowledge. Long-term evaluation of acquired spatial information revealed that maps, whether interactive or not, are useful to build robust survey-type mental representations in blind users. Altogether, these results are encouraging as they show that interactive maps are a good solution for improving map exploration and cognitive mapping in visually impaired people

    From open geographical data to tangible maps: improving the accessibility of maps for visually impaired people

    Get PDF
    International audienceVisual maps must be transcribed into (interactive) raised-line maps to be accessible for visually impaired people. However, these tactile maps suffer from several shortcomings: they are long and expensive to produce, they cannot display a large amount of information, and they are not dynamically modifiable. A number of methods have been developed to automate the production of raised-line maps, but there is not yet any tactile map editor on the market. Tangible interactions proved to be an efficient way to help a visually impaired user manipulate spatial representations. Contrary to raised-line maps, tangible maps can be autonomously constructed and edited. In this paper, we present the scenarios and the main expected contributions of the AccessiMap project, which is based on the availability of many sources of open spatial data: 1/ facilitating the production of interactive tactile maps with the development of an open-source web-based editor; 2/ investigating the use of tangible interfaces for the autonomous construction and exploration of a map by a visually impaired user

    Map design for visually impaired people: past, present, and future research

    Get PDF
    International audienceOrientation and mobility are amongst the most important challenges for visually impaired people. Tactile maps can provide them with spatial knowledge of their environment, thereby reducing fear related to travelling in space. To date, raised-line paper maps have been used to make geographic information accessible, but these paper maps have significant limitations with regards to content and the presentation of information. Recent advances in technology may help to design usable interactive maps that overcome such limitations. In this paper, we first review different accessible map concepts. We then present our design of an interactive map prototype, and provide evidence of this interactive map’s high user satisfaction and efficiency as compared to a regular raised-line paper map. To conclude, we suggest that advances in interactive technologies (e.g., haptic touch surfaces) provide a unique opportunity to design usable maps in the near future

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Communicating the Past in the Digital Age: Proceedings of the International Conference on Digital Methods in Teaching and Learning in Archaeology (12-13 October 2018)

    Get PDF
    Recent developments in the field of archaeology are not only progressing archaeological fieldwork but also changing the way we practise and present archaeology today. As these digital technologies are being used more and more every day on excavations or in museums, this also means that we must change the way we approach teaching and communicating archaeology as a discipline. This volume presents the outcome of a two-day international symposium on digital methods in teaching and learning in archaeology held at the University of Cologne in October 2018. Specialists from around the world share their views on the newest developments in the field of archaeology and the way we teach these with the help of archaeogaming, augmented and virtual reality, 3D reconstruction and many more

    Tools in and out of sight : an analysis informed by Cultural-Historical Activity Theory of audio-haptic activities involving people with visual impairments supported by technology

    Get PDF
    The main purpose of this thesis is to present a Cultural-Historical Activity Theory (CHAT) based analysis of the activities conducted by and with visually impaired users supported by audio-haptic technology.This thesis covers several studies conducted in two projects. The studies evaluate the use of audio-haptic technologies to support and/or mediate the activities of people with visual impairment. The focus is on the activities involving access to two-dimensional information, such as pictures or maps. People with visual impairments can use commercially available solutions to explore static information (raised lined maps and pictures, for example). Solu-tions for dynamic access, such as drawing a picture or using a map while moving around, are more scarce. Two distinct projects were initiated to remedy the scarcity of dynamic access solutions, specifically focusing on two separate activities.The first project, HaptiMap, focused on pedestrian outdoors navigation through audio feedback and gestures mediated by a GPS equipped mobile phone. The second project, HIPP, focused on drawing and learning about 2D representations in a school setting with the help of haptic and audio feedback. In both cases, visual feedback was also present in the technology, enabling people with vision to take advantage of that modality too.The research questions addressed are: How can audio and haptic interaction mediate activ-ities for people with visual impairment? Are there features of the programming that help or hinder this mediation? How can CHAT, and specifically the Activity Checklist, be used to shape the design process, when designing audio haptic technology together with persons with visual impairments?Results show the usefulness of the Activity Checklist as a tool in the design process, and provide practical application examples. A general conclusion emphasises the importance of modularity, standards, and libre software in rehabilitation technology to support the development of the activities over time and to let the code evolve with them, as a lifelong iterative development process. The research also provides specific design recommendations for the design of the type of audio haptic systems involved
    corecore