103 research outputs found

    Augmented Reality-Assisted Craniotomy for Parasagittal and Convexity En Plaque Meningiomas and Custom-Made Cranio-Plasty: A Preliminary Laboratory Report

    Get PDF
    Background: This report discusses the utility of a wearable augmented reality platform in neurosurgery for parasagittal and convexity en plaque meningiomas with bone flap removal and custom-made cranioplasty. Methods: A real patient with en plaque cranial vault meningioma with diffuse and extensive dural involvement, extracranial extension into the calvarium, and homogeneous contrast enhancement on gadolinium-enhanced T1-weighted MRI, was selected for this case study. A patient-specific manikin was designed starting with the segmentation of the patient’s preoperative MRI images to simulate a craniotomy procedure. Surgical planning was performed according to the segmented anatomy, and customized bone flaps were designed accordingly. During the surgical simulation stage, the VOSTARS head-mounted display was used to accurately display the planned craniotomy trajectory over the manikin skull. The precision of the craniotomy was assessed based on the evaluation of previously prepared custom-made bone flaps. Results: A bone flap with a radius 0.5 mm smaller than the radius of an ideal craniotomy fitted perfectly over the performed craniotomy, demonstrating an error of less than ±1 mm in the task execution. The results of this laboratory-based experiment suggest that the proposed augmented reality platform helps in simulating convexity en plaque meningioma resection and custom-made cranioplasty, as carefully planned in the preoperative phase. Conclusions: Augmented reality head-mounted displays have the potential to be a useful adjunct in tumor surgical resection, cranial vault lesion craniotomy and also skull base surgery, but more study with large series is needed

    Evaluation of HMDs by QFD for Augmented Reality Applications in the Maxillofacial Surgery Domain

    Get PDF
    Today, surgical operations are less invasive than they were a few decades ago and, in medicine, there is a growing trend towards precision surgery. Among many technological advancements, augmented reality (AR) can be a powerful tool for improving the surgery practice through its ability to superimpose the 3D geometrical information of the pre-planned operation over the surgical field as well as medical and instrumental information gathered from operating room equipment. AR is fundamental to reach new standards in maxillofacial surgery. The surgeons will be able to not shift their focus from the patients while looking to the monitors. Osteotomies will not require physical tools to be fixed on patient bones as guides to make resections. Handling grafts and 3D models directly in the operating room will permit a fine tuning of the procedure before harvesting the implant. This article aims to study the application of AR head-mounted displays (HMD) in three operative scenarios (oncological and reconstructive surgery, orthognathic surgery, and maxillofacial trauma surgery) by the means of quantitative logic using the Quality Function Deployment (QFD) tool to determine their requirements. The article provides an evaluation of the readiness degree of HMD currently on market and highlights the lacking features

    Augmented Reality and Artificial Intelligence in Image-Guided and Robot-Assisted Interventions

    Get PDF
    In minimally invasive orthopedic procedures, the surgeon places wires, screws, and surgical implants through the muscles and bony structures under image guidance. These interventions require alignment of the pre- and intra-operative patient data, the intra-operative scanner, surgical instruments, and the patient. Suboptimal interaction with patient data and challenges in mastering 3D anatomy based on ill-posed 2D interventional images are essential concerns in image-guided therapies. State of the art approaches often support the surgeon by using external navigation systems or ill-conditioned image-based registration methods that both have certain drawbacks. Augmented reality (AR) has been introduced in the operating rooms in the last decade; however, in image-guided interventions, it has often only been considered as a visualization device improving traditional workflows. Consequently, the technology is gaining minimum maturity that it requires to redefine new procedures, user interfaces, and interactions. This dissertation investigates the applications of AR, artificial intelligence, and robotics in interventional medicine. Our solutions were applied in a broad spectrum of problems for various tasks, namely improving imaging and acquisition, image computing and analytics for registration and image understanding, and enhancing the interventional visualization. The benefits of these approaches were also discovered in robot-assisted interventions. We revealed how exemplary workflows are redefined via AR by taking full advantage of head-mounted displays when entirely co-registered with the imaging systems and the environment at all times. The proposed AR landscape is enabled by co-localizing the users and the imaging devices via the operating room environment and exploiting all involved frustums to move spatial information between different bodies. The system's awareness of the geometric and physical characteristics of X-ray imaging allows the exploration of different human-machine interfaces. We also leveraged the principles governing image formation and combined it with deep learning and RGBD sensing to fuse images and reconstruct interventional data. We hope that our holistic approaches towards improving the interface of surgery and enhancing the usability of interventional imaging, not only augments the surgeon's capabilities but also augments the surgical team's experience in carrying out an effective intervention with reduced complications

    Virtual and Augmented Reality in Neurosurgery: The Evolution of its Application and Study Designs.

    Get PDF
    BACKGROUND: As the art of neurosurgery evolves in the 21st century, more emphasis is placed on minimally invasive techniques, which require technical precision. Simultaneously, the reduction on training hours continues, and teachers of neurosurgery faces double jeopardy -with harder skills to teach and less time to teach them. Mixed reality appears as the neurosurgical educators\u27 natural ally: Virtual reality facilitates the learning of spatial relationships and permits rehearsal of skills, while augmented reality can make procedures safer and more efficient. Little wonder then, that the body of literature on mixed reality in neurosurgery has grown exponentially. METHODS: Publications involving virtual and augmented reality in neurosurgery were examined. A total of 414 papers were included, and they were categorized according to study design and analyzed. RESULTS: Half of the papers were published within the last 3 years alone. Whereas in the earlier half, most of the publications involved experiments in virtual reality simulation and the efficacy of skills acquisition, many of the more recent publication are proof-of-concept studies. This attests to the evolution of mixed reality in neurosurgery. As the technology advances, neurosurgeons are finding more applications, both in training and clinical practice. CONCLUSIONS: With parallel advancement in Internet speed and artificial intelligence, the utilization of mixed reality will permeate neurosurgery. From solving staff problems in global neurosurgery, to mitigating the deleterious effect of duty-hour reductions, to improving individual operations, mixed reality will have a positive effect in many aspects of neurosurgery

    SERENITY: THE FUTURE OF COGNITIVE MODULATION FOR THE HYPER ENABLED OPERATOR

    Get PDF
    In the Special Operations community, cognitive enhancement and resilience is at the forefront of the 2035 Hyper Enabled Operator Program (HEO). The United States Special Operations Command’s vision is to combine cutting-edge communications and data capabilities into a next generation tactical system for the end user. Using algorithms and autonomous systems to enhance the ability to make rational decisions faster can ultimately determine life or death on the battlefield. Over the past several years, cognitive enhancement with the introduction of brain computer interface (BCI) technology has had major breakthroughs in the medical and science fields. This thesis looks to analyze BCI technology for future cognitive dominance and cognitive overmatch in the Hyper Enabled Operator. Machine-assisted cognitive enhancement is not beyond reach for special operations; throughout the research and after multiple interviews with subject matter experts, it has been concluded that interfaces using transcranial alternating current stimulation (tACS), median nerve stimulation (MNS), or several other exploratory procedures have been successful with enhancing cognition and reducing cognitive load. Special Operations should not shy away from transformational innovative technology or wait for commercial or lab-tested solutions. To start, Special Operations should foster avant-garde theories that provide solutions and evolve ideas into unsophisticated prototypes that can be fielded immediately.Major, United States ArmyApproved for public release. Distribution is unlimited

    Visualization, navigation, augmentation. The ever-changing perspective of the neurosurgeon

    Get PDF
    Introduction: The evolution of neurosurgery coincides with the evolution of visualization and navigation. Augmented reality technologies, with their ability to bring digital information into the real environment, have the potential to provide a new, revolutionary perspective to the neurosurgeon. Research question: To provide an overview on the historical and technical aspects of visualization and navigation in neurosurgery, and to provide a systematic review on augmented reality (AR) applications in neurosurgery. Material and methods: We provided an overview on the main historical milestones and technical features of visualization and navigation tools in neurosurgery. We systematically searched PubMed and Scopus databases for AR applications in neurosurgery and specifically discussed their relationship with current visualization and navigation systems, as well as main limitations. Results: The evolution of visualization in neurosurgery is embodied by four magnification systems: surgical loupes, endoscope, surgical microscope and more recently the exoscope, each presenting independent features in terms of magnification capabilities, eye-hand coordination and the possibility to implement additional functions. In regard to navigation, two independent systems have been developed: the frame-based and the frame-less systems. The most frequent application setting for AR is brain surgery (71.6%), specifically neuro-oncology (36.2%) and microscope-based (29.2%), even though in the majority of cases AR applications presented their own visualization supports (66%). Discussion and conclusions: The evolution of visualization and navigation in neurosurgery allowed for the development of more precise instruments; the development and clinical validation of AR applications, have the potential to be the next breakthrough, making surgeries safer, as well as improving surgical experience and reducing costs

    Craniofacial Growth Series Volume 56

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/153991/1/56th volume CF growth series FINAL 02262020.pdfDescription of 56th volume CF growth series FINAL 02262020.pdf : Proceedings of the 46th Annual Moyers Symposium and 44th Moyers Presymposiu

    Advances in Minimally Invasive Surgery

    Get PDF
    The minimally invasive approach in medicine is one of the most common areas of interest in surgery.Advances in Minimally Invasive Surgery describes the latest trends, indications, techniques, and approaches in minimally invasive surgery. It provides step-by-step instructions for both routine and diagnostic procedures via illustrations and video collection

    Research on real-time physics-based deformation for haptic-enabled medical simulation

    Full text link
    This study developed a multiple effective visuo-haptic surgical engine to handle a variety of surgical manipulations in real-time. Soft tissue models are based on biomechanical experiment and continuum mechanics for greater accuracy. Such models will increase the realism of future training systems and the VR/AR/MR implementations for the operating room
    • …
    corecore