18,187 research outputs found

    Lamb wave defect detection and evaluation using a fully non-contact laser system

    Get PDF
    Traditional Lamb wave structural health monitoring (SHM)/nondestructive evaluation (NDE) system employs contact type transducers such as PZT, ultrasonic transducers, and optical fibers. In application, transducer attachment and maintenance can be time and labor consuming. In addition, the use of couplant and adhesives can introduce additional materials on structures, and the interface coupling is often not well understood. To overcome these limitations, we proposed a fully non-contact NDE system by employing pulsed laser (PL) for Lamb wave actuation and scanning laser Doppler vibrometer (SLDV) for Lamb wave sensing. The proposed system is implemented on aluminum plates. The PL Lamb wave excitation is calibrated, and the optimal parameters are obtained. Lamb wave modes are then characterized through 1D wavefield analysis. With the calibrated and characterized system, defect detection and evaluation are achieved on aluminum plates with simulated defects (surfaced-bonded quartz rod, and machine milled crack) through 1D and 2D inspection in both time-space and frequency-wavenumber domains

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Non-destructive evaluation of concrete using a capacitive imaging technique : preliminary modelling and experiments

    Get PDF
    This paper describes the application of capacitive imaging to the inspection of concrete. A two-dimensional finite-element method was employed to model the electric field distribution from capacitive imaging probe, and how it interacts with concrete samples. Physical experiments with prototype capacitive imaging probes were also carried out. The proof-of-concept results indicated that the capacitive imaging technique could be used to detect cracks on the surface of concrete samples, as well as sub-surface air voids and steel reinforcement bars

    Electromagnetic induction imaging with a radio-frequency atomic magnetometer

    Get PDF
    We report on a compact, tunable, and scalable to large arrays imaging device, based on a radio-frequency optically pumped atomic magnetometer operating in magnetic induction tomography modality. Imaging of conductive objects is performed at room temperature, in an unshielded environment and without background subtraction. Conductivity maps of target objects exhibit not only excellent performance in terms of shape reconstruction but also demonstrate detection of sub-millimetric cracks and penetration of conductive barriers. The results presented here demonstrate the potential of a future generation of imaging instruments, which combine magnetic induction tomography and the unmatched performance of atomic magnetometers.Comment: 5 pages, 5 figure

    An Approach to Assess Solder Interconnect Degradation Using Digital Signal

    Get PDF
    Department of Human and Systems EngineeringDigital signals used in electronic systems require reliable data communication. It is necessary to monitor the system health continuously to prevent system failure in advance. Solder joints in electronic assemblies are one of the major failure sites under thermal, mechanical and chemical stress conditions during their operation. Solder joint degradation usually starts from the surface where high speed signals are concentrated due to the phenomenon referred to as the skin effect. Due to the skin effect, high speed signals are sensitive when detecting the early stages of solder joint degradation. The objective of the thesis is to assess solder joint degradation in a non-destructive way based on digital signal characterization. For accelerated life testing the stress conditions were designed in order to generate gradual degradation of solder joints. The signal generated by a digital signal transceiver was travelling through the solder joints to continuously monitor the signal integrity under the stress conditions. The signal properities were obtained by eye parameters and jitter, which represented the characteristics of the digital signal in terms of noise and timing error. The eye parameters and jitter exhibited significant increase after the exposure of the solder joints to the stress conditions. The test results indicated the deterioration of the signal integrity resulted from the solder joint degradation, and proved that high speed digital signals could serve as a non-destructive tool for sensing physical degradation. Since this approach is based on the digital signals used in electronic systems, it can be implemented without requiring additional sensing devices. Furthermore, this approach can serve as a proactive prognostic tool, which provides real-time health monitoring of electronic systems and triggers early warning for impending failure.ope

    Rayleigh Wave Calibration of Acoustic Emission Sensors and Ultrasonic Transducers.

    Get PDF
    Acoustic emission (AE) sensors and ultrasonic transducers were characterized for the detection of Rayleigh waves (RW). Small aperture reference sensors were characterized first using the fracture of glass capillary tubes in combination with a theoretical displacement calculation, which utilized finite element method (FEM) and was verified by laser interferometer. For the calibration of 18 commercial sensors and two piezoceramic disks, a 90° angle beam transducer was used to generate RW pulses on an aluminum transfer block. By a substitution method, RW receiving sensitivity of a sensor under test was determined over the range of frequency from 22 kHz to 2 MHz. Results were compared to the sensitivities to normally incident waves (NW) and to other guided waves (GW). It was found that (1) NW sensitivities are always higher than RW sensitivities, (2) differences between NW and RW receiving sensitivities are dependent on frequency and sensor size, (3) most sensors show comparable RW and GW receiving sensitivities, especially those of commonly used AE sensors, and (4) the receiving sensitivities of small aperture (1 mm diameter) sensors behave differently from larger sensors

    Index to nasa tech briefs, issue number 2

    Get PDF
    Annotated bibliography on technological innovations in NASA space program
    corecore