164 research outputs found

    DNA methylation of human choline kinase alpha gene

    Get PDF
    Increased level of choline kinase (CK) is a common feature in cancers and inhibition of this enzyme has been applied as anticancer strategy. DNA methylation of gene promoter especially at CpG island is associated with suppression of gene expression. Despite the importance of CK especially the alpha isoform in cancer pathogenesis, epigenetic regulation of ckα expression has not been investigated. Hence, this study aimed to determine the effect of DNA methylation on ckα promoter activity and gene expression by using hypomethylating (5-aza) and methylating (budesonide) agents. The level of DNA methylation in the second CpG island of ckα promoter was determined by PCR-based method. 5-aza and budesonide increased the methylation of the selected CpG island compared to untreated control. Treatment with the drugs produced opposite effect, with 5-aza induced ckα promoter activity and gene expression while budesonide suppressed the promoter activity and mRNA level of this gene. Deletion of a region containing the second CpG island on ckα promoter resulted in significantly lower promoter activity. In conclusion, this study showed that DNA methylation could be one of the mechanisms that regulate the expression of ckα gene

    All and only CpG containing sequences are enriched in promoters abundantly bound by RNA polymerase II in multiple tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The promoters of housekeeping genes are well-bound by RNA polymerase II (RNAP) in different tissues. Although the promoters of these genes are known to contain CpG islands, the specific DNA sequences that are associated with high RNAP binding to housekeeping promoters has not been described.</p> <p>Results</p> <p>ChIP-chip experiments from three mouse tissues, liver, heart ventricles, and primary keratinocytes, indicate that 94% of promoters have similar RNAP binding, ranging from well-bound to poorly-bound in all tissues. Using all 8-base pair long sequences as a test set, we have identified the DNA sequences that are enriched in promoters of housekeeping genes, focusing on those DNA sequences which are preferentially localized in the proximal promoter. We observe a bimodal distribution. Virtually all sequences enriched in promoters with high RNAP binding values contain a CpG dinucleotide. These results suggest that only transcription factor binding sites (TFBS) that contain the CpG dinucleotide are involved in RNAP binding to housekeeping promoters while TFBS that do not contain a CpG are involved in regulated promoter activity. Abundant 8-mers that are preferentially localized in the proximal promoters and exhibit the best enrichment in RNAP bound promoters are all variants of six known CpG-containing TFBS: ETS, NRF-1, BoxA, SP1, CRE, and E-Box. The frequency of these six DNA motifs can predict housekeeping promoters as accurately as the presence of a CpG island, suggesting that they are the structural elements critical for CpG island function. Experimental EMSA results demonstrate that methylation of the CpG in the ETS, NRF-1, and SP1 motifs prevent DNA binding in nuclear extracts in both keratinocytes and liver.</p> <p>Conclusion</p> <p>In general, TFBS that do not contain a CpG are involved in regulated gene expression while TFBS that contain a CpG are involved in constitutive gene expression with some CpG containing sequences also involved in inducible and tissue specific gene regulation. These TFBS are not bound when the CpG is methylated. Unmethylated CpG dinucleotides in the TFBS in CpG islands allow the transcription factors to find their binding sites which occur only in promoters, in turn localizing RNAP to promoters.</p

    Epigenetics, Behaviour, and Health

    Get PDF
    <p/> <p>The long-term effects of behaviour and environmental exposures, particularly during childhood, on health outcomes are well documented. Particularly thought provoking is the notion that exposures to different social environments have a long-lasting impact on human physical health. However, the mechanisms mediating the effects of the environment are still unclear. In the last decade, the main focus of attention was the genome, and interindividual genetic polymorphisms were sought after as the principal basis for susceptibility to disease. However, it is becoming clear that recent dramatic increases in the incidence of certain human pathologies, such as asthma and type 2 diabetes, cannot be explained just on the basis of a genetic drift. It is therefore extremely important to unravel the molecular links between the "environmental" exposure, which is believed to be behind this emerging incidence in certain human pathologies, and the disease's molecular mechanisms. Although it is clear that most human pathologies involve long-term changes in gene function, these might be caused by mechanisms other than changes in the deoxyribonucleic acid (DNA) sequence. The genome is programmed by the epigenome, which is composed of chromatin and a covalent modification of DNA by methylation. It is postulated here that "epigenetic" mechanisms mediate the effects of behavioural and environmental exposures early in life, as well as lifelong environmental exposures and the susceptibility to disease later in life. In contrast to genetic sequence differences, epigenetic aberrations are potentially reversible, raising the hope for interventions that will be able to reverse deleterious epigenetic programming.</p

    Breaking the Silence: The Interplay Between Transcription Factors and DNA Methylation

    Get PDF
    DNA methylation is best known for its role in gene silencing through a methyl group (CH3) being added to the 5' carbon of cytosine bases (giving 5-methylcytosine) in the promoters of genes leading to supression of transcription. De novo methylation, which involves the addition of a methyl group to unmodified DNA, is described as an epigenetic change because it is a chemical modification to DNA not a change brought about by a DNA mutation. Unlike mutations, methylation changes are potentially reversible. Epigenetic changes also include changes to DNA-associated molecules such as histone modifications, chromatin-remodelling complexes and other small non-coding RNAs including miRNAs and siRNAs. These changes have key roles in imprinting (gene-ex‐ pression dependent on parental origin), X chromosome inactivation and heterochromatin formation among others [3-5].peer-reviewe

    Epigenetics and Tumor Suppressor Genes

    Get PDF

    hTERT promoter activity and CpG methylation in HPV-induced carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of telomerase resulting from deregulated hTERT expression is a key event during high-risk human papillomavirus (hrHPV)-induced cervical carcinogenesis. In the present study we examined hTERT promoter activity and its relation to DNA methylation as one of the potential mechanisms underlying deregulated hTERT transcription in hrHPV-transformed cells.</p> <p>Methods</p> <p>Using luciferase reporter assays we analyzed hTERT promoter activity in primary keratinocytes, HPV16- and HPV18-immortalized keratinocyte cell lines and cervical cancer cell lines. In the same cells as well as cervical specimens we determined hTERT methylation by bisulfite sequencing analysis of the region spanning -442 to +566 (relative to the ATG) and quantitative methylation specific PCR (qMSP) analysis of two regions flanking the hTERT core promoter.</p> <p>Results</p> <p>We found that in most telomerase positive cells increased hTERT core promoter activity coincided with increased hTERT mRNA expression. On the other hand basal hTERT promoter activity was also detected in telomerase negative cells with no or strongly reduced hTERT mRNA expression levels. In both telomerase positive and negative cells regulatory sequences flanking both ends of the core promoter markedly repressed exogenous promoter activity.</p> <p>By extensive bisulfite sequencing a strong increase in CpG methylation was detected in hTERT positive cells compared to cells with no or strongly reduced hTERT expression. Subsequent qMSP analysis of a larger set of cervical tissue specimens revealed methylation of both regions analyzed in 100% of cervical carcinomas and 38% of the high-grade precursor lesions, compared to 9% of low grade precursor lesions and 5% of normal controls.</p> <p>Conclusions</p> <p>Methylation of transcriptionally repressive sequences in the hTERT promoter and proximal exonic sequences is correlated to deregulated hTERT transcription in HPV-immortalized cells and cervical cancer cells. The detection of DNA methylation at these repressive regions may provide an attractive biomarker for early detection of cervical cancer.</p

    Hypomethylation of IL10 and IL13 Promoters in CD4+ T Cells of Patients with Systemic Lupus Erythematosus

    Get PDF
    Interleukin- (IL-)10 and IL-13 play important roles in Th2 cell differentiation and production of autoantibodies in patients with (SLE). However, the mechanisms leading to IL10 and IL13 overexpression in SLE patients are not well understood. In this study, we confirm that the levels of both IL10 and IL13 mRNA in CD4+ T cells and of serum IL10 and IL13 proteins are increased in SLE patients. We show that the DNA methylation levels within IL10 and IL13 gene regulatory domains are reduced in SLE CD4+ T cells relative to healthy controls and negatively correlate with IL10 and IL13 mRNA expression. Moreover, treating healthy CD4+ T cells with the demethylating agent 5-azacytidine (5-azaC) increased IL10 and IL13 mRNA transcription. Together, our results show that promoter methylation is a determinant of IL10 and IL13 expression in CD4+ T cells, and we propose that DNA hypomethylation leads to IL10 and IL13 overexpression in SLE patients

    CpG methylation at GATA elements in the regulatory region of CCR3 positively correlates with CCR3 transcription

    Get PDF
    DNA methylation may regulate gene expression by restricting the access of transcription factors. We have previously demonstrated that GATA-1 regulates the transcription of the CCR3 gene by dynamically interacting with both positively and negatively acting GATA elements of high affinity binding in the proximal promoter region including exon 1. Exon 1 has three CpG sites, two of which are positioned at the negatively acting GATA elements. We hypothesized that the methylation of these two CpGs sites might preclude GATA-1 binding to the negatively acting GATA elements and, as a result, increase the availability of GATA-1 to the positively acting GATA element, thereby contributing to an increase in GATA-1-mediated transcription of the gene. To this end, we determined the methylation of the three CpG sites by bisulfate pyrosequencing in peripheral blood eosinophils, cord blood (CB)-derived eosinophils, PBMCs, and cell lines that vary in CCR3 mRNA expression. Our results demonstrated that methylation of CpG sites at the negatively acting GATA elements severely reduced GATA-1 binding and augmented transcription activity in vitro. In agreement, methylation of these CpG sites positively correlated with CCR3 mRNA expression in the primary cells and cell lines examined. Interestingly, methylation patterns of these three CpG sites in CB-derived eosinophils mostly resembled those in peripheral blood eosinophils. These results suggest that methylation of CpG sites at the GATA elements in the regulatory regions fine-tunes CCR3 transcription

    Fragile X (CGG)(n )repeats induce a transcriptional repression in cis upon a linked promoter: Evidence for a chromatin mediated effect

    Get PDF
    BACKGROUND: Expansion of an unstable (CGG)(n )repeat to over 200 triplets within the promoter region of the human FMR1 gene leads to extensive local methylation and transcription silencing, resulting in the loss of FMRP protein and the development of the clinical features of fragile X syndrome. The causative link between (CGG)(n )expansion, methylation and gene silencing is unknown, although gene silencing is associated with extensive changes to local chromatin architecture. RESULTS: In order to determine the direct effects of increased repeat length on gene transcription in a chromatin context, we have examined the influence of FMR1 (CGG)(n )repeats upon transcription from the HSV thymidine kinase promoter in the Xenopus laevis oocyte. We observe a reduction in mRNA production directly associated with increasing repeat length, with a 90% reduction in mRNA production from arrays over 100 repeats in length. Using a kinetic approach, we show that this transcriptional repression is concomitant with chromatin maturation and, using in vitro transcription, we show that chromatin formation is a fundamental part of the repressive pathway mediated by (CGG)(n )repeats. Using Trichostatin A, a histone deacetylase inhibitor, we show reactivation of the silenced promoter. CONCLUSIONS: Thus, isolated fragile X associated (CGG)(n )repeat arrays can exert a modifying and transcriptionally repressive influence over adjacent promoters and this repressive phenomenon is, in part, mediated by histone deacetylation
    corecore