52,932 research outputs found

    Achieving New Upper Bounds for the Hypergraph Duality Problem through Logic

    Get PDF
    The hypergraph duality problem DUAL is defined as follows: given two simple hypergraphs G\mathcal{G} and H\mathcal{H}, decide whether H\mathcal{H} consists precisely of all minimal transversals of G\mathcal{G} (in which case we say that G\mathcal{G} is the dual of H\mathcal{H}). This problem is equivalent to deciding whether two given non-redundant monotone DNFs are dual. It is known that non-DUAL, the complementary problem to DUAL, is in GC(log2n,PTIME)\mathrm{GC}(\log^2 n,\mathrm{PTIME}), where GC(f(n),C)\mathrm{GC}(f(n),\mathcal{C}) denotes the complexity class of all problems that after a nondeterministic guess of O(f(n))O(f(n)) bits can be decided (checked) within complexity class C\mathcal{C}. It was conjectured that non-DUAL is in GC(log2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). In this paper we prove this conjecture and actually place the non-DUAL problem into the complexity class GC(log2n,TC0)\mathrm{GC}(\log^2 n,\mathrm{TC}^0) which is a subclass of GC(log2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). We here refer to the logtime-uniform version of TC0\mathrm{TC}^0, which corresponds to FO(COUNT)\mathrm{FO(COUNT)}, i.e., first order logic augmented by counting quantifiers. We achieve the latter bound in two steps. First, based on existing problem decomposition methods, we develop a new nondeterministic algorithm for non-DUAL that requires to guess O(log2n)O(\log^2 n) bits. We then proceed by a logical analysis of this algorithm, allowing us to formulate its deterministic part in FO(COUNT)\mathrm{FO(COUNT)}. From this result, by the well known inclusion TC0LOGSPACE\mathrm{TC}^0\subseteq\mathrm{LOGSPACE}, it follows that DUAL belongs also to DSPACE[log2n]\mathrm{DSPACE}[\log^2 n]. Finally, by exploiting the principles on which the proposed nondeterministic algorithm is based, we devise a deterministic algorithm that, given two hypergraphs G\mathcal{G} and H\mathcal{H}, computes in quadratic logspace a transversal of G\mathcal{G} missing in H\mathcal{H}.Comment: Restructured the presentation in order to be the extended version of a paper that will shortly appear in SIAM Journal on Computin

    Applications of incidence bounds in point covering problems

    Get PDF
    In the Line Cover problem a set of n points is given and the task is to cover the points using either the minimum number of lines or at most k lines. In Curve Cover, a generalization of Line Cover, the task is to cover the points using curves with d degrees of freedom. Another generalization is the Hyperplane Cover problem where points in d-dimensional space are to be covered by hyperplanes. All these problems have kernels of polynomial size, where the parameter is the minimum number of lines, curves, or hyperplanes needed. First we give a non-parameterized algorithm for both problems in O*(2^n) (where the O*(.) notation hides polynomial factors of n) time and polynomial space, beating a previous exponential-space result. Combining this with incidence bounds similar to the famous Szemeredi-Trotter bound, we present a Curve Cover algorithm with running time O*((Ck/log k)^((d-1)k)), where C is some constant. Our result improves the previous best times O*((k/1.35)^k) for Line Cover (where d=2), O*(k^(dk)) for general Curve Cover, as well as a few other bounds for covering points by parabolas or conics. We also present an algorithm for Hyperplane Cover in R^3 with running time O*((Ck^2/log^(1/5) k)^k), improving on the previous time of O*((k^2/1.3)^k).Comment: SoCG 201

    Covering of Subspaces by Subspaces

    Full text link
    Lower and upper bounds on the size of a covering of subspaces in the Grassmann graph \cG_q(n,r) by subspaces from the Grassmann graph \cG_q(n,k), krk \geq r, are discussed. The problem is of interest from four points of view: coding theory, combinatorial designs, qq-analogs, and projective geometry. In particular we examine coverings based on lifted maximum rank distance codes, combined with spreads and a recursive construction. New constructions are given for q=2q=2 with r=2r=2 or r=3r=3. We discuss the density for some of these coverings. Tables for the best known coverings, for q=2q=2 and 5n105 \leq n \leq 10, are presented. We present some questions concerning possible constructions of new coverings of smaller size.Comment: arXiv admin note: text overlap with arXiv:0805.352
    corecore