5,885 research outputs found

    On Modeling Coverage and Rate of Random Cellular Networks under Generic Channel Fading

    Get PDF
    In this paper we provide an analytic framework for computing the expected downlink coverage probability, and the associated data rate of cellular networks, where base stations are distributed in a random manner. The provided expressions are in computable integral forms that accommodate generic channel fading conditions. We develop these expressions by modelling the cellular interference using stochastic geometry analysis, then we employ them for comparing the coverage resulting from various channel fading conditions namely Rayleigh and Rician fading, in addition to the fading-less channel. Furthermore, we expand the work to accommodate the effects of random frequency reuse on the cellular coverage and rate. Monte-Carlo simulations are conducted to validate the theoretical analysis, where the results show a very close match

    Capacity Analysis of LTE-Advanced HetNets with Reduced Power Subframes and Range Expansion

    Get PDF
    The time domain inter-cell interference coordination techniques specified in LTE Rel. 10 standard improves the throughput of picocell-edge users by protecting them from macrocell interference. On the other hand, it also degrades the aggregate capacity in macrocell because the macro base station (MBS) does not transmit data during certain subframes known as almost blank subframes. The MBS data transmission using reduced power subframes was standardized in LTE Rel. 11, which can improve the capacity in macrocell while not causing high interference to the nearby picocells. In order to get maximum benefit from the reduced power subframes, setting the key system parameters, such as the amount of power reduction, carries critical importance. Using stochastic geometry, this paper lays down a theoretical foundation for the performance evaluation of heterogeneous networks with reduced power subframes and range expansion bias. The analytic expressions for average capacity and 5th percentile throughput are derived as a function of transmit powers, node densities, and interference coordination parameters in a heterogeneous network scenario, and are validated through Monte Carlo simulations. Joint optimization of range expansion bias, power reduction factor, scheduling thresholds, and duty cycle of reduced power subframes are performed to study the trade-offs between aggregate capacity of a cell and fairness among the users. To validate our analysis, we also compare the stochastic geometry based theoretical results with the real MBS deployment (in the city of London) and the hexagonal-grid model. Our analysis shows that with optimum parameter settings, the LTE Rel. 11 with reduced power subframes can provide substantially better performance than the LTE Rel. 10 with almost blank subframes, in terms of both aggregate capacity and fairness.Comment: Submitted to EURASIP Journal on Wireless Communications and Networking (JWCN

    Modeling Heterogeneous Network Interference Using Poisson Point Processes

    Full text link
    Cellular systems are becoming more heterogeneous with the introduction of low power nodes including femtocells, relays, and distributed antennas. Unfortunately, the resulting interference environment is also becoming more complicated, making evaluation of different communication strategies challenging in both analysis and simulation. Leveraging recent applications of stochastic geometry to analyze cellular systems, this paper proposes to analyze downlink performance in a fixed-size cell, which is inscribed within a weighted Voronoi cell in a Poisson field of interferers. A nearest out-of-cell interferer, out-of-cell interferers outside a guard region, and cross-tier interference are included in the interference calculations. Bounding the interference power as a function of distance from the cell center, the total interference is characterized through its Laplace transform. An equivalent marked process is proposed for the out-of-cell interference under additional assumptions. To facilitate simplified calculations, the interference distribution is approximated using the Gamma distribution with second order moment matching. The Gamma approximation simplifies calculation of the success probability and average rate, incorporates small-scale and large-scale fading, and works with co-tier and cross-tier interference. Simulations show that the proposed model provides a flexible way to characterize outage probability and rate as a function of the distance to the cell edge.Comment: Submitted to the IEEE Transactions on Signal Processing, July 2012, Revised December 201

    Analysis of LTE-A Heterogeneous Networks with SIR-based Cell Association and Stochastic Geometry

    Full text link
    This paper provides an analytical framework to characterize the performance of Heterogeneous Networks (HetNets), where the positions of base stations and users are modeled by spatial Poisson Point Processes (stochastic geometry). We have been able to formally derive outage probability, rate coverage probability, and mean user bit-rate when a frequency reuse of KK and a novel prioritized SIR-based cell association scheme are applied. A simulation approach has been adopted in order to validate our analytical model; theoretical results are in good agreement with simulation ones. The results obtained highlight that the adopted cell association technique allows very low outage probability and the fulfillment of certain bit-rate requirements by means of adequate selection of reuse factor and micro cell density. This analytical model can be adopted by network operators to gain insights on cell planning. Finally, the performance of our SIR-based cell association scheme has been validated through comparisons with other schemes in literature.Comment: Paper accepted to appear on the Journal of Communication Networks (accepted on November 28, 2017); 15 page
    • …
    corecore