75 research outputs found

    Coverage Analysis of Multi-Stream MIMO HetNets with MRC Receivers

    Get PDF
    Most of current research on the coverage performance of multi-stream MIMO heterogeneous networks (HetNets) has been focusing on a single data-stream. This does not always provide accurate results as our analysis shows the cross-stream correlation due to interference can greatly affect the coverage performance. This paper analyzes the coverage probability in such systems, and studies the impact of cross-stream correlation. Specifically, we focus on the max-SIR cell association policy, and leverage stochastic geometry to study scenarios whereby a receiver is considered in the coverage, if all of its data-streams are successfully decodeable. Assuming open-loop maximum ratio combining (MRC) at receivers, we consider cases where partial channel state information is available at the receiver. We then obtain an upper-bound on the coverage and formulate crossstream SIR correlation. We further show that approximating such systems based on fully-correlated (non-correlated) datastreams, results in a slight underestimation (substantial overestimation) of the coverage performance. Our results provide insights on the multiplexing regimes where densification improves the coverage performance and spectral efficiency. We also compare MRC with more complex zero-forcing receiver and provide quantitative insights on the design trade-offs. Our analysis is validated via extensive simulations

    Coverage performance of MIMO-MRC in heterogeneous networks:a stochastic geometry perspective

    Get PDF
    We study the coverage performance of multi-antenna (MIMO) communications with maximum ratio combining (MRC) at the receiver in heterogeneous networks (HetNets). Our main interest in on multi-stream communications when BSs do not have access to channel state information. Adopting stochastic geometry we evaluate the network-wise coverage performance of MIMO-MRC assuming maximum signal- to-interference ratio (SIR) cell association rule. Coverage analysis in MIMO-MRC HetNets is challenging due to inter-stream interference and statistical dependencies among streams' SIR values in each communication link. Using the results of stochastic geometry we then investigate this problem and obtain tractable analytical approximations for the coverage performance. We then show that our results are adequately accurate and easily computable. Our analysis sheds light on the impacts of important system parameters on the coverage performance, and provides quantitative insight on the densification in conjunction with high multiplexing gains in MIMO HetNets. We further observe that increasing multiplexing gain in high- power tier can cost a huge coverage reduction unless it is practiced with densification in femto-cell tier

    Coverage performance in multi-stream MIMO-ZFBF heterogeneous networks

    Get PDF
    We study the coverage performance of multiantenna (MIMO) communications in heterogenous networks (HetNets). Our main focus is on open-loop and multi-stream MIMO zero-forcing beamforming (ZFBF) at the receiver. Network coverage is evaluated adopting tools from stochastic geometry. Besides fixed-rate transmission (FRT), we also consider adaptive-rate transmission (ART) while its coverage performance, despite its high relevance, has so far been overlooked. On the other hand, while the focus of the existing literature has solely been on the evaluation of coverage probability per stream, we target coverage probability per communication link — comprising multiple streams — which is shown to be a more conclusive performance metric in multi-stream MIMO systems. This, however, renders various analytical complexities rooted in statistical dependency among streams in each link. Using a rigorous analysis, we provide closed-form bounds on the coverage performance for FRT and ART. These bounds explicitly capture impacts of various system parameters including densities of BSs, SIR thresholds, and multiplexing gains. Our analytical results are further shown to cover popular closed-loop MIMO systems, such as eigen-beamforming and space-division multiple access (SDMA). The accuracy of our analysis is confirmed by extensive simulations. The findings in this paper shed light on several important aspects of dense MIMO HetNets: (i) increasing the multiplexing gains yields lower coverage performance; (ii) densifying network by installing an excessive number of lowpower femto BSs allows the growth of the multiplexing gain of high-power, low-density macro BSs without compromising the coverage performance; and (iii) for dense HetNets, the coverage probability does not increase with the increase of deployment densities

    A Data-Aided Channel Estimation Scheme for Decoupled Systems in Heterogeneous Networks

    Get PDF
    Uplink/downlink (UL/DL) decoupling promises more flexible cell association and higher throughput in heterogeneous networks (HetNets), however, it hampers the acquisition of DL channel state information (CSI) in time-division-duplex (TDD) systems due to different base stations (BSs) connected in UL/DL. In this paper, we propose a novel data-aided (DA) channel estimation scheme to address this problem by utilizing decoded UL data to exploit CSI from received UL data signal in decoupled HetNets where a massive multiple-input multiple-output BS and dense small cell BSs are deployed. We analytically estimate BER performance of UL decoded data, which are used to derive an approximated normalized mean square error (NMSE) expression of the DA minimum mean square error (MMSE) estimator. Compared with the conventional least square (LS) and MMSE, it is shown that NMSE performances of all estimators are determined by their signal-to-noise ratio (SNR)-like terms and there is an increment consisting of UL data power, UL data length and BER values in the SNR-like term of DA method, which suggests DA method outperforms the conventional ones in any scenarios. Higher UL data power, longer UL data length and better BER performance lead to more accurate estimated channels with DA method. Numerical results verify that the analytical BER and NMSE results are close to the simulated ones and a remarkable gain in both NMSE and DL rate can be achieved by DA method in multiple scenarios with different modulations

    Towards a Realistic Assessment of Multiple Antenna HCNs: Residual Additive Transceiver Hardware Impairments and Channel Aging

    Get PDF
    Given the critical dependence of broadcast channels by the accuracy of channel state information at the transmitter (CSIT), we develop a general downlink model with zero-forcing (ZF) precoding, applied in realistic heterogeneous cellular systems with multiple antenna base stations (BSs). Specifically, we take into consideration imperfect CSIT due to pilot contamination, channel aging due to users relative movement, and unavoidable residual additive transceiver hardware impairments (RATHIs). Assuming that the BSs are Poisson distributed, the main contributions focus on the derivations of the upper bound of the coverage probability and the achievable user rate for this general model. We show that both the coverage probability and the user rate are dependent on the imperfect CSIT and RATHIs. More concretely, we quantify the resultant performance loss of the network due to these effects. We depict that the uplink RATHIs have equal impact, but the downlink transmit BS distortion has a greater impact than the receive hardware impairment of the user. Thus, the transmit BS hardware should be of better quality than user's receive hardware. Furthermore, we characterise both the coverage probability and user rate in terms of the time variation of the channel. It is shown that both of them decrease with increasing user mobility, but after a specific value of the normalised Doppler shift, they increase again. Actually, the time variation, following the Jakes autocorrelation function, mirrors this effect on coverage probability and user rate. Finally, we consider space division multiple access (SDMA), single user beamforming (SU-BF), and baseline single-input single-output (SISO) transmission. A comparison among these schemes reveals that the coverage by means of SU-BF outperforms SDMA in terms of coverage.Comment: accepted in IEEE TV

    Power minimization in multi-tier networks with flexible duplexing

    Get PDF
    In this paper we present an algorithm to minimize transmit power in multiple-input multiple-output (MIMO) heterogeneous networks (HetNets) with flexible duplexing, a promising strategy that allows the coexistence of uplink and downlink cells within the same time and frequency resource block. First, the proposed algorithm minimizes transmit power for a given uplink/downlink (UL/DL) combination, and afterwards, the optimal solution out of the explored UL/DL combinations is selected. To reduce the computational cost of exploring all the UL/DL settings, we propose a hierarchical switching (HS) approach that considers a reduced subset of transmit directions. By means of Monte Carlo simulations, we show that the proposed technique provides significant power savings with respect to a conventional time-division duplex (TDD) scheme.This work has been supported by the MINECO of Spain and AEI/FEDER funds from the EU, under grant TEC2016-75067-C4-4-R (CARMEN project) and FPI grant BES-2014-069786

    Coverage Performance in MIMO-ZFBF Dense HetNets with Multiplexing and LOS/NLOS Path-Loss Attenuation

    Get PDF
    The performance of multiple-input multiple-output (MIMO) multiplexing heterogenous cellular networks are often analyzed using a single-exponent path-loss model. Thus, the effect of the expected line-of-sight (LOS) propagation in densified settings is unaccounted for, leading to inaccurate performance evaluation and/or inefficient system design. This is due to the complexity of LOS/non-LOS models in the context of MIMO communications. We address this issue by developing an analytical framework based on stochastic geometry to evaluate the coverage performance. We focus on the zero-forcing beamforming where the maximum signal-to-interference ratio is used for cell association. We analytically derive the coverage. We then investigate the cross-stream interference correlation, and develop two approximations of the coverage: Alzer Approximation (A-A) and Gamma Approximation (G-A). The former is often used in the single antenna and single-stream MIMO. We extend A-A to a MIMO multiplexing system and evaluate its utility. We show that the inverse interference is well-fitted by a Gamma random variable, where its parameters are directly related to the system parameters. The accuracy and robustness of G-A is higher than that of A-A. We observe that depending on the multiplexing gain, it is possible to attain the best coverage probability by proper densification

    Técnicas de equalização híbridas para sistemas heterogéneos na banda das ondas milimétricas

    Get PDF
    With the constant demand for better service and higher transmission rates current technologies are reaching the limits of the channel capacity. Although, technologies such as MIMO and Heterogeneous systems appear to increase the channel capacity by introducing more antennas at the transceivers making the link between users and base station more reliable. Furthermore, the current spectrum, sub-6GHz, is becoming saturated and due to the properties of such frequencies the deployment of heterogeneous systems can introduce some levels of interference. Towards improving future communication systems a new part of the frequencies spectrum available should be used, researchers have their eyes on the mmWave band. This band allows to increase the carrier frequency and respective signal bandwidth and therefore increase the transmission speeds, moreover the properties of such frequencies unlock some advantages over the frequencies used in the sub-6G band. Additionally, mmWave band can be combined with massive MIMO technology to enhance the system capacity and to deploy more antenna elements in the transceivers. One more key technology that improves the energy efficiency in systems with hundreds of antenna elements is the possibility to combine analog and digital precoding techniques denoted as hybrid architectures. The main advantages of such techniques is that contrary to the full digital precoding processing used in current systems this new architecture allows to reduce the number of RF chains per antenna leading to improved energy efficiency. Furthermore to handle heterogeneous systems that have small-cells within the macro-cell, techniques such as Interference Alignment (IA) can be used to efficiently remove the existing multi-tier interference. In this dissertation a massive MIMO mmWave heterogeneous system is implemented and evaluated. It is designed analog-digital equalizers to efficiently remove both the intra an inter-tier interference. At digital level, an interference alignment technique is used to remove the interference and increase the spectral efficiency. The results showed that the proposed solutions are efficient to remove the macro and small cells interference.Com a constante procura de melhores serviços e taxas de transmissão mais elevadas, as tecnologias atuais estão a atingir os limites de capacidade do canal. Contudo tecnologias como o MIMO e os sistemas heterogéneos permitem aumentar a capacidade do canal através da introdução de mais antenas nos transcetores e através da implementação de pequenos pontos de acesso espalhados pela célula primária, com o intuito de tornar as ligações entre os utilizadores e a estação base mais fiáveis. Tendo também em atenção que o espectro atual, sub-6GHz, está sobrecarregado e que devido às propriedades das frequências utilizadas a implementação de sistemas heterogéneos pode levar a níveis de interferência insustentáveis. Por modo a resolver esta sobrecarga futuros sistemas de comunicação devem aproveitar uma maior parte do espectro de frequências disponível. A banda das ondas milimétricas (mmWave) tem sido apontada como solução, o que permite aumentar a frequência utilizada para transportar o sinal e consequentemente aumentar as velocidades de transmissão. Uma outra vantagem da banda mmWave é que pode ser combinada com a tecnologia MIMO massivo, permitindo implementar mais elementos de antena nos terminais e consequentemente aumentar a capacidade do sistema. Umas das tecnologias desenvolvida para melhorar a eficiência energética em sistemas com centenas de antenas é a possibilidade de combinar técnicas de codificação analógica e digital, designadas como arquiteturas híbridas. A principal vantagem desta técnica é que, contrariamente ao processamento feito nos sistemas atuais, totalmente no domínio digital, esta nova arquitetura permite reduzir o número de cadeias RF por antena. Com o intuito de reduzir a interferência em sistemas heterogéneos, técnicas como o alinhamento de interferência são usadas para separar utilizadores das células secundárias dos utilizadores das células primárias de modo a reduzir a interferência multi-nível existente no sistema geral. Nesta dissertação, é implementado e avaliado um sistema heterogéneo que combina MIMO massivo e ondas milimétricas. Este sistema é projetado com equalizadores analógico-digitais para remover com eficiência a interferência intra e inter-camadas. No domínio digital é utilizada a técnica de alinhamento de interferência para remover a interferência e aumentar a eficiência espectral. Os resultados mostram que as soluções propostas são eficientes para remover a interferência entre as células secundárias e a primária.Mestrado em Engenharia Eletrónica e Telecomunicaçõe
    corecore