17,861 research outputs found

    Minimal cover-automata for finite languages

    Get PDF
    AbstractA cover-automaton A of a finite language L⊆Σ∗ is a finite deterministic automaton (DFA) that accepts all words in L and possibly other words that are longer than any word in L. A minimal deterministic finite cover automaton (DFCA) of a finite language L usually has a smaller size than a minimal DFA that accept L. Thus, cover automata can be used to reduce the size of the representations of finite languages in practice. In this paper, we describe an efficient algorithm that, for a given DFA accepting a finite language, constructs a minimal deterministic finite cover-automaton of the language. We also give algorithms for the boolean operations on deterministic cover automata, i.e., on the finite languages they represent

    Non-Deterministic Finite Cover Automata

    Get PDF
    The concept of Deterministic Finite Cover Automata (DFCA) was introduced at WIA ’98, as a more compact representation than Deterministic Finite Automata (DFA) for finite languages. In some cases representing a finite language using a Non-deterministic Finite Automata (NFA) may significantly reduce the number of required states. The combined power of the succinctness of the representation of finite languages using both cover languages and non-determinism has been suggested, but never systematically studied. In the present paper, for non-deterministic finite cover automata (NFCA) and l-non-deterministic finite cover automaton (l-NFCA), we show that minimization can be as hard as minimizing NFAs for regular languages, even in the case of NFCAs using unary alphabets. Moreover, we show how we can adapt the methods used to reduce, or minimize the size of NFAs/DFCAs/l-DFCAs, for simplifying NFCAs/l-NFCAs

    An expressive completeness theorem for coalgebraic modal mu-calculi

    Get PDF
    Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. We then consider invariance under behavioral equivalence of MSO-formulas. More specifically, we investigate whether the coalgebraic mu-calculus is the bisimulation-invariant fragment of the monadic second-order language for a given functor. Using automatatheoretic techniques and building on recent results by the third author, we show that in order to provide such a characterization result it suffices to find what we call an adequate uniform construction for the coalgebraic type functor. As direct applications of this result we obtain a partly new proof of the Janin-Walukiewicz Theorem for the modal mu-calculus, avoiding the use of syntactic normal forms, and bisimulation invariance results for the bag functor (graded modal logic) and all exponential polynomial functors (including the "game functor"). As a more involved application, involving additional non-trivial ideas, we also derive a characterization theorem for the monotone modal mu-calculus, with respect to a natural monadic second-order language for monotone neighborhood models.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0721

    Tight Upper Bounds for Streett and Parity Complementation

    Get PDF
    Complementation of finite automata on infinite words is not only a fundamental problem in automata theory, but also serves as a cornerstone for solving numerous decision problems in mathematical logic, model-checking, program analysis and verification. For Streett complementation, a significant gap exists between the current lower bound 2Ω(nlgnk)2^{\Omega(n\lg nk)} and upper bound 2O(nklgnk)2^{O(nk\lg nk)}, where nn is the state size, kk is the number of Streett pairs, and kk can be as large as 2n2^{n}. Determining the complexity of Streett complementation has been an open question since the late '80s. In this paper show a complementation construction with upper bound 2O(nlgn+nklgk)2^{O(n \lg n+nk \lg k)} for k=O(n)k = O(n) and 2O(n2lgn)2^{O(n^{2} \lg n)} for k=ω(n)k = \omega(n), which matches well the lower bound obtained in \cite{CZ11a}. We also obtain a tight upper bound 2O(nlgn)2^{O(n \lg n)} for parity complementation.Comment: Corrected typos. 23 pages, 3 figures. To appear in the 20th Conference on Computer Science Logic (CSL 2011
    corecore