
Scientific Annals of Computer Science vol. 25 (1), 2015, pp. 3–28

doi: 10.7561/SACS.2015.1.3

Non-Deterministic Finite Cover Automata1

Cezar CÂMPEANU2

Abstract

The concept of Deterministic Finite Cover Automata (DFCA) was
introduced at WIA ’98, as a more compact representation than De-
terministic Finite Automata (DFA) for finite languages. In some
cases representing a finite language using a Non-deterministic Finite
Automata (NFA) may significantly reduce the number of required
states. The combined power of the succinctness of the representation
of finite languages using both cover languages and non-determinism
has been suggested, but never systematically studied. In the present
paper, for non-deterministic finite cover automata (NFCA) and l-non-
deterministic finite cover automaton (l-NFCA), we show that mini-
mization can be as hard as minimizing NFAs for regular languages,
even in the case of NFCAs using unary alphabets. Moreover, we show
how we can adapt the methods used to reduce, or minimize the size of
NFAs/DFCAs/l-DFCAs, for simplifying NFCAs/l-NFCAs.

Keywords: Regular languages, finite languages, cover automata, l-
cover automata, similarity relation

1 Introduction

The race to find more compact representation for finite languages was started
in 1959, when Michael O. Rabin and Dana Scott introduced the notion of Non-
deterministic Finite Automata, and showed that the equivalent Deterministic
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Finite Automaton can be, in terms of number of states, exponential larger
than the NFA. Since, it was proved in [28] that we can obtain a polynomial
algorithm for minimizing DFAs, and in [19] was proved that an O(n log n)
algorithm exists. In the meantime, several heuristic approaches have been
proposed to reduce the size of NFAs [2, 21], and it was proved by Jiang
and Ravikumar [22] that NFA minimization problems are hard; even in
case of regular languages over a one letter alphabet, the minimization is
NP-complete [13, 22].

On the other hand, in case of finite languages, we can obtain minimizing
algorithms [25, 29] that are in the order of O(n), where n is the number
of states of the original DFA. In [6, 8, 24] it has been shown that using
Deterministic Finite Cover Automata to represent finite languages, we
have minimization algorithms as efficient as the best known algorithm for
minimizing DFAs for regular languages.

The study of the state complexity of operations on regular languages
was initiated by Maslov in 1970 [25, 26], but has not become a subject of
systematic study until 1994 [31]. The special case of state complexity of
operations on finite languages was studied in [7].

Non-deterministic state complexity of regular languages was also subject
of interest, for example in [15, 16, 17, 18]. To find lower bounds for the non-
deterministic state complexity of regular languages, the fooling set technique,
or the extended fooling set technique may be used [3, 11, 13].

In this paper we show that NFCA state complexity for a finite language
L can be exponentially lower than NFA or DFCA state complexity of the
same language. We modify the fooling set technique for cover automata, to
help us prove lower bounds for NFCA state complexity in Section 3. We also
show that the (extended) fooling set technique is not optimal, as we have
minimal NFCAs with arbitrary number of states, and the largest fooling set
has constant size, Theorem 4. In Section 4 we show that minimizing NFCAs
is hard, and in Section 5 we show that heuristic approaches for minimizing
DFAs or NFAs need a special treatment when applied to NFCAs, as many
results valid for the DFCAs are no longer true for NFCAs. We show a
connection between fooling sets and NFA state reduction in Section 6. In
section 7, we formulate a few open problems and future research directions.
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2 Notations and Definitions

The number of elements of a set T is denoted by #T . In case Σ is an
alphabet, i.e., finite non-empty set, the free monoid generated by Σ is Σ∗,
and it is the set of all words over Σ; the empty words, i.e., the word with
no letters, is denoted by ε. The length of a word w = w1w2 . . . wn, n ≥ 0,
wi ∈ Σ, 1 ≤ i ≤ n, is |w| = n, in particular |ε| = 0 (for n = 0, w = ε). The
set of words of length equal to l is Σl, the set of words of length less than or
equal to l is denoted by Σ≤l. In a similar fashion, we define Σ≥l, Σ<l, or Σ>l.
A finite automaton is a structure A = (Q,Σ, δ, q0, F ), where Q is a finite
non-empty set called the set of states, Σ is an alphabet, q0 ∈ Q, F ⊆ Q is
the set of final states, and δ is the transition function. For the function δ,
we distinguish the following cases:

• if δ : Q× Σ
◦−→ Q, the automaton is deterministic; in case δ is always

defined, the automaton is complete, otherwise it is incomplete;

• if δ : Q× Σ −→ 2Q, the automaton is non-deterministic.

The language accepted by an automaton is defined by: L(A) = {w ∈ Σ∗ |
δ({q0}, w) ∩ F 6= ∅}, where δ(S,w) is defined as follows:

δ(S, ε) = S,

δ(S,wa) =
⋃

q∈δ(S,w)

δ({q}, a).

Of course, δ({q}, a) = {δ(q, a)} in case the automaton is deterministic, and
δ({q}, a) = δ(q, a), in case the automaton is non-deterministic.

Definition 1 Let L be a finite language, and l be the length of the longest
word w in L, i.e., l = max{|w| | w ∈ L}3. If L is a finite language, L′ is a
cover language for L if L′ ∩ Σ≤l = L.

A cover automaton for a finite language L is an automaton that recog-
nizes a cover language, L′, for L. An l-NFCA A is a cover automaton for
the language L(A) ∩ Σ≤l.

One could obviously see that any automaton that recognizes L is also a
cover automaton.

3 We use the convention that max ∅ = 0.
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The level of a state s ∈ Q in a cover automaton A = (Q,Σ, δ, q0, F ) is
the length of the shortest word that can reach the state s, i.e., levelA(s) =
min{|w| | s ∈ δ(q0, w)}.

Let us denote by xA(s) the smallest word w, according to quasi-
lexicographical order, such that s ∈ δ(q0, w), see [8] for a similar definition
in case of DFCA. Obviously, levelA(s) = |xA(s)|.

For a regular language L, ≡L denotes the Myhill-Nerode equivalence of
words [20, 30].

The similarity relation induced by a finite language L is defined as
follows[8]: x ∼L y, if for all w ∈ Σ≤l−max{|x|,|y|}, xw ∈ L iff yw ∈ L. A
dissimilar sequence for a finite language L is a sequence x1, . . . , xn such that
xi 6∼L xj , for all 1 ≤ i, j ≤ n and i 6= j.

Now, we need to define the similarity for states in an NFCA, since it
was the main notion used for DFCA minimization.

Definition 2 In an NFCA A = (Q,Σ, δ, q0, F ), two states p, q ∈ Q are
similar, written p ∼A q, if δ(p, w) ∩ F 6= ∅ iff δ(q, w) ∩ F 6= ∅, for all
w ∈ Σ≤l−max{level(p),level(q)}.

In all cases when the automaton A is understood, we may omit the
subscript A, i.e., we write p ∼ q instead of p ∼A q, also we can write level(p)
instead of levelA(p).

We consider only non-trivial NFCAs for L, i.e., NFCAs such that
level(p) ≤ l for all states p. In case level(p) > l, p can be eliminated, and
the resulting NFA is still an NFCA for L.

In case level(p) ≤ l, level(q) ≤ l, and p ∼ q, then either p, q ∈ F , or
p, q ∈ Q \ F , because |ε| ≤ l −max{level(p), level(q)}.

Deterministic state complexity of a regular language L is defined as the
number of states of the minimal deterministic automaton recognizing L, and
it is denoted by sc(L):

sc(L) = min{#Q | A = (Q,Σ, δ, qo, F ), is deterministic, complete,

and L = L(A)}.

Non-deterministic state complexity of a regular language L is defined as
the number of states of the minimal non-deterministic automaton recognizing
L, and it is denoted by nsc(L):

nsc(L) = min{#Q | A = (Q,Σ, δ, qo, F ), non-deterministic and L = L(A)}.
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For finite languages L, we can also define deterministic cover state complexity
csc(L) and non-deterministic cover state complexity ncsc(L):

csc(L) = min{#Q | A = (Q,Σ, δ, qo, F ), deterministic, complete, and

L = L(A) ∩ Σ≤l},
ncsc(L) = min{#Q | A = (Q,Σ, δ, qo, F ), non-deterministic, and

L = L(A) ∩ Σ≤l}.

Obviously, ncsc(L) ≤ nsc(L) ≤ sc(L), but also ncsc(L) ≤ csc(L) ≤
sc(L). Thus, non-deterministic finite cover automata can be considered to
be one of the most compact representation of finite languages.

3 Lower-Bounds and Compression Ratio for
NFCAs

We start this section analyzing few examples where non-determinism, or the
use of a cover language, reduce the state complexity. Let us first analyze the
type of languages where non-determinism, combined with cover properties,
significantly reduce the state complexity.

We choose the language LFm,n = {a, b}≤ma{a, b}n−2, where m,n ∈ N.
In Figure 1, we can see an NFA recognizing LFm,n with m+ n states. Please
note that the longest word in the language has m+ n− 1 letters.

�
�	0
�
 �	−1 �

a, b

?a, b
HHHHj

a

-
a �
�	1
�
 �	−2 �

a, b

?
a

�
 �	−m��
a, b
����������9

a

-
a, b�
�	2 -

a, b
-

a, b�
 �	n− 2 -
a, b �
 �	n− 1
�� �

Figure 1: An NFA with m + n states for the language LFm,n =
{a, b}≤ma{a, b}n−2.

Let us analyze if the automaton in Figure 1 is minimal. The fooling set
technique, introduced in [10] and [12] and used to prove the lower-bound for
state complexity of NFAs, is stated in [3, 10] as follows:
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Lemma 1 Let L ⊆ Σ∗ be a regular language, and suppose there exists a set
of pairs S = {(xi, yi) | 1 ≤ i ≤ n} with the following properties:

1. If xiyi ∈ L, for 1 ≤ i ≤ n and xiyj /∈ L, for all 1 ≤ i, j ≤ n, i 6= j,
then nsc(L) ≥ n. The set S is called a fooling set for L.

2. If xiyi ∈ L, for 1 ≤ i ≤ n and for 1 ≤ i, j ≤ n, if i 6= j, implies
either xiyj /∈ L or xjyi /∈ L, then nsc(L) ≥ n. The set S is called an
extended fooling set for L.

Now, consider the language LFm,n and following set of pairs of words,
S = S1 ∪ S2 = {(xk, yk) | 1 ≤ k ≤ m + n}, where S1 = {(bmabj , bn−2−j) |
0 ≤ j ≤ n− 2} and S2 = {(ai, bm−iabn−2) | 0 ≤ i ≤ m}.

For (xk, yk) ∈ S, we have that

1. xkyk = bmabjbn−2−j = bmabn−2 ∈ LFm,n , or

2. xkyk = aibm−iabn−2 ∈ LFm,n .

Let us examine for each 1 ≤ k, h ≤ m+ n, k 6= h if the words xkyh and
xhyk are also in L. We have the following possibilities:

1. Case I

(xk, yk) = (bmabi, bn−2−i) ∈ S1 and (xh, yh) = (bmabj , bn−2−j) ∈ S1

(a) xkyh = bmabibn−2−j /∈ LFm,n , and

(b) xhyk = bmabjbn−2−i /∈ LFm,n .

2. Case II

(xk, yk) = (ai, bm−iabn−2) ∈ S2 and (xh, yh) = (aj , bm−jabn−2) ∈ S2

(a) xkyh = aibm−jabn−2 ∈ LFm,n , if i < j, but

(b) xhyk = ajbm−iabn−2 /∈ LFm,n , if i < j (because |ajbm−iabn−2| =
m+ n− 1 + j − i > m+ n− 1).

3. Case III

(xk, yk) = (bmabj , bn−2−j) ∈ S1 and (xh, yh) = (ai, bm−iabn−2) ∈ S2

(a) xkyh = bmabjbm−iabn−2 /∈ LFm,n (because |bmabjbm−iabn−2| =
m+ 1 + j +m− i+ 1 + n− 2 > m+ n− 1).
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¿From the statement 2. of Lemma 1, it follows that the NFA is minimal.
We must note the following:

1. we cannot use the weak form 1 to prove the lower-bound;

2. when proving the lower-bound, we concatenate words to obtain a word
of length greater than the maximum length of the words in the language,
and that’s why xiyj is rejected. Since in case of cover automata such
words will be automatically rejected, there is no doubt that any fooling
set type technique we may use to prove the lower-bound for NFCAs
must consider the length, ignoring the cases when the length exceeds
the maximal one.

Hence, the fooling set technique introduced in [10] and [12], and used
to prove the lower-bound for state complexity of NFAs, can be modified to
prove a lower-bound for minimal NFCAs, and it can be formulated for cover
languages as an adaptation of Theorem 1 in [13].

Lemma 2 Let L ⊆ Σ≤l be a finite language such that the longest word in L
has the length l, and suppose there exists a set of pairs S = {(xi, yi) | xiyi ∈
L, 1 ≤ i ≤ n}, with the following properties:

1. For all i, j, 1 ≤ i, j ≤ n, such that xiyj ∈ Σ≤l, if i 6= j, we have that
xiyj /∈ L. Then we have that ncsc(L) ≥ n.

The set S is called a fooling set for L.

2. For all i, j, 1 ≤ i, j ≤ n, if i 6= j, we have either xiyj ∈ Σ≤l and
xiyj /∈ L, or xjyi ∈ Σ≤l and xjyi /∈ L. Then we have that ncsc(L) ≥ n.

The set S is called an extended fooling set for L.

Proof: Assume there exists an NFCA A = (Q,Σ, δ, q0, F ), with m, states
accepting L and m < n. For each i, 1 ≤ i ≤ n, xiyi ∈ L, therefore we must
have a state si ∈ δ(q0, xi) and δ(si, yi) ∩ F 6= ∅. In other words, there exists
a state fi ∈ F and fi ∈ δ(si, yi).

1. We claim si /∈ δ(q0, xj) for all j 6= i, thus m ≥ n. If si ∈ δ(q0, xj),
then fi ∈ δ(si, yi) ⊆ δ(q0, xjyi), and because |xjyi| ≤ l, it follows that
xjyi ∈ L, a contradiction.

2. We consider the function f : {1, . . . , n} −→ Q defined by f(i) = si, si
as above. We claim that f is injective, thus m ≥ n. If f(i) = f(j),
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then δ(f(i), yi) = δ(f(j), yi), also δ(f(j), yj) = δ(f(i), yj). Because
δ(f(i), yi) ∩ F 6= ∅, we also have that δ(f(j), yi) ∩ F 6= ∅, and because
|xiyj | ≤ l, it follows that xiyj ∈ L, a contradiction. If |xjyi| ≤ l, using
the same reasoning, will follow that xjyi ∈ L.

In both cases we have a contradiction, thus Q must have at least n elements.
2

For the example above, we discover that we cannot have more than
one pair of the form (ai, bm−iabn−2), thus, applying the extended fooling set
technique for NFCAs, the minimum number of states in a minimal NFCA is
at least n− 2 + 1 + 1 = n. This proves that the NFCA presented in Figure 2
is minimal.
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Figure 2: An NFCA with n states for the language LFm,n =
{a, b}≤ma{a, b}n−2, that is the same as the one in Figure 1. In case m = 2
and n = 4, the language is the same as the one described in Figure 3.
An equivalent minimal NFA has m+ n states.

It is easy to check that any two distinct words w1, w2 ∈ Σ≤n−1, w1 6= w2,
are not similar with respect to ∼L. It follows that for the language presented
in Figure 1, csc(L) ≥ 2n−1. One can also verify that for two distinct words
uay and wax, if |y| 6= |x|, |x|, |y| ≤ n− 2, they are distinguishable; also, in
case |x| = |y| ≤ n − 2, the word an−2−|x| will distinguish between all the
words for which |u| < n− 2− |x| or |w| < n− 2− |x|, thus the number of
states in the minimal DFA is even larger than csc(L). In case m = 2 and
n = 4, the minimal DFCA is presented in Figure 3.

A simple computation shows us that the corresponding minimal DFA
for LF2,4 has 15 states.

For helping the reader to better understand the compression power of
NFCA over NFAs, DFCAs, or DFAs, we present corresponding automata
for a smaller example, i.e., for the language LF2,3 . In this case, a minimal
NFCA presented in Figure 4 has 3 states, a minimal NFA in Figure 5 has 4
states, a minimal DFCA in Figure 7 has also 4 states, and the minimal DFA
in Figure 6 has 11 states.
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Figure 3: A minimal DFCA with 8 states for the language LF2,4 =
{a, b}≤2a{a, b}2, l = 5 and the equivalent minimal DFA has 15 states.
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Figure 4: An NFCA with n = 3 states for the language LF2,3 =
{a, b}≤2a{a, b}
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Figure 5: An NFA with 2 + 3 = 5 states for the language LF2,3 =
{a, b}≤2a{a, b}

We can observe that we do have the following similarities in Figure 6:
7 ∼ 3, 8 ∼ 4, 9 ∼ 1, 10 ∼ 0, thus we can obtain the corresponding minimal
DFCA in Figure 7.

These language examples show that NFCAs may be a much more
compact representation for finite languages than NFAs, or even DFCAs, and
motivates the study of such objects. In terms of compression, clearly the
number of states in the NFCA is exponentially smaller than the number of
states in the DFA, and in some cases, even exponentially smaller than in an
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Figure 6: The minimal DFA with 11 states for the language LF2,3 =
{a, b}≤2a{a, b}
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Figure 7: A minimal DFCA with 4 states for the language LF2,3 =
{a, b}≤2a{a, b}, l = 4

NFA.

Let’s set Σ = {a}, l > k ≥ 2, and choose the following language:

LXl,k
= a(Σ≤l − {(ak)n | n ≥ 0}). (1)

In Figure 8, the NFA AXk
accepts the language LXk

= a(Σ∗ − {(ak)n |
n ≥ 0}) = {aaai | i 6= k − 1 mod k}, which is a cover language for LXl,k

. In
other words, Ak is an NFCA for LXl,k

, therefore ncsc(LXl,k
) ≤ csc(LXl,k

) ≤
sc(LXl,k

) ≤ min(l + 1, k + 1) = k + 1.

It is known [10, 16, 27] that the automaton AXk
is minimal NFA for

LXk
=

⋃
l∈N,l>k

LXl,k
, if k is a prime number. However, this may not be a

minimal NFCA, as illustrated by the example in Figure 9, where AX7 is not
a minimal NFCA for LX9,7 , even if it is minimal NFA for the cover language
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Figure 8: An NFA/NFCA Ak for Ll,k. In this particular case, Ak is also the
minimal DFA.
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Figure 9: A minimal NFCA for LX9,7 , left, and a minimal NFA, AX7 , for a
cover language, right.

We apply the extended fooling set technique for the language LXl,k
.

Because the alphabet is unary, all the words in an extended fooling
set S are powers of a. Thus, considering only pairs in the fooling set
S, such that the first word is not ε we have that for some r ∈ N:
S ⊇ {(ai1 , aj1), (ai2 , aj2), (ai3 , aj3), . . . , (air , ajr)}, and 1 ≤ i1, . . . , ir ≤ k.

We show that r cannot be greater than 3, thus S has at most 4 elements.
It is enough to take four pairs (ai1 , aj1),(ai2 , aj2),(ai3 , aj3), (ai4 , aj4), and
show that they cannot have the extended fooling set property. We have
ai1aj2 /∈ LXl,k

, or ai2aj1 /∈ LXl,k
, and ai1aj3 /∈ LXl,k

, or ai3aj1 /∈ LXl,k
, and

ai1aj4 /∈ LXl,k
, or ai4aj1 /∈ LXl,k

. Without any loss of generality, we may
assume that i1+j2 = z12k+1 and i1+j3 = z13k+1, all the other cases being
similar, as they are just permutations of indexes, or replacing i’s by j’s. If
i1, i2, i3 ≥ 1, and i1+j2 = z12k+1 and i1+j3 = z13k+1 for some z12, z13 ∈ N,
then i2 + j3 6= z23k + 1 and i3 + j2 6= z32k + 1, for any z23, z32 ∈ N, because
i2 + j3 = z23k+ 1 would imply i1 + j2 + i2 + j3 = xk+ 2, x = z12 + z23, which
means j2 + i2 = xk + 2− z13k− 1 = yk + 1, for y = x− z13, a contradiction,

4Please note that for any finite language, there are infinitely many cover languages, as
in Definition 1.
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and i3 + j2 = z32k + 1 would imply i3 + j2 + i1 + j3 = xk + 2, x = z13 + z32,
i.e., i3 + j3 = xk + 2− z12k − 1 = yk + 1, for y = x− z12, which is also not
possible.

It follows that r ≤ 3, thus any extended fooling set for LXl,k
has at

most 4 elements.
Let A be an NFA accepting L ⊇ LXk

, and we can consider that it is
already in Chrobak normal form, as it is ultimately periodic. Thus, for each
L, nsc(L) ≥ p1 + . . .+ ps, where pi are primes, and each cycle has pkii states,
1 ≤ i ≤ s. Now, let us prove that for k prime, AXk

is minimal for some
language LXl,k

, l > k.
Assume there exists an automaton B = (QB,Σ, δB, q0,B, FB) with m

states, m ≤ k + 1 such that L(B) = LXl,k
. It follows that the language

L(B) will contain words with a length x + hy for x, y ≤ k, and all h ∈ N.
For h large enough, one of these words will be of length multiple of k plus
1, because k is prime, therefore, for large enough l, i.e., greater than some
l0,k, LXl,k

6= L(B), because azk+1 ∈ L(B) \LXl,k
, for some z ∈ N. Thus, the

number of states in B is at least k+2. The automaton AXk
is also a minimal

NFCA for languages LXl,k
, if l ≥ l0,k, hence it follows that Theorem 7 in

[13] is also valid for cover automata:

Theorem 1 There is a sequence of languages (LXl,k
)k≥2 such that the non-

deterministic cover complexity of LXl,k
is at least k, but the extended fooling

set for LXl,k
is of size c, where c is a constant.

Now, we are ready to check how hard is to obtain this minimal repre-
sentation of a finite language.

4 Minimization Complexity

In this section we show that minimizing NFCAs is hard, and we’ll show it
with the exact same arguments from [14], used to prove that minimizing
NFAs is hard. We will describe the construction from [12, 14], showing that
we can also use it with only a minor addition for NFCAs. To keep the paper
self contained, we include a complete description, and emphasize the changes
required for the cover automata, rather than just presenting the differences.

The idea of proving that NFCA minimization is NP-hard is the following:
we take an arbitrary logical formula in conjunctive normal form F , and we
build two languages LC and LB such that their union LF = LB ∪LC should
not include {a}∗ if F is satisfiable, in other words, {a}∗ is an l-cover language
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for LF ∩a≤l, iff the formula is not satisfiable. Let us consider a logical formula

F ∈ 3SAT , in the conjunctive normal form, i.e., F =

m∧
i=1

Ci, where each

clause Ci, 1 ≤ i ≤ m, is defined using variables x1, . . . , xn, Ci = u1 ∨u2 ∨u3,
and each uj , 1 ≤ j ≤ 3 are either xi, or ¬xi. Let p1, p2, . . . , pn be distinct
prime numbers such that p1 < p2 < . . . < pn. We set k =

∏n
i=1 pi, and using

Chinese Remainder Theorem [23]5, it follows that there exists a bijective
function f : Zk −→

∏n
i=1 Zpi , such that f(x) = (xmod p1, . . . , xmod pn).

We need to define a language LF and a natural number l, such that LF =
{a}∗, if and only if F is unsatisfiable, therefore, the finite language LF ∩Σ≤l

has {a}∗ as a cover language.
In a similar fashion as we built the automata AXk

, we can construct an
automaton Bi that recognizes the language L(Bi) = {an | nmod pi /∈ {0, 1}}
in O(pn) time. Let B be an automaton recognizing LB =

⋃n
i=1 L(Bi). It

is straightforward that it can be constructed in O(n · pn) time. For each
clause Ci such that a1, a2, a3 is an assignment of its variables for which Ci is
not satisfied, we define LCi = ∩3i=1{an | nmod pi = ai}. An automaton Ci
accepting LCi can be constructed in O(p3n) time6. For every sequence s of 0s
and 1s of length n, there is an unique number m ∈ Zk, such that f(m) = s.
In [14], the binary sequence s of length n is called representation, and its
corresponding number m is called assignment. The range(f) may contain
other sequences in

∏n
i=1 Zpi , and using the above observation, we deduct

that for the language LB, we have

LB = {ai | i does not represent an assignment},

while for LC , we have

LC = {ai | f(i) does not satisfy F}.

We set LF = LC ∪ LB, where LC =
⋃m
i=1 LCi . If F is satisfiable, then LF is

a cyclic language with period at most k, and the minimal period of LF is l
2 ,

according to [10, 12]. Thus, setting l = k, we have that LF ∩ {a}≤l has {a}∗
as a cover language, iff F is unsatisfiable. It follows that for some l ∈ N,
{a}∗ is an l-cover language for LF ∩ Σ≤l, iff F is unsatisfiable. Please note
that the construction is similar to the one in [14], but in our case, we also
prove that the constant l exists, and the language constructed is an l-cover
language.

5Theorem I.3.3, page 21
6Using Cartesian product construction, for example.
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Since according to [1] primality test can be done in polynomial time,
we can find the first n prime numbers in polynomial time, meaning that our
NFA construction can also be done in polynomial time. Hence, checking if
{a}∗ is an l-cover language for LF ∩ {a}≤l, is in NP.

If F is unsatisfiable, then ncsc(L) = 1, otherwise the minimal number
of states in an NFA is at least equal to the largest prime number dividing its
period, pn. To prove that finding the minimal NFCA for LF is NP-hard, we
use the same argument as in [14]: the existence of a polynomial algorithm
to decide if ncsc(L) = o(n) implies that nsc(L) = o(n), which implies that
we can solve 3SAT in polynomial time, i.e., P = NP . This means that
minimizing NFCAs is at least NP-hard. Consequently, we proved that:

Theorem 2 Minimizing either NFCAs or l-NFCAs is at least NP-hard.

In the next section we analyze some methods to reduce the number of
states of a NFCA, because any minimization algorithm would be at least
exponential.

5 Reducing the Number of States of NFCAs

Assume the DFA A = (Q,Σ, δ, q0, F ) is minimal for L, and the minimal NFA
is A′ = (Q′,Σ, δ′, q0, F ), where Q′ = Q−{d}, δ′(s, p) = δ(s, p), if δ(s, p) ∈ Q′
and δ′(s, p) = ∅ if δ(s, p) = d. In other words, the minimal NFA is the same
as the DFA, except that we delete the dead state. We may have a minimal
DFCA as A, and A′ as a minimal NFA, but not as a minimal NFCA, as
illustrated by AX7 and LX9,7 .

We need to investigate if classical methods to reduce the number of
states in an NFA or DFA/DFCA can also be applied to NFCAs, thus, we
first analyze the state merging technique. For NFAs, we distinguish between
two main ways of merging states: (1) a weak method, where two states are
merged by simply collapsing one into the other and consolidate all their
input and output transitions, [5], and (2), a strong method, where one state
is merged into another one by redirecting its input transitions toward the
other state, and completely deleting it and all its output transitions [9]. We
must note that in case of NFCAs, the size of an NFA without mergeable
states is bounded, as we cannot have a path from the initial state to the
final ones that is longer than l. This observation contrasts with the result
obtained in [9], for NFAs, where it is presented a class of arbitrary large
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NFAs without any group of a fixed size k, of mergeable states. The same
methods are considered for NFCAs.

Definition 3 Let A = (Q,Σ, δ, q0, F ) be an NFCA for the finite language
L.

1. We say that the state q is weakly mergeable in state p if the automaton
A′ = (Q′,Σ, δ′, q0, F

′), where Q′ = Q− {q}, F ′ = F ∩Q′, and

δ(s, a) =


δ(s, a), if δ(s, a) ⊆ Q′ and s 6= p,
(δ(s, a) \ {q}) ∪ {p}, if q ∈ δ(s, a) and s 6= p,
(δ(s, a) ∪ δ(q, a)) \ {q}, if s = p

is also an NFCA for L. In this case we write p w q.

2. We say that the state q is strongly mergeable in state p, if the au-
tomaton A′ = (Q′,Σ, δ′, q0, F

′), where Q′ = Q − {q}, F ′ = F ∩ Q′,
and

δ(s, a) =

{
δ(s, a), if δ(s, a) ⊆ Q′
(δ(s, a) \ {q}) ∪ {p}, if q ∈ δ(s, a),

is also an NFCA for L. In this case we write p - q.

In case p w q, (LLpL
R
p ∪LLpLRq ∪LLq LRp ∪LLq LRq )∩Σ≤l ⊆ L and in case p - q,

LLq L
R
q ∩Σ≤l ⊆ (LLpL

R
p ∪ LLq LRp ) ∩Σ≤l ⊆ L, where for s ∈ Q LLs = {w ∈ Σ∗ |

s ∈ δ(q0, w)} and LRs = {w ∈ Σ∗ | δ(s, w) ∩ F 6= ∅}.
For the case of DFCAs, if A is a DFCA for L, and two states are

similar with respect to the similarity relation induced by A, then all the
words reaching these states are similar. Moreover, if two words of minimal
length reach two distinct states in a DFCA, and the words are similar with
respect to L, then the states in the DFCA must be similar with respect
to the similarity relation induced by A. These results are used for DFCA
minimization, and we need to verify if they can be used in case of NFCAs.
In the following lemmata we show that the corresponding results are no
longer true.

Lemma 3 Let A = (Q,Σ, δ, q0, F ) be an NFCA for the finite language L.
It is possible that xA(s) ∼L xA(q), but s and q are not mergeable.

Proof: For the automaton in Figure 9, left, xA(3) = xA(1), but the states
1 and 3 are not mergeable, as the resulting automaton would not reject a7.
2
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Lemma 4 Let A = (Q,Σ, δ, q0, F ) be an NFCA for the finite language L,
and p, q ∈ Q, p 6= q. It is possible to have x, y ∈ Σ∗, p ∈ δ(q0, x), q ∈ δ(q0, y),
p ∼ q, and x 6∼L y.

Proof: Consider the language L = L(A) ∩ {a, b}≤14, where A is depicted
in Figure 10.
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�	���4 -a
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�	���5

� �
? a

�
�	6 -a
�
�	���7
 	6

a

Figure 10: An example where p ∼A q, x 6∼L y, but p ∈ δ(q0, x) and
q ∈ δ(q0, y), namely, aa 6∼L ba, 2 ∈ δ(0, ba), 7 ∈ δ(0, aa), and 2 ∼A 7.

We have that:

• aa 6∼L ba, because aaa /∈ L, but baa ∈ L;

• 2 ∈ δ(0, ba), 7 ∈ δ(0, aa), and

• 2 ∼A 7, because δ(2, a2k) = {2} ⊆ F , δ(2, a2k+1) = {1} ∩ F = ∅,
δ(7, a2k) = {7} ⊆ F , δ(7, a2k+1) = {6} ∩ F = ∅, and δ(2, w) =
δ(7, w) = ∅, for all w ∈ Σ∗ − {a}∗.

2

Let us verify the case when two states p, q are similar, or we can
distinguish between them.

Lemma 5 Let A = (Q,Σ, δ, q0, F ) be an NFCA for the finite language L,
p, q ∈ Q, p 6= q, and either p, q ∈ F , or p, q /∈ F . Assume r ∈ δ(p, a) and
s ∈ δ(q, a).

1. If r ∼A s, for all possible choices of r and s, then p ∼A q.

2. The converse is false, i.e., we may have r 6∼A s, for some r and s, and
p ∼A q.
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Proof: Assume p 6∼A q, and let w ∈ Σ≤l−max{level(p),level(q)}∩Σ+. Because
either p, q ∈ F , or p, q /∈ F , we have that δ(p, aw)∩F 6= ∅ and δ(q, aw)∩F =
∅, or δ(p, aw) ∩ F = ∅, and δ(q, aw) ∩ F 6= ∅. If δ(p, aw) ∩ F 6= ∅ and
δ(q, aw)∩F = ∅, it follows that we have two states r ∈ δ(p, a) and s ∈ δ(q, a)
such that δ(r, w) ∩ F 6= ∅, and δ(s, w) ∩ F = ∅. This proves that the first
implication is true.

For the second implication, consider the automaton depicted in Figure 10
with l = 14, and the following states p, q, r, s: p = q = 0, r = 1, s = 3, and
the letter b. We have that p ∼A q, 1, 3 ∈ δ(p, b) = δ(q, b) = δ(0, b), but
r 6∼A s, because δ(1, a) ∩ F = ∅ and δ(3, a) ∩ F = {4} 6= ∅. 2

This result contrasts with the one for the deterministic case for cover
automata, and the main reason is the non-determinism, not the fact that we
work with cover languages.

Next, we would like to verify if similar states can be merged in case
of NFCAs, also to check which type of merge works. In case we have two
similar states, we can strongly merge them as shown in Theorem 3. In the
case of DFCAs, if two states are similar, these can be merged. We must
ensure that the same result is also true for NFCAs, and the next theorem
shows it.

Theorem 3 Let A = (Q,Σ, δ, q0, F ) be an NFCA for L, and p, q ∈ Q such
that p 6= q, and p ∼A q. Then we have

1. if levelA(p) ≤ levelA(q), then p - q.

2. It is possible that p 6w q.

Proof: For the first part, let A′ be the automaton obtained from A by
strongly merging q in p. We need to show that A′ is a NFCA for L. Let
w = w1 . . . wn be a word in Σ≤l, n ∈ N and wi ∈ Σ for all i, 1 ≤ i ≤ n. We
now prove that w ∈ L iff δ′(q0, w) ∩ F ′ 6= ∅.

If we can find the states {q0, q1, . . . , qn} such that q1 ∈ δ(q0, w1), q2 ∈
δ(q1, w2), . . . , qn ∈ δ(qn−1, wn), qn ∈ F and q /∈ {q0, q1, . . . , qn}, then q1 ∈
δ′(q0, w1), q2 ∈ δ′(q1, w2), . . . , qn ∈ δ′(qn−1, wn), qn ∈ F ′, i.e., δ′(q0, w)∩F ′ 6=
∅. Assume q = qj , and j is the smallest with this property. If j = n, then
q ∈ F , which implies p ∈ F , then q1 ∈ δ′(q0, w1), q2 ∈ δ′(q1, w2), . . . ,
qn ∈ δ′(p, wn), which means δ′(q0, w) ∩ F ′ 6= ∅.

Assume the statements hold for |wj . . . wn| < l′ for l′ < l − |w| (l −
|w1...wj | ≤ l − level(q)), and consider the case when |wj−1wj . . . wn| = l′. If
for every non-empty prefix of wj+1 . . . wn, wj−1 . . . wh, q /∈ δ(p, wj−1 . . . wh),
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then δ(p, wj+1 . . . wn) ∈ F − {q} iff δ(q, wj+1 . . . wn) ∈ F − {q} , i.e.,
δ′(p, wj+1 . . . wn) ∩ F ′ 6= ∅ iff δ(q, wj+1 . . . wn) ∩ F 6= ∅.

Otherwise, let h be the smallest number such that q ∈ δ(q, wj+1 . . . wh).
Then |wh+1 . . . wn| < l′ (and p ∈ δ′(p, wj . . . wh)). By induction hypoth-
esis, δ′(p, wh+1 . . . wn) ∩ F ′ 6= ∅ iff δ(q, wh+1 . . . wn) ∩ F 6= ∅. Therefore,
δ(p, wj+1 . . . whwh+1 . . . wn)∩F ′ 6= ∅ iff δ(q, wj+1 . . . whwh+1 . . . wn)∩F 6= ∅,
proving the first part. For the second part, consider the automaton in
Figure 11 as an NFCA for L = {a2, a4}. We have that l = 4 and 3 ∼A 5,
because level(3) = 3, and δ(3, ε) ∩ F = δ(5, ε) ∩ F = ∅ δ(3, a) ∩ F = {4},
δ(5, a)∩F = {6}. We cannot weakly merge state 3 with state 5, as we would
recognize a3 /∈ L. In Figure 12 we have the result for strongly merging state
3 in state 5.
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Figure 11: Example for weakly merging failure and similar states.
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Figure 12: The result for strongly merging similar states for the example
presented in Figure 11.

We can observe that strongly merging states does not add words in the
language, while weakly merging may add words. Because any DFCA is also
an NFCA, then some smaller automata can be obtained from larger ones
without using state merging technique, and the following lemma presents
such a case. Also, the automaton in Figure 2 is obtained from automaton in
Figure 1 by strongly merging states 0, . . .−m+ 1 into state −m.
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Lemma 6 Let A = (Q,Σ, δ, q0, F ) be an NFCA for L, and consider the
reduced sub-automaton generated by state p, A = (QR,Σ, δR, p, F ), i.e., QR
contains only reachable and useful states, and δR is the induced transition
function. If δ(s, a) ∩QR = ∅, for all s ∈ (Q \QR), we can find two regular
languages L1,L2 such that

• Lp = (L1 ∪ L2) ∩ Σ≤l−level(p), and

• nsc(L1) + nsc(L2) < #QR + 1,

then A is not minimal.

Proof: Let Ai = (Qi,Σ, δi, q0,i, Fi), i = 1, 2 be two NFAs for L1 and
L2, and Lp = (L1 ∪ L2) ∩ Σ≤l−level(p). We define the automaton B =
((Q\QR)∪{p}∪Q1∪Q2,Σ, δB, q0, FB) as follows: FB = (F \QR)∪F1∪F2, in
case p /∈ F , and FB = (F \QR)∪F1∪F2∪{p} in case p ∈ F . For the transition
function, we have δB(s, a) = δ(s, a) if s ∈ (Q \ QR), δB(s, a) = δi(s, a) if
s ∈ Qi, i = 1, 2, and δB(p, a) = δ1(q0,1, a) ∪ δ2(q0,2, a) ∪ δ(p, a) \ QR, if
p /∈ δ(p, a), and δB(p, a) = δ1(q0,1, a) ∪ δ2(q0,2, a) ∪ δ(p, a) \ QR ∪ {p}, if
p ∈ δ(p, a). Obviously, the automaton B recognizes the cover language for
L, and its state complexity is lower. 2

This technique was used to produce the minimal NFCA for LX9,7 in
Figure 9.

6 State Merging and Fooling Sets

In this section we analyze the relation between mergeable states and fooling
sets, more precisely, we would like to use a fooling set to identify states that
are mergeable or not. We will consider both strong and weak mergeability.
First, we start with a technical lemma.

Lemma 7 Let S = {(xi, yi) | 1 ≤ i ≤ n} be a(n) (extended) fooling set for
the finite language L. If i, j are such that 1 ≤ i, j ≤ n, i 6= j, then either
|xiyj | ≤ l, or |xjyi| ≤ l.

Proof: Assume |xjyi| > l. It follows that |xj |+ |yi| > l, i.e., |yi| > l−|xj |.
Because xiyi ∈ L, |xiyi| ≤ l, i.e., |xi| + |yi| ≤ l, hence |yi| ≤ l − |xi|, thus
l − |xj | < l − |xi|, which means that |xi| < |xj |. We have that |xiyj | =
|xi|+ |yj | < |xj |+ |yj | ≤ l. 2
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If a fooling set for a finite language L has exactly the number of states
in a given NFCA, then the NFCA is minimal. In case the NFCA has more
states, it could still be minimal. However, we would like to investigate if it is
not minimal, and some states might be either weakly, or strongly mergeable.

The following result identifies, for a given fooling set, the states that
are meargeable in an NFCA.

Theorem 4 Let A = (Q,Σ, δ, q0, F ) be an NFCA for L, and S = {(xi, yi) |
1 ≤ i ≤ n} a fooling set for L. Let p, q ∈ Q, p 6= q be two states, and i, j,
1 ≤ i, j ≤ n, i 6= j, be such that p ∈ δ(q0, xi) and q ∈ δ(q0, xj). Then the
following statements hold true

1. If δ(q, yj) ∩ F 6= ∅, and δ(p, yi) ∩ F 6= ∅, then p 6w q.

2. If δ(p, yj) ∩ F 6= ∅, and |xjyi| > l then p 6w q.

3. If |xiyj | > l and δ(p, yi) ∩ F 6= ∅, then p 6- q.

Proof: Because S is a fooling set, it follows that xiyj /∈ L and xjyi /∈ L.
We now analyze each case of the theorem:

1. If p w q, it follows that by merging q with p, we obtain an equivalent
NFCA B = (Q− {q},Σ, δB, q0, F − {q}) such that ∅ 6= δ(q, yj) ∩ F ⊆
δB(p, yj) ∩ FB. Because xiyj /∈ L, we must have |xiyj | > l, which
implies |xjyi| ≤ l. ¿From q ∈ δ(q0, xj), it follows p ∈ δB(q0, xj). But
δ(p, yi) ∩ F 6= ∅, therefore δB(q0, xjyi) ∩ F 6= ∅, i.e., xjyi ∈ L, which is
a contradiction.

2. If p w q, it follows that by merging q with p, we obtain an equivalent
NFCA B = (Q− {q},Σ, δB, q0, F − {q}) such that ∅ 6= δ(p, yj) ∩ F ⊆
δB(p, yj)∩FB. Because S is a fooling set and |xjyi| > l, using Lemma 7
we have that |xiyj | ≤ l. But δB(q0, xiyj) ∩ F 6= ∅, therefore xiyj ∈ L,
which is a contradiction.

3. If p - q, it follows that by merging q into p, we obtain an equivalent
NFCA B = (Q− {q},Σ, δB, q0, F − {q}) such that ∅ 6= δ(q, yi) ∩ F ⊆
δB(p, yi) ∩ FB.

Because |xiyj | > l, using Lemma 7, we have that |xjyi| ≤ l. ¿From
q ∈ δ(q0, xj), it follows p ∈ δB(q0, xj). But δ(p, yi) ∩ F 6= ∅, therefore
δB(q0, xjyi) ∩ F 6= ∅, i.e., xjyi ∈ L, which is a contradiction.
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2

Because in the proof of 2 and 3 of Theorem 4 we use the condition on
the length of the words in the fooling set, only one of the words xiyj or xjyi
has to be tested if it is in L. Thus, if S is an extended fooling set, both 2
and 3 of Theorem 4 will hold.

For 1 of Theorem 4, and the case where S is an extended fooling set,
we must consider two cases:

1. xiyj /∈ L, and

2. xjyi /∈ L.

If xiyj /∈ L, then we have the same proof. If xjyi /∈ L, from δ(p, yi)∩F 6=
∅, it follows that |xjyi| > l, and using Lemma 7, we have that |xiyj | ≤ l.
Because δB(q0, xiyj) ⊆ δ(q, yj) \ {q} 6= ∅, it follows that xiyj ∈ L, which is a
contradiction.

Hence, Theorem 4 holds for both fooling sets and extended fooling
sets. The reverse is not true, as the fooling set technique does not provide a
tight lower bound for the number of states. In the following examples, we
show that if some initial conditions are not satisfied, then the states can be
mergeable. ��
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Figure 13: Example of fooling set and mergeable states not satisfying the
conditions in Theorem 4.

Example 1 In the following example, Figure 13, we have an NFCA with
n+ 5 states for the language LFm,n = {a, b}≤ma{a, b}n−2, that is the same
as the one in Figure 1. In case m = 2 and n = 4, the language is the same
as the one described in Figure 3. A fooling set or extended fooling set can be
S = {(ai, abn−1−i) | 0 ≤ i ≤ n}, which guarantees that the minimal NFCA
has at least n states. An equivalent minimal NFA has m+ n states.

We also have the following:
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1. If p = 0 and q = 1′, then p w q. However, for the following values, i = 1
and j = 2, we have that p ∈ δ(−1, xi) and q ∈ δ(−1, xj). In this case,
xi = a, xj = aa, yi = abn−1−1, yj = abn−1−2, and δ(q, yj) ∩ F = ∅.

2. For p = 0 and q = 2′, i = 1, and j = n− 1, we have xi = a, xj = an−1,
yi = abn−1−1, yj = a, 0 w 2′, and δ(q, yi) ∩ F = ∅, but |xiyj | < l, and
|xjyi| > l.

3. For p = 0, q = 3′, i = 1, and j = 4, we have xi = a, xj = aaaa,
yi = abn−1−1, yj = abn−1−4. 0 - 3′, but 0 6w 3′, and δ(q, yj) ∩ F = ∅.

Remark 1 For p = 0 and q = 2′, i = 1, and j = 3, we have xi = a,
xj = aaa, yi = abn−1−1, yj = abn−1−3, 0 - 2′, and δ(q, yj) ∩ F = ∅.

The examples presented, together with the Theorem 4, show the diffi-
culty of finding mergeable states in an NFCA, even if we already know a
fooling set. This suggests that expanding the study, even for the case of
NFAs, may produce some useful practical results.

7 Conclusion

In this paper we showed that NFCAs are a more compact representation of
finite languages than both NFAs and DFCAs, therefore it is a subject worth
investigating. We presented a lower-bound technique for state complexity of
NFCAs, and proved its limitations. We proved that minimizing NFCAs has
at least the same level of difficulty as minimizing general NFAs, and that
extra information about the maximum length of the words in the language
does not help reducing the time complexity. We checked if some of the
results involving reducing the size of automata for NFAs and DFCAs are
still valid for NFCAs, and proved that most of them are no longer valid.
However, the method of strong merging states still works in case of NFCAs,
and we showed that there are also other methods that could be investigated.

We also present an interesting connection between mergeability and
fooling sets, that could be further extended.

As future research, we list below some problems that we consider worth
investigating:

1. check if the bipartite graph lower-bound technique can be applied for
NFCAs;
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2. find bounds for non-deterministic cover state complexity;

3. investigate the problem of magic numbers for NFCAs. In this case, we
can relate either to DFCAs, or DFAs.
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[8] C. Câmpeanu, N. Sântean, and S. Yu. Minimal cover-automata for
finite languages. Theoretical Computer Science, 267(1-2):3–16, 2001.
doi:10.1016/S0304-3975(00)00292-9.
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28 C. Câmpeanu

[24] H. Körner. A time and space efficient algorithm for minimizing
cover automata for finite languages. International Journal of Foun-
dations of Computer Science, 14(6):1071–1086, 2003. doi:10.1142/

S0129054103002187.

[25] A. N. Maslov. Estimates of the number of states of finite automata.
Soviet Mathematics Doklady, 11:1373–1374, 1970.

[26] A. N. Maslov. Cyclic shift operation for languages. Problems of Infor-
mation Transmission, 9:333–338, 1973.

[27] F. Mera and G. Pighizzini. Complementing unary non-deterministic
automata. Theoretical Computer Science, 330(2):349–360, 2005. doi:

10.1016/j.tcs.2004.04.015.

[28] E. F. Moore. Gedanken-experiments on sequential machines. Automata
Studies, Annals of Mathematics Studies, 34:129–153, 1956.

[29] D. Revuz. Minimisation of acyclic deterministic automata in linear
time. Theoretical Computer Science, 92(1):181–189, 1992. doi:10.

1016/0304-3975(92)90142-3.

[30] S. Yu. Regular languages. In Grzegorz Rozenberg and Arto Salomaa, ed-
itors, Handbook of Formal Languages, volume 1, pages 41–110. Springer,
1997. Available from: http://dl.acm.org/citation.cfm?id=267846.
267848.

[31] S. Yu, Q. Zhuang, and K. Salomaa. The state complexities of some
basic operations on regular languages. Theoretical Computer Science,
125(2):315–328, 1994. doi:10.1016/0304-3975(92)00011-F.

c© Scientific Annals of Computer Science 2015

http://dx.doi.org/10.1142/S0129054103002187
http://dx.doi.org/10.1142/S0129054103002187
http://dx.doi.org/10.1016/j.tcs.2004.04.015
http://dx.doi.org/10.1016/j.tcs.2004.04.015
http://dx.doi.org/10.1016/0304-3975(92)90142-3
http://dx.doi.org/10.1016/0304-3975(92)90142-3
http://dl.acm.org/citation.cfm?id=267846.267848
http://dl.acm.org/citation.cfm?id=267846.267848
http://dx.doi.org/10.1016/0304-3975(92)00011-F

	Introduction
	Notations and Definitions
	Lower-Bounds and Compression Ratio for NFCAs
	Minimization Complexity
	Reducing the Number of States of NFCAs
	State Merging and Fooling Sets
	Conclusion

