3,531 research outputs found

    Performance improvement in VSLAM using stabilized feature points

    Get PDF
    Simultaneous localization and mapping (SLAM) is the main prerequisite for the autonomy of a mobile robot. In this paper, we present a novel method that enhances the consistency of the map using stabilized corner features. The proposed method integrates template matching based video stabilization and Harris corner detector. Extracting Harris corner features from stabilized video consistently increases the accuracy of the localization. Data coming from a video camera and odometry are fused in an Extended Kalman Filter (EKF) to determine the pose of the robot and build the map of the environment. Simulation results validate the performance improvement obtained by the proposed technique

    Multi Cost Function Fuzzy Stereo Matching Algorithm for Object Detection and Robot Motion Control

    Get PDF
    Stereo matching algorithms work with multiple images of a scene, taken from two viewpoints, to generate depth information. Authors usually use a single matching function to generate similarity between corresponding regions in the images. In the present research, the authors have considered a combination of multiple data costs for disparity generation. Disparity maps generated from stereo images tend to have noisy sections. The presented research work is related to a methodology to refine such disparity maps such that they can be further processed to detect obstacle regions.  A novel entropy based selective refinement (ESR) technique is proposed to refine the initial disparity map. The information from both the left disparity and right disparity maps are used for this refinement technique. For every disparity map, block wise entropy is calculated. The average entropy values of the corresponding positions in the disparity maps are compared. If the variation between these entropy values exceeds a threshold, then the corresponding disparity value is replaced with the mean disparity of the block with lower entropy. The results of this refinement are compared with similar methods and was observed to be better. Furthermore, in this research work, the v-disparity values are used to highlight the road surface in the disparity map. The regions belonging to the sky are removed through HSV based segmentation. The remaining regions which are our ROIs, are refined through a u-disparity area-based technique.  Based on this, the closest obstacles are detected through the use of k-means segmentation.  The segmented regions are further refined through a u-disparity image information-based technique and used as masks to highlight obstacle regions in the disparity maps. This information is used in conjunction with a kalman filter based path planning algorithm to guide a mobile robot from a source location to a destination location while also avoiding any obstacle detected in its path. A stereo camera setup was built and the performance of the algorithm on local real-life images, captured through the cameras, was observed. The evaluation of the proposed methodologies was carried out using real life out door images obtained from KITTI dataset and images with radiometric variations from Middlebury stereo dataset

    Side-channel based intrusion detection for industrial control systems

    Full text link
    Industrial Control Systems are under increased scrutiny. Their security is historically sub-par, and although measures are being taken by the manufacturers to remedy this, the large installed base of legacy systems cannot easily be updated with state-of-the-art security measures. We propose a system that uses electromagnetic side-channel measurements to detect behavioural changes of the software running on industrial control systems. To demonstrate the feasibility of this method, we show it is possible to profile and distinguish between even small changes in programs on Siemens S7-317 PLCs, using methods from cryptographic side-channel analysis.Comment: 12 pages, 7 figures. For associated code, see https://polvanaubel.com/research/em-ics/code

    Estimation of image quality factors for face recognition

    Get PDF
    Over the past few years, verification and identification of humans using biometric has gained attention of researchers and of the public in general. Face recognition systems are used by the public and the government and are applied in different facets of life including security, identification of criminals and identification of terrorists. Because of the importance of these applications, it is of great necessity that face recognition systems be as accurate as possible. Some research has shown that image quality degrades the performance of face recognition systems. Most previous research has focused on designing algorithms for face recognition that deal or compensate a single effect such as blur, lighting conditions, pose, and emotions. In this thesis we identify a number of factors influencing recognition performance and conduct an extensive study of the effects of image quality factors on recognition performance and discuss methods to estimate this quality factors

    Disentangled Autoencoder for Cross-Stain Feature Extraction in Pathology Image Analysis

    Get PDF
    A novel deep autoencoder architecture is proposed for the analysis of histopathology images. Its purpose is to produce a disentangled latent representation in which the structure and colour information are confined to different subspaces so that stain-independent models may be learned. For this, we introduce two constraints on the representation which are implemented as a classifier and an adversarial discriminator. We show how they can be used for learning a latent representation across haematoxylin-eosin and a number of immune stains. Finally, we demonstrate the utility of the proposed representation in the context of matching image patches for registration applications and for learning a bag of visual words for whole slide image summarization
    corecore