29 research outputs found

    Global Grids and Software Toolkits: A Study of Four Grid Middleware Technologies

    Full text link
    Grid is an infrastructure that involves the integrated and collaborative use of computers, networks, databases and scientific instruments owned and managed by multiple organizations. Grid applications often involve large amounts of data and/or computing resources that require secure resource sharing across organizational boundaries. This makes Grid application management and deployment a complex undertaking. Grid middlewares provide users with seamless computing ability and uniform access to resources in the heterogeneous Grid environment. Several software toolkits and systems have been developed, most of which are results of academic research projects, all over the world. This chapter will focus on four of these middlewares--UNICORE, Globus, Legion and Gridbus. It also presents our implementation of a resource broker for UNICORE as this functionality was not supported in it. A comparison of these systems on the basis of the architecture, implementation model and several other features is included.Comment: 19 pages, 10 figure

    e-Science: the added value for modern discovery

    Get PDF
    e-Science, a new approach based on computer simulation, is increasingly being adopted as one of the most successful modern methods for experimental scientific discovery

    Polish grid infrastructure for science and research

    Full text link
    Structure, functionality, parameters and organization of the computing Grid in Poland is described, mainly from the perspective of high-energy particle physics community, currently its largest consumer and developer. It represents distributed Tier-2 in the worldwide Grid infrastructure. It also provides services and resources for data-intensive applications in other sciences.Comment: Proceeedings of IEEE Eurocon 2007, Warsaw, Poland, 9-12 Sep. 2007, p.44

    PetaFlow: a global computing-networking-visualisation unitwith social impact

    Get PDF
    International audienceThe PetaFlow application aims to contribute to the use of high performance computational resources forthe benefit of society. To this goal the emergence of adequate information and communication technologies withrespect to high performance computing-networking-visualisation and their mutual awareness is required. Thedeveloped technology and algorithms are presented and applied to a real global peta-scale data intensive scientificproblem with social and medical importance, i.e. human upper airflow modelling

    e-Infrastructures for e-Science: A Global View

    Get PDF
    In the last 10 years, a new way of doing science is spreading in the world thank to the development of virtual research communities across many geographic and administrative boundaries. A virtual research community is a widely dispersed group of researchers and associated scientific instruments working together in a common virtual environment. This new kind of scientific environment, usually addressed as a "collaboratory", is based on the availability of high-speed networks and broadband access, advanced virtual tools and Grid-middleware technologies which, altogether, are the elements of the e-Infrastructures. The European Commission has heavily invested in promoting this new way of collaboration among scientists funding several international projects with the aim of creating e-Infrastructures to enable the European Research Area and connect the European researchers with their colleagues based in Africa, Asia and Latin America. In this paper we describe the actual status of these e- Infrastructures and present a complete picture of the virtual research communities currently using them. Information on the scientific domains and on the applications supported are provided together with their geographic distribution

    Notebook-as-a-VRE (NaaVRE): From private notebooks to a collaborative cloud virtual research environment

    Get PDF
    Virtual Research Environments (VREs) provide user-centric support in the lifecycle of research activities, e.g., discovering and accessing research assets, or composing and executing application workflows. A typical VRE is often implemented as an integrated environment, which includes a catalog of research assets, a workflow management system, a data management framework, and tools for enabling collaboration among users. Notebook environments, such as Jupyter, allow researchers to rapidly prototype scientific code and share their experiments as online accessible notebooks. Jupyter can support several popular languages that are used by data scientists, such as Python, R, and Julia. However, such notebook environments do not have seamless support for running heavy computations on remote infrastructure or finding and accessing software code inside notebooks. This paper investigates the gap between a notebook environment and a VRE and proposes an embedded VRE solution for the Jupyter environment called Notebook-as-a-VRE (NaaVRE). The NaaVRE solution provides functional components via a component marketplace and allows users to create a customized VRE on top of the Jupyter environment. From the VRE, a user can search research assets (data, software, and algorithms), compose workflows, manage the lifecycle of an experiment, and share the results among users in the community. We demonstrate how such a solution can enhance a legacy workflow that uses Light Detection and Ranging (LiDAR) data from country-wide airborne laser scanning surveys for deriving geospatial data products of ecosystem structure at high resolution over broad spatial extents. This enables users to scale out the processing of multi-terabyte LiDAR point clouds for ecological applications to more data sources in a distributed cloud environment.Comment: A revised version has been published in the journal software practice and experienc

    SIMDAT

    No full text
    corecore