19,782 research outputs found

    Single Image Super-Resolution through Sparse Representation via Coupled Dictionary learning

    Get PDF
    Abstract-Single Image Super-Resolution (SISR) through sparse representation has received much attention in the past decade due to significant development in sparse coding algorithms. However, recovering high-frequency textures is a major bottleneck of existing SISR algorithms.  Considering this, dictionary learning approaches are to be utilized to extract high-frequency textures which improve SISR performance significantly. In this paper, we have proposed the SISR algorithm through sparse representation which involves learning of Low Resolution (LR) and High Resolution (HR) dictionaries simultaneously from the training set. The idea of training coupled dictionaries preserves correlation between HR and LR patches to enhance the Super-resolved image. To demonstrate the effectiveness of the proposed algorithm, a visual comparison is made with popular SISR algorithms and also quantified through quality metrics. The proposed algorithm outperforms compared to existing SISR algorithms qualitatively and quantitatively as shown in experimental results. Furthermore, the performance of our algorithm is remarkable for a smaller training set which involves lesser computational complexity. Therefore, the proposed approach is proven to be superior based upon visual comparisons and quality metrics and have noticeable results at reduced computational complexity

    Multimodal image super-resolution via joint sparse representations induced by coupled dictionaries

    Get PDF
    Real-world data processing problems often involve various image modalities associated with a certain scene, including RGB images, infrared images, or multispectral images. The fact that different image modalities often share certain attributes, such as edges, textures, and other structure primitives, represents an opportunity to enhance various image processing tasks. This paper proposes a new approach to construct a high-resolution (HR) version of a low-resolution (LR) image, given another HR image modality as guidance, based on joint sparse representations induced by coupled dictionaries. The proposed approach captures complex dependency correlations, including similarities and disparities, between different image modalities in a learned sparse feature domain in lieu of the original image domain. It consists of two phases: coupled dictionary learning phase and coupled superresolution phase. The learning phase learns a set of dictionaries from the training dataset to couple different image modalities together in the sparse feature domain. In turn, the super-resolution phase leverages such dictionaries to construct an HR version of the LR target image with another related image modality for guidance. In the advanced version of our approach, multistage strategy and neighbourhood regression concept are introduced to further improve the model capacity and performance. Extensive guided image super-resolution experiments on real multimodal images demonstrate that the proposed approach admits distinctive advantages with respect to the state-of-the-art approaches, for example, overcoming the texture copying artifacts commonly resulting from inconsistency between the guidance and target images. Of particular relevance, the proposed model demonstrates much better robustness than competing deep models in a range of noisy scenarios

    Multi-modal Image Processing based on Coupled Dictionary Learning

    Get PDF
    In real-world scenarios, many data processing problems often involve heterogeneous images associated with different imaging modalities. Since these multimodal images originate from the same phenomenon, it is realistic to assume that they share common attributes or characteristics. In this paper, we propose a multi-modal image processing framework based on coupled dictionary learning to capture similarities and disparities between different image modalities. In particular, our framework can capture favorable structure similarities across different image modalities such as edges, corners, and other elementary primitives in a learned sparse transform domain, instead of the original pixel domain, that can be used to improve a number of image processing tasks such as denoising, inpainting, or super-resolution. Practical experiments demonstrate that incorporating multimodal information using our framework brings notable benefits.Comment: SPAWC 2018, 19th IEEE International Workshop On Signal Processing Advances In Wireless Communication

    Image Super-Resolution via Dual-Dictionary Learning And Sparse Representation

    Full text link
    Learning-based image super-resolution aims to reconstruct high-frequency (HF) details from the prior model trained by a set of high- and low-resolution image patches. In this paper, HF to be estimated is considered as a combination of two components: main high-frequency (MHF) and residual high-frequency (RHF), and we propose a novel image super-resolution method via dual-dictionary learning and sparse representation, which consists of the main dictionary learning and the residual dictionary learning, to recover MHF and RHF respectively. Extensive experimental results on test images validate that by employing the proposed two-layer progressive scheme, more image details can be recovered and much better results can be achieved than the state-of-the-art algorithms in terms of both PSNR and visual perception.Comment: 4 pages, 4 figures, 1 table, to be published at IEEE Int. Symposium of Circuits and Systems (ISCAS) 201

    How Does the Low-Rank Matrix Decomposition Help Internal and External Learnings for Super-Resolution

    Full text link
    Wisely utilizing the internal and external learning methods is a new challenge in super-resolution problem. To address this issue, we analyze the attributes of two methodologies and find two observations of their recovered details: 1) they are complementary in both feature space and image plane, 2) they distribute sparsely in the spatial space. These inspire us to propose a low-rank solution which effectively integrates two learning methods and then achieves a superior result. To fit this solution, the internal learning method and the external learning method are tailored to produce multiple preliminary results. Our theoretical analysis and experiment prove that the proposed low-rank solution does not require massive inputs to guarantee the performance, and thereby simplifying the design of two learning methods for the solution. Intensive experiments show the proposed solution improves the single learning method in both qualitative and quantitative assessments. Surprisingly, it shows more superior capability on noisy images and outperforms state-of-the-art methods
    • …
    corecore