2,127 research outputs found

    A simple and less slow method for counting triangulations and for related problems

    Get PDF
    We present a simple dynamic programming based method for counting straight-edge triangulations of planar point sets. This method can be adapted to solve related problems such as nding the best triangulation of a point set according to certain optimality criteria, or generating a triangulation of a point set uniformly at random. We have implemented our counting method. It appears to be substantially less slow than previous methods: instances with 20 points, which used to take minutes, can now be handled in less than a second, and instances with 30 points, which used to be solvable only by employing several workstations in parallel over a substantial amount of time, an now be solved in about one minute on a single standard workstation.International Max Planck Research Schoo

    A QPTAS for the Base of the Number of Triangulations of a Planar Point Set

    Full text link
    The number of triangulations of a planar n point set is known to be cnc^n, where the base cc lies between 2.432.43 and 30.30. The fastest known algorithm for counting triangulations of a planar n point set runs in O(2n)O^*(2^n) time. The fastest known arbitrarily close approximation algorithm for the base of the number of triangulations of a planar n point set runs in time subexponential in n.n. We present the first quasi-polynomial approximation scheme for the base of the number of triangulations of a planar point set

    A better upper bound on the number of triangulations of a planar point set

    Full text link
    We show that a point set of cardinality nn in the plane cannot be the vertex set of more than 59nO(n6)59^n O(n^{-6}) straight-edge triangulations of its convex hull. This improves the previous upper bound of 276.75n276.75^n.Comment: 6 pages, 1 figur

    Counting Triangulations and other Crossing-Free Structures Approximately

    Full text link
    We consider the problem of counting straight-edge triangulations of a given set PP of nn points in the plane. Until very recently it was not known whether the exact number of triangulations of PP can be computed asymptotically faster than by enumerating all triangulations. We now know that the number of triangulations of PP can be computed in O(2n)O^{*}(2^{n}) time, which is less than the lower bound of Ω(2.43n)\Omega(2.43^{n}) on the number of triangulations of any point set. In this paper we address the question of whether one can approximately count triangulations in sub-exponential time. We present an algorithm with sub-exponential running time and sub-exponential approximation ratio, that is, denoting by Λ\Lambda the output of our algorithm, and by cnc^{n} the exact number of triangulations of PP, for some positive constant cc, we prove that cnΛcn2o(n)c^{n}\leq\Lambda\leq c^{n}\cdot 2^{o(n)}. This is the first algorithm that in sub-exponential time computes a (1+o(1))(1+o(1))-approximation of the base of the number of triangulations, more precisely, cΛ1n(1+o(1))cc\leq\Lambda^{\frac{1}{n}}\leq(1 + o(1))c. Our algorithm can be adapted to approximately count other crossing-free structures on PP, keeping the quality of approximation and running time intact. In this paper we show how to do this for matchings and spanning trees.Comment: 19 pages, 2 figures. A preliminary version appeared at CCCG 201

    Uniform Infinite Planar Triangulations

    Full text link
    The existence of the weak limit as n --> infinity of the uniform measure on rooted triangulations of the sphere with n vertices is proved. Some properties of the limit are studied. In particular, the limit is a probability measure on random triangulations of the plane.Comment: 36 pages, 4 figures; Journal revised versio
    corecore