A Simple and Less Slow Method
for Counting Triangulations and for Related Problems

Extended Abstract

Saurabh Ray ®'and Raimund Seidel ®

& Maz-Planck-Institut fir Informatik Stuhlsatzenhausweg 85, 66123 Saarbricken, Germany
b Universitit des Saarlandes, Im Stadtwald, 66123 Saarbriicken, Germany

Abstract

We present a simple dynamic programming based method for counting straight-edge triangulations of planar
point sets. This method can be adapted to solve related problems such as finding the best triangulation of a point
set according to certain optimality criteria, or generating a triangulation of a point set uniformly at random.

We have implemented our counting method. It appears to be substantially less slow than previous methods:
instances with 20 points, which used to take minutes, can now be handled in less than a second, and instances
with 30 points, which used to be solvable only by employing several workstations in parallel over a substantial
amount of time, can now be solved in about one minute on a single standard workstation.

1. Introduction

In recent years there has been some interest in
studying the set 7(S) of straight-edge triangula-
tions associated with a finite planar point set S.
Typical problems are counting, i.e. given S deter-
mine |7(S)|, random generation, i.e. given S ran-
domly generate a triangulation in 7(S) with uni-
form probability, or optimization, i.e. given S find
the triangulation in 7(S) that satisfies some opti-
mality criterion.

The counting problem is at this point not known
to be in P. It is known that |7(S)| is exponential
in n = |S| with the best currently known lower [4]
and upper [14] bounds of roughly 2.33" and 59".
Some previous work on the counting problem ad-
dressed cases where S has some special structure
[13,10,11,6]. An algorithm for the general case was
given by Avis and Fukuda [5] which was based on
their reverse-search paradigm and hence counts via
enumeration. For another enumerative method see
Rambau’s TOPCOM page [12]. The so far best al-

Email addresses: saurabh@mpi-sb.mpg.de (Saurabh
Ray), rseidel@cs.uni-sb.de (Raimund Seidel).
I The first author is supported by the International-Max-
Planck-Research-School in Saarbriicken.

20th EWCG

gorithm was given by Aichholzer [2]. It is a divide-
and-conquer type algorithm based on the notion of
so-called paths of a triangulation. Erkinger [8] im-
plemented a prototype of this algorithm and sub-
sequently Gimpl [9] wrote a “production type” im-
plementation that even includes parallelization in
the sense of distributing work to several machines.
For usage see “The Triangulation Homepage” [3].
The random generation and the optimization
problem can clearly be solved, though expensively,
using the enumeration based method of Avis and
Fukuda [5]. Aichholzer’s method can as well be
adapted to solve the random generation problem
and also certain versions of the optimization prob-
lem, namely those that are “decomposable” in the
following sense: Suppose one wishes to find the op-
timum triangulation of a polygon P with interior
points and subject to the constraint that some set
E of edges must be included in the triangulation.
Suppose that FE is such that it induces a partition
of P into two polygons P; and P». Then the op-
timum triangulation of P subject ot E must be
computable from the optimum triangulations of P;
subject to E N P;, with ¢ = 1, 2. Examples of opti-
mization problems that satisfy this decomposabil-
ity condition are MinMax-Area [7][p. 142] or min-
imum total edge-length (a.k.a. minimum weight).

Seville, Spain (2004)

20th European Workshop on Computational Geometry

We present a simple dynamic-programming
based algorithm for the counting problem. It
can be viewed as a divide-and-conquer algorithm
that in addition stores computed results of sub-
problems for later reuse. The algorithm can be
naturally adapted to solve the random generation
problem and to solve optimization problems that
are decomposable in the sense described above.
We report on a prototype implementation of the
counting algorithm.

2. The Algorithm

We consider the slightly more general problem
of computing the number T'(P) of triangulations
of a simple polygon P that contains the point set
S and whose corners are all in S. In the original
problem polygon P is just the convex hull of S.

In courses on algorithm design the case that P
has no “interior points” (i.e. the corners of P are
precisely S) is a common homework problem for
practicing the application of dynamic program-
ming: Choose an arbitrary edge e = [a,b] of P as
“base edge.” Let C'(e) be the set of all “candidate”
vertices ¢ of P so that the triangle spanned by
a, b, c is contained in P. Consider some ¢ € C(e).
The diagonals [a, ¢] and [b, ¢] partition polygon P
into three parts: the trianlge (a, b, ¢) and two sub-
polygons P,. and P, (which may be trivial, i.e. an
edge). The number of triangulations of P that in-
clude triangle (a, b, ¢) is then given by the product
T(Puc)T(P.). Since in any triangulation of P the
base edge [a, b] has to be part of some triangle we
get

T(P) = Z T (Poc)T (Peb) -

ceCle)

Of course the subproblems like T'(FP,.) are solved
recursively using the same method and using [a, (]
as base edge. This choice of base edge ensures that
all subproblems ever considered only involve sub-
polygons of P formed by cutting P along just one
diagonal. Since there are only O(n?) such sub-
polygons, only O(n?) many subproblems need to
be solved in total and computed results can be
stored and reused. This leads to an O(n3) “time”
and O(n?) “space” algorithm, where the quotation
marks are to remind the reader that the stated
bounds only hold in a model where the cost of stor-
ing of and operating on arbitrarily large integers is

constant. In our case we will be dealing with inte-
gers not larger than 59", i.e. representable by O(n)
many bits. This leads to an O(n* logn) time bound
and an O(n?) space bound in the more appropriate
word model of computation.

Let us now consider the general case where there
are “interior point,” i.e. S consists of more than
just the corners of P. We will proceed as in the
method outlined above: Choose some base edge
e = [a, b] from the boundary of P. The candidate
set C(e) now must contain all points ¢ € S that
together with e can span a triangle in some tri-
angulation of P. Thus C(e) consists of all ¢ € §
so that the triangle D. spanned by a,b, c is con-
tained in P and no point of S lies in the interior
of triangle D.. (In this abstract we assume non-
degeneracy.) If a candidate point ¢ is a corner of P
we can proceed exactly as in the simple case out-
lined above and compute the number of triangu-
lations of P containing the triangle D. by solving
two recursive subproblems. If ¢ lies in the interior
of P the number of triangulations of P containing
D. is given by the number of triangulations of the
polygon P. = P\ D., i.e. the polygon P with edge
[a, b] replaced by the chain of two edges [a,], [¢, b].
Thus we only need to solve one recursive subprob-
lem, namely finding the number of triangulations
of P.. Note that this problem is easier than the
original problem in the sense that there are one
fewer interior points (and if there are no interior
points we know how to solve the problem). Thus
our algorithm proceeds as follows:

(i) Choose some base edge e = [a,].

(ii) Determine the candidate set C(e).

(iii) For each ¢ € C(e) that is not a corner of P
compute T'(P.) recursively.

(iv) For each ¢ € C(e) that is a corner of P
solve two recursive subproblems and com-
pute T(Puc)T (Pp)-

(v) Return the sum of the computed numbers.

In this procedure some subpolygon @ of P may
be considered many times. In the usual top-down
dynamic programming fashion we will compute
T (@) only once and store the result for later reuse.
Unfortunately the arising subpolygons do not have
in general such a nice form as they do in the sim-
ple case without interior points. Thus we cannot
use an array for storage but need to resort to a
hash table with a canonic sequence of vertex names
around polygon @) serving as the key for Q.

March 24-26, 2004

Seville (Spain)

n|h|m| avg. #triangulations avg. time(seconds)|avg. time(seconds)

Dynamic Programming Path Method
13| 3] 10 117017.2 0.009 0.250
18| 3| 15 434650561.2 0.064 43.512
23| 3| 20 2175541362109.0 0.982 *
28| 3| 25| 17295702671778911.6 24.973 *
33| 3| 30]{9064438879955990031.2 537.890 *
18(15| 3 61156327.0 0.030 1.570
23|15 8 148363536731.6 0.178 262.232
28|15| 13 096631344845165.6 2.569 *
33|15 18|2615696070967273559.2 55.623 *
23|20 3 49106130174.0 0.077 69.634
28|20 8 124263097179506.8 0.480 *
33|20 13|1303793620633224385.4 10.793 *

Table 1: Results for n = h 4+ m points, with m points randomly chosen in a convex h-gon; average taken over 5
runs. An asterisk indicates that the program did not complete a single instance of that size within 90 minutes.

3. Heuristics

The algorithm outlined above makes no restri-
cions on the choice of the base edge. We have
found the following two heuristics profitable for
this choice.

If P has an edge e with |C'(e)| < 2, then choose
e as base edge.

Otherwise fix a line £ that has approximately one
half of the points of S on each side and as long as
interior points are considered as candidate points
choose as base edge always a boundary edge of the
current polygon that intersects ¢. For dividing lines
of subproblems always choose lines parallel to the
initial /.

The reasonability of the first heuristic is obvi-
ous. The second heuristic is reminiscent of the path
method of Aichholzer [2]. It aims to steer the al-
gorithm towards a rapid breakup of the polygons
considered.

4. Preliminary Experimental Results

We have implemented our dynamic program-
ming algorithm in C++ using the g++ Compiler
and STL libraries. Oswin Aichholzer [1] kindly pro-
vided us with Gimpl’s C-implentation [9] of his
path-based method. Thus direct runtime compar-
isons were possible.

Our experiments were run on a single machine
with a 2.40 GHz Intel Pentium 4 Processor, with
512 MB memory and 512 KB Cache, running under
Linux 2.4.21.4.p4. We did not attempt to use the
parallel feature of Gimpl’s program that allows to
spread work over several machines.

We compared the two implemtations in a set
of experiments where we considered m points dis-
tributed uniformly at random in a convex h-gon.
We report here the results for pairs (h,m) with
h € {3,15,20} and h+m € {13, 18,23,28,33}. For
each pair of parameters Table 1 reports the aver-
age over 5 runs of the computed number of trian-
gulations and the average time (in seconds) taken
for the computation by each program. An asterisk
indicates that the program did not solve a single
instance of that size within 90 minutes.

20th European Workshop on Computational Geometry

We also tried our method on the largest exam-
ples that Gimpl reported on, namely a set of 32
points representing European capitals and a set of
30 random points [3]. Gimpl ran these examples
on clusters of machines with a 1GHz Athlon Thun-
derbird Processor and with 256 MB memory run-
ning under Linux. He did not report any explicit
running times for these example but stated that
these was the largest he could solve in “reasonable
time” employing parallelism and several machines.
We have been told that “reasonable time” in this
context is to mean “several weeks.”

Our implementation solved the 32 point problem
in 70.6 seconds and the 30 point problem in 42.9
seconds.

The largest example we tried was a set of 35
points, with 32 points distributed randomly in a
triangle. On our standard machine this example
led to excessive paging due to the large size of the
required hash table. However on a SPARC com-
pute server we could complete this example in 15
minutes 32 seconds using one processor and 4 GB
of main memory. Adjusting hash table size to avail-
able main memory may lead to a more graceful
degradation of performance of our algorithm when
the input size increases.

5. Discussion

We will not discuss in this abstract how our
method can be applied to the random generation
problem and to the optimization problem. The
adaptions that need to be made are fairly standard.

Our method does not parallelize as easily as
Aichholzer’s method since reusing already com-
puted results may require non-trivial communica-
tion between processors.

We are in the process of analyzing the running
time of our method. Empirically we noticed that
the number of recursive calls when computing 7'(.S)
is always about 1/T'(S). So far we have been unable
to prove this or any other non-trivial statement
about the running time.

Of course determining the true computational
complexity of plane triangulation counting still re-
mains an open problem.

6. Acknowledgments

We would like to thank Oswin Aichholzer for
providing valuable information about the existing
implementations and also for kindly providing the
implementations themselves.

References

[1] O. AICHOLZER, Private Communication.

[2] O. AICHOLZER, The path of a triangulation, in Proc.
15th Symp. on Comp. Geometry 1999, pp. 14-23.

[3] http://www.cis.tugraz.at/igi/oaich/tri-
angulations/counting/counting.html

[4] O. AicuHoLzER, F. HurrADO AND M. NoOY, On the
Number of Triangulations Every Planar Point Set
Must Have, in Proc. 13th Annual Canadian Conference
on Computational Geometry CCCG 2001, Waterloo,
Canada, 2001, pp. 13-16. An improved version is to
appear in CGTA.

[5] D. Avis anp K. Fukupa, Reverse Search for
Enumeration. Discrete Appl. Math. 65, 1996, pp. 21—
46.

[6] R.BACHER, Counting triangulations of configurations.
Manunscript,
http://arxiv.org/abs/math.C0/0310206.

[7] H. EDELSBRUNNER, Geometry and Topology for
Mesh Generation. Cambridge University Press,
2001.

8] B. ERKINGER, Struktureigenschaften von
Triangulierungen. Master’s Thesis, TU-Graz, 1998.

[9] J. GivmpL, Enumeration von Triangulierungen.
Master’s Thesis, TU-Graz, 2002.

[10] F. HurraDpOo AND M. Nov, Counting triangulations of
almost convex polygons. Ars Combinatorica 45, 1997,
pp. 169-179.

[11] V. KABEL AND G.M. ZIEGLER, Counting Lattice
Triangulations. To appear in: “British Combinatorial
Surveys” (C. D. Wensley, ed.), Cambridge University
Press.

[12] http://www.zib.de/rambau/TOPCOM/

[13] D. RanpALL, G. ROTE, F. SANTOS, AND J. SNOEYINK,
Counting triangulations and pseudo-triangulations of
wheels, in Proc. 13th Annual Canadian Conference
on Computational Geometry CCCG 2001, Waterloo,
Canada, 2001, pp. 149-152.

[14] F. SaNTOS AND R. SEIDEL, A better upper bound on
the number of triangulations of a planar point set.
Journal of Combinatorial Theory, Series A 102(1),
2003, pp. 186-193.

