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Abstrat

We present a simple dynami programming based method for ounting straight-edge triangulations of planar

point sets. This method an be adapted to solve related problems suh as �nding the best triangulation of a point

set aording to ertain optimality riteria, or generating a triangulation of a point set uniformly at random.

We have implemented our ounting method. It appears to be substantially less slow than previous methods:

instanes with 20 points, whih used to take minutes, an now be handled in less than a seond, and instanes

with 30 points, whih used to be solvable only by employing several workstations in parallel over a substantial

amount of time, an now be solved in about one minute on a single standard workstation.

1. Introdution

In reent years there has been some interest in

studying the set T (S) of straight-edge triangula-

tions assoiated with a �nite planar point set S.

Typial problems are ounting, i.e. given S deter-

mine jT (S)j, random generation, i.e. given S ran-

domly generate a triangulation in T (S) with uni-

form probability, or optimization, i.e. given S �nd

the triangulation in T (S) that satis�es some opti-

mality riterion.

The ounting problem is at this point not known

to be in P . It is known that jT (S)j is exponential

in n = jSj with the best urrently known lower [4℄

and upper [14℄ bounds of roughly 2:33

n

and 59

n

.

Some previous work on the ounting problem ad-

dressed ases where S has some speial struture

[13,10,11,6℄. An algorithm for the general ase was

given by Avis and Fukuda [5℄ whih was based on

their reverse-searhparadigm and hene ounts via

enumeration. For another enumerative method see

Rambau's TOPCOM page [12℄. The so far best al-
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gorithm was given by Aihholzer [2℄. It is a divide-

and-onquer type algorithm based on the notion of

so-alled paths of a triangulation. Erkinger [8℄ im-

plemented a prototype of this algorithm and sub-

sequently Gimpl [9℄ wrote a \prodution type" im-

plementation that even inludes parallelization in

the sense of distributing work to several mahines.

For usage see \The Triangulation Homepage" [3℄.

The random generation and the optimization

problem an learly be solved, though expensively,

using the enumeration based method of Avis and

Fukuda [5℄. Aihholzer's method an as well be

adapted to solve the random generation problem

and also ertain versions of the optimization prob-

lem, namely those that are \deomposable" in the

following sense: Suppose one wishes to �nd the op-

timum triangulation of a polygon P with interior

points and subjet to the onstraint that some set

E of edges must be inluded in the triangulation.

Suppose that E is suh that it indues a partition

of P into two polygons P

1

and P

2

. Then the op-

timum triangulation of P subjet ot E must be

omputable from the optimum triangulations of P

i

subjet to E \ P

i

, with i = 1; 2. Examples of opti-

mization problems that satisfy this deomposabil-

ity ondition are MinMax-Area [7℄[p. 142℄ or min-

imum total edge-length (a.k.a. minimum weight).
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We present a simple dynami-programming

based algorithm for the ounting problem. It

an be viewed as a divide-and-onquer algorithm

that in addition stores omputed results of sub-

problems for later reuse. The algorithm an be

naturally adapted to solve the random generation

problem and to solve optimization problems that

are deomposable in the sense desribed above.

We report on a prototype implementation of the

ounting algorithm.

2. The Algorithm

We onsider the slightly more general problem

of omputing the number T (P ) of triangulations

of a simple polygon P that ontains the point set

S and whose orners are all in S. In the original

problem polygon P is just the onvex hull of S.

In ourses on algorithm design the ase that P

has no \interior points" (i.e. the orners of P are

preisely S) is a ommon homework problem for

pratiing the appliation of dynami program-

ming: Choose an arbitrary edge e = [a; b℄ of P as

\base edge." Let C(e) be the set of all \andidate"

verties  of P so that the triangle spanned by

a; b;  is ontained in P . Consider some  2 C(e).

The diagonals [a; ℄ and [b; ℄ partition polygon P

into three parts: the trianlge (a; b; ) and two sub-

polygons P

a

and P

b

(whih may be trivial, i.e. an

edge). The number of triangulations of P that in-

lude triangle (a; b; ) is then given by the produt

T (P

a

)T (P

b

). Sine in any triangulation of P the

base edge [a; b℄ has to be part of some triangle we

get

T (P ) =

X

2C(e)

T (P

a

)T (P

b

) :

Of ourse the subproblems like T (P

a

) are solved

reursively using the same method and using [a; ℄

as base edge. This hoie of base edge ensures that

all subproblems ever onsidered only involve sub-

polygons of P formed by utting P along just one

diagonal. Sine there are only O(n

2

) suh sub-

polygons, only O(n

2

) many subproblems need to

be solved in total and omputed results an be

stored and reused. This leads to an O(n

3

) \time"

and O(n

2

) \spae" algorithm, where the quotation

marks are to remind the reader that the stated

bounds only hold in a model where the ost of stor-

ing of and operating on arbitrarily large integers is

onstant. In our ase we will be dealing with inte-

gers not larger than 59

n

, i.e. representable by O(n)

many bits. This leads to anO(n

4

logn) time bound

and anO(n

3

) spae bound in the more appropriate

word model of omputation.

Let us now onsider the general ase where there

are \interior point," i.e. S onsists of more than

just the orners of P . We will proeed as in the

method outlined above: Choose some base edge

e = [a; b℄ from the boundary of P . The andidate

set C(e) now must ontain all points  2 S that

together with e an span a triangle in some tri-

angulation of P . Thus C(e) onsists of all  2 S

so that the triangle D



spanned by a; b;  is on-

tained in P and no point of S lies in the interior

of triangle D



. (In this abstrat we assume non-

degeneray.) If a andidate point  is a orner of P

we an proeed exatly as in the simple ase out-

lined above and ompute the number of triangu-

lations of P ontaining the triangle D



by solving

two reursive subproblems. If  lies in the interior

of P the number of triangulations of P ontaining

D



is given by the number of triangulations of the

polygon P



= P nD



, i.e. the polygon P with edge

[a; b℄ replaed by the hain of two edges [a; ℄; [; b℄.

Thus we only need to solve one reursive subprob-

lem, namely �nding the number of triangulations

of P



. Note that this problem is easier than the

original problem in the sense that there are one

fewer interior points (and if there are no interior

points we know how to solve the problem). Thus

our algorithm proeeds as follows:

(i) Choose some base edge e = [a; b℄.

(ii) Determine the andidate set C(e).

(iii) For eah  2 C(e) that is not a orner of P

ompute T (P



) reursively.

(iv) For eah  2 C(e) that is a orner of P

solve two reursive subproblems and om-

pute T (P

a

)T (P

b

).

(v) Return the sum of the omputed numbers.

In this proedure some subpolygon Q of P may

be onsidered many times. In the usual top-down

dynami programming fashion we will ompute

T (Q) only one and store the result for later reuse.

Unfortunately the arising subpolygons do not have

in general suh a nie form as they do in the sim-

ple ase without interior points. Thus we annot

use an array for storage but need to resort to a

hash table with a anoni sequene of vertex names

around polygon Q serving as the key for Q.
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n h m avg. #triangulations avg. time(seonds) avg. time(seonds)

Dynami Programming Path Method

13 3 10 117017.2 0.009 0.250

18 3 15 434650561.2 0.064 43.512

23 3 20 2175541362109.0 0.982 �

28 3 25 17295702671778911.6 24.973 �

33 3 30 9064438879955990031.2 537.890 �

18 15 3 61156327.0 0.030 1.570

23 15 8 148363536731.6 0.178 262.232

28 15 13 596631344845165.6 2.569 �

33 15 18 2615696070967273559.2 55.623 �

23 20 3 49106130174.0 0.077 69.634

28 20 8 124263097179506.8 0.480 �

33 20 13 1303793620633224385.4 10.793 �

Table 1: Results for n = h+m points, withm points randomly hosen in a onvex h-gon; average taken over 5

runs. An asterisk indiates that the program did not omplete a single instane of that size within 90 minutes.

3. Heuristis

The algorithm outlined above makes no restri-

ions on the hoie of the base edge. We have

found the following two heuristis pro�table for

this hoie.

If P has an edge e with jC(e)j � 2, then hoose

e as base edge.

Otherwise �x a line ` that has approximately one

half of the points of S on eah side and as long as

interior points are onsidered as andidate points

hoose as base edge always a boundary edge of the

urrent polygon that intersets `. For dividing lines

of subproblems always hoose lines parallel to the

initial `.

The reasonability of the �rst heuristi is obvi-

ous. The seond heuristi is reminisent of the path

method of Aihholzer [2℄. It aims to steer the al-

gorithm towards a rapid breakup of the polygons

onsidered.

4. Preliminary Experimental Results

We have implemented our dynami program-

ming algorithm in C++ using the g++ Compiler

and STL libraries. Oswin Aihholzer [1℄ kindly pro-

vided us with Gimpl's C-implentation [9℄ of his

path-based method. Thus diret runtime ompar-

isons were possible.

Our experiments were run on a single mahine

with a 2.40 GHz Intel Pentium 4 Proessor, with

512MBmemory and 512KBCahe, running under

Linux 2.4.21.4.p4. We did not attempt to use the

parallel feature of Gimpl's program that allows to

spread work over several mahines.

We ompared the two implemtations in a set

of experiments where we onsidered m points dis-

tributed uniformly at random in a onvex h-gon.

We report here the results for pairs (h;m) with

h 2 f3; 15; 20g and h+m 2 f13; 18; 23; 28; 33g. For

eah pair of parameters Table 1 reports the aver-

age over 5 runs of the omputed number of trian-

gulations and the average time (in seonds) taken

for the omputation by eah program. An asterisk

indiates that the program did not solve a single

instane of that size within 90 minutes.
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We also tried our method on the largest exam-

ples that Gimpl reported on, namely a set of 32

points representing European apitals and a set of

30 random points [3℄. Gimpl ran these examples

on lusters of mahines with a 1GHz Athlon Thun-

derbird Proessor and with 256 MB memory run-

ning under Linux. He did not report any expliit

running times for these example but stated that

these was the largest he ould solve in \reasonable

time" employing parallelism and several mahines.

We have been told that \reasonable time" in this

ontext is to mean \several weeks."

Our implementation solved the 32 point problem

in 70.6 seonds and the 30 point problem in 42.9

seonds.

The largest example we tried was a set of 35

points, with 32 points distributed randomly in a

triangle. On our standard mahine this example

led to exessive paging due to the large size of the

required hash table. However on a SPARC om-

pute server we ould omplete this example in 15

minutes 32 seonds using one proessor and 4 GB

of main memory. Adjusting hash table size to avail-

able main memory may lead to a more graeful

degradation of performane of our algorithm when

the input size inreases.

5. Disussion

We will not disuss in this abstrat how our

method an be applied to the random generation

problem and to the optimization problem. The

adaptions that need to bemade are fairly standard.

Our method does not parallelize as easily as

Aihholzer's method sine reusing already om-

puted results may require non-trivial ommunia-

tion between proessors.

We are in the proess of analyzing the running

time of our method. Empirially we notied that

the number of reursive alls when omputing T (S)

is always about

p

T (S). So far we have been unable

to prove this or any other non-trivial statement

about the running time.

Of ourse determining the true omputational

omplexity of plane triangulation ounting still re-

mains an open problem.
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