
ASimple and Less SlowMethod

for Counting Triangulations and for Related Problems

Extended Abstra
t

Saurabh Ray

a;1

and Raimund Seidel

b

a

Max-Plan
k-Institut f�ur Informatik Stuhlsatzenhausweg 85, 66123 Saarbr�u
ken, Germany

b

Universit�at des Saarlandes, Im Stadtwald, 66123 Saarbr�u
ken, Germany

Abstra
t

We present a simple dynami
 programming based method for 
ounting straight-edge triangulations of planar

point sets. This method 
an be adapted to solve related problems su
h as �nding the best triangulation of a point

set a

ording to 
ertain optimality 
riteria, or generating a triangulation of a point set uniformly at random.

We have implemented our 
ounting method. It appears to be substantially less slow than previous methods:

instan
es with 20 points, whi
h used to take minutes, 
an now be handled in less than a se
ond, and instan
es

with 30 points, whi
h used to be solvable only by employing several workstations in parallel over a substantial

amount of time, 
an now be solved in about one minute on a single standard workstation.

1. Introdu
tion

In re
ent years there has been some interest in

studying the set T (S) of straight-edge triangula-

tions asso
iated with a �nite planar point set S.

Typi
al problems are 
ounting, i.e. given S deter-

mine jT (S)j, random generation, i.e. given S ran-

domly generate a triangulation in T (S) with uni-

form probability, or optimization, i.e. given S �nd

the triangulation in T (S) that satis�es some opti-

mality 
riterion.

The 
ounting problem is at this point not known

to be in P . It is known that jT (S)j is exponential

in n = jSj with the best 
urrently known lower [4℄

and upper [14℄ bounds of roughly 2:33

n

and 59

n

.

Some previous work on the 
ounting problem ad-

dressed 
ases where S has some spe
ial stru
ture

[13,10,11,6℄. An algorithm for the general 
ase was

given by Avis and Fukuda [5℄ whi
h was based on

their reverse-sear
hparadigm and hen
e 
ounts via

enumeration. For another enumerative method see

Rambau's TOPCOM page [12℄. The so far best al-

Email addresses: saurabh�mpi-sb.mpg.de (Saurabh

Ray), rseidel�
s.uni-sb.de (Raimund Seidel).

1

The �rst author is supported by the International-Max-

Plan
k-Resear
h-S
hool in Saarbr�u
ken.

gorithm was given by Ai
hholzer [2℄. It is a divide-

and-
onquer type algorithm based on the notion of

so-
alled paths of a triangulation. Erkinger [8℄ im-

plemented a prototype of this algorithm and sub-

sequently Gimpl [9℄ wrote a \produ
tion type" im-

plementation that even in
ludes parallelization in

the sense of distributing work to several ma
hines.

For usage see \The Triangulation Homepage" [3℄.

The random generation and the optimization

problem 
an 
learly be solved, though expensively,

using the enumeration based method of Avis and

Fukuda [5℄. Ai
hholzer's method 
an as well be

adapted to solve the random generation problem

and also 
ertain versions of the optimization prob-

lem, namely those that are \de
omposable" in the

following sense: Suppose one wishes to �nd the op-

timum triangulation of a polygon P with interior

points and subje
t to the 
onstraint that some set

E of edges must be in
luded in the triangulation.

Suppose that E is su
h that it indu
es a partition

of P into two polygons P

1

and P

2

. Then the op-

timum triangulation of P subje
t ot E must be


omputable from the optimum triangulations of P

i

subje
t to E \ P

i

, with i = 1; 2. Examples of opti-

mization problems that satisfy this de
omposabil-

ity 
ondition are MinMax-Area [7℄[p. 142℄ or min-

imum total edge-length (a.k.a. minimum weight).

20th EWCG Seville, Spain (2004)



20th European Workshop on Computational Geometry

We present a simple dynami
-programming

based algorithm for the 
ounting problem. It


an be viewed as a divide-and-
onquer algorithm

that in addition stores 
omputed results of sub-

problems for later reuse. The algorithm 
an be

naturally adapted to solve the random generation

problem and to solve optimization problems that

are de
omposable in the sense des
ribed above.

We report on a prototype implementation of the


ounting algorithm.

2. The Algorithm

We 
onsider the slightly more general problem

of 
omputing the number T (P ) of triangulations

of a simple polygon P that 
ontains the point set

S and whose 
orners are all in S. In the original

problem polygon P is just the 
onvex hull of S.

In 
ourses on algorithm design the 
ase that P

has no \interior points" (i.e. the 
orners of P are

pre
isely S) is a 
ommon homework problem for

pra
ti
ing the appli
ation of dynami
 program-

ming: Choose an arbitrary edge e = [a; b℄ of P as

\base edge." Let C(e) be the set of all \
andidate"

verti
es 
 of P so that the triangle spanned by

a; b; 
 is 
ontained in P . Consider some 
 2 C(e).

The diagonals [a; 
℄ and [b; 
℄ partition polygon P

into three parts: the trianlge (a; b; 
) and two sub-

polygons P

a


and P


b

(whi
h may be trivial, i.e. an

edge). The number of triangulations of P that in-


lude triangle (a; b; 
) is then given by the produ
t

T (P

a


)T (P


b

). Sin
e in any triangulation of P the

base edge [a; b℄ has to be part of some triangle we

get

T (P ) =

X


2C(e)

T (P

a


)T (P


b

) :

Of 
ourse the subproblems like T (P

a


) are solved

re
ursively using the same method and using [a; 
℄

as base edge. This 
hoi
e of base edge ensures that

all subproblems ever 
onsidered only involve sub-

polygons of P formed by 
utting P along just one

diagonal. Sin
e there are only O(n

2

) su
h sub-

polygons, only O(n

2

) many subproblems need to

be solved in total and 
omputed results 
an be

stored and reused. This leads to an O(n

3

) \time"

and O(n

2

) \spa
e" algorithm, where the quotation

marks are to remind the reader that the stated

bounds only hold in a model where the 
ost of stor-

ing of and operating on arbitrarily large integers is


onstant. In our 
ase we will be dealing with inte-

gers not larger than 59

n

, i.e. representable by O(n)

many bits. This leads to anO(n

4

logn) time bound

and anO(n

3

) spa
e bound in the more appropriate

word model of 
omputation.

Let us now 
onsider the general 
ase where there

are \interior point," i.e. S 
onsists of more than

just the 
orners of P . We will pro
eed as in the

method outlined above: Choose some base edge

e = [a; b℄ from the boundary of P . The 
andidate

set C(e) now must 
ontain all points 
 2 S that

together with e 
an span a triangle in some tri-

angulation of P . Thus C(e) 
onsists of all 
 2 S

so that the triangle D




spanned by a; b; 
 is 
on-

tained in P and no point of S lies in the interior

of triangle D




. (In this abstra
t we assume non-

degenera
y.) If a 
andidate point 
 is a 
orner of P

we 
an pro
eed exa
tly as in the simple 
ase out-

lined above and 
ompute the number of triangu-

lations of P 
ontaining the triangle D




by solving

two re
ursive subproblems. If 
 lies in the interior

of P the number of triangulations of P 
ontaining

D




is given by the number of triangulations of the

polygon P




= P nD




, i.e. the polygon P with edge

[a; b℄ repla
ed by the 
hain of two edges [a; 
℄; [
; b℄.

Thus we only need to solve one re
ursive subprob-

lem, namely �nding the number of triangulations

of P




. Note that this problem is easier than the

original problem in the sense that there are one

fewer interior points (and if there are no interior

points we know how to solve the problem). Thus

our algorithm pro
eeds as follows:

(i) Choose some base edge e = [a; b℄.

(ii) Determine the 
andidate set C(e).

(iii) For ea
h 
 2 C(e) that is not a 
orner of P


ompute T (P




) re
ursively.

(iv) For ea
h 
 2 C(e) that is a 
orner of P

solve two re
ursive subproblems and 
om-

pute T (P

a


)T (P


b

).

(v) Return the sum of the 
omputed numbers.

In this pro
edure some subpolygon Q of P may

be 
onsidered many times. In the usual top-down

dynami
 programming fashion we will 
ompute

T (Q) only on
e and store the result for later reuse.

Unfortunately the arising subpolygons do not have

in general su
h a ni
e form as they do in the sim-

ple 
ase without interior points. Thus we 
annot

use an array for storage but need to resort to a

hash table with a 
anoni
 sequen
e of vertex names

around polygon Q serving as the key for Q.



Mar
h 24{26, 2004 Seville (Spain)

n h m avg. #triangulations avg. time(se
onds) avg. time(se
onds)

Dynami
 Programming Path Method

13 3 10 117017.2 0.009 0.250

18 3 15 434650561.2 0.064 43.512

23 3 20 2175541362109.0 0.982 �

28 3 25 17295702671778911.6 24.973 �

33 3 30 9064438879955990031.2 537.890 �

18 15 3 61156327.0 0.030 1.570

23 15 8 148363536731.6 0.178 262.232

28 15 13 596631344845165.6 2.569 �

33 15 18 2615696070967273559.2 55.623 �

23 20 3 49106130174.0 0.077 69.634

28 20 8 124263097179506.8 0.480 �

33 20 13 1303793620633224385.4 10.793 �

Table 1: Results for n = h+m points, withm points randomly 
hosen in a 
onvex h-gon; average taken over 5

runs. An asterisk indi
ates that the program did not 
omplete a single instan
e of that size within 90 minutes.

3. Heuristi
s

The algorithm outlined above makes no restri-


ions on the 
hoi
e of the base edge. We have

found the following two heuristi
s pro�table for

this 
hoi
e.

If P has an edge e with jC(e)j � 2, then 
hoose

e as base edge.

Otherwise �x a line ` that has approximately one

half of the points of S on ea
h side and as long as

interior points are 
onsidered as 
andidate points


hoose as base edge always a boundary edge of the


urrent polygon that interse
ts `. For dividing lines

of subproblems always 
hoose lines parallel to the

initial `.

The reasonability of the �rst heuristi
 is obvi-

ous. The se
ond heuristi
 is reminis
ent of the path

method of Ai
hholzer [2℄. It aims to steer the al-

gorithm towards a rapid breakup of the polygons


onsidered.

4. Preliminary Experimental Results

We have implemented our dynami
 program-

ming algorithm in C++ using the g++ Compiler

and STL libraries. Oswin Ai
hholzer [1℄ kindly pro-

vided us with Gimpl's C-implentation [9℄ of his

path-based method. Thus dire
t runtime 
ompar-

isons were possible.

Our experiments were run on a single ma
hine

with a 2.40 GHz Intel Pentium 4 Pro
essor, with

512MBmemory and 512KBCa
he, running under

Linux 2.4.21.4.p4. We did not attempt to use the

parallel feature of Gimpl's program that allows to

spread work over several ma
hines.

We 
ompared the two implemtations in a set

of experiments where we 
onsidered m points dis-

tributed uniformly at random in a 
onvex h-gon.

We report here the results for pairs (h;m) with

h 2 f3; 15; 20g and h+m 2 f13; 18; 23; 28; 33g. For

ea
h pair of parameters Table 1 reports the aver-

age over 5 runs of the 
omputed number of trian-

gulations and the average time (in se
onds) taken

for the 
omputation by ea
h program. An asterisk

indi
ates that the program did not solve a single

instan
e of that size within 90 minutes.



20th European Workshop on Computational Geometry

We also tried our method on the largest exam-

ples that Gimpl reported on, namely a set of 32

points representing European 
apitals and a set of

30 random points [3℄. Gimpl ran these examples

on 
lusters of ma
hines with a 1GHz Athlon Thun-

derbird Pro
essor and with 256 MB memory run-

ning under Linux. He did not report any expli
it

running times for these example but stated that

these was the largest he 
ould solve in \reasonable

time" employing parallelism and several ma
hines.

We have been told that \reasonable time" in this


ontext is to mean \several weeks."

Our implementation solved the 32 point problem

in 70.6 se
onds and the 30 point problem in 42.9

se
onds.

The largest example we tried was a set of 35

points, with 32 points distributed randomly in a

triangle. On our standard ma
hine this example

led to ex
essive paging due to the large size of the

required hash table. However on a SPARC 
om-

pute server we 
ould 
omplete this example in 15

minutes 32 se
onds using one pro
essor and 4 GB

of main memory. Adjusting hash table size to avail-

able main memory may lead to a more gra
eful

degradation of performan
e of our algorithm when

the input size in
reases.

5. Dis
ussion

We will not dis
uss in this abstra
t how our

method 
an be applied to the random generation

problem and to the optimization problem. The

adaptions that need to bemade are fairly standard.

Our method does not parallelize as easily as

Ai
hholzer's method sin
e reusing already 
om-

puted results may require non-trivial 
ommuni
a-

tion between pro
essors.

We are in the pro
ess of analyzing the running

time of our method. Empiri
ally we noti
ed that

the number of re
ursive 
alls when 
omputing T (S)

is always about

p

T (S). So far we have been unable

to prove this or any other non-trivial statement

about the running time.

Of 
ourse determining the true 
omputational


omplexity of plane triangulation 
ounting still re-

mains an open problem.

6. A
knowledgments

We would like to thank Oswin Ai
hholzer for

providing valuable information about the existing

implementations and also for kindly providing the

implementations themselves.

Referen
es

[1℄ O. Ai
holzer, Private Communi
ation.

[2℄ O. Ai
holzer, The path of a triangulation, in Pro
.

15th Symp. on Comp. Geometry 1999, pp. 14{23.

[3℄ http://www.
is.tugraz.at/igi/oai
h/tri-

angulations/
ounting/
ounting.html

[4℄ O. Ai
hholzer, F. Hurtado and M. Noy, On the

Number of Triangulations Every Planar Point Set

Must Have, in Pro
. 13th Annual Canadian Conferen
e

on Computational Geometry CCCG 2001, Waterloo,

Canada, 2001, pp. 13{16. An improved version is to

appear in CGTA.

[5℄ D. Avis and K. Fukuda, Reverse Sear
h for

Enumeration. Dis
rete Appl. Math. 65, 1996, pp. 21{

46.

[6℄ R. Ba
her, Counting triangulations of 
on�gurations.

Manuns
ript,

http://arxiv.org/abs/math.CO/0310206.

[7℄ H. Edelsbrunner, Geometry and Topology for

Mesh Generation. Cambridge University Press,

2001.

[8℄ B. Erkinger, Struktureigens
haften von

Triangulierungen. Master's Thesis, TU-Graz, 1998.

[9℄ J. Gimpl, Enumeration von Triangulierungen.

Master's Thesis, TU-Graz, 2002.

[10℄ F. Hurtado and M. Noy, Counting triangulations of

almost 
onvex polygons. Ars Combinatori
a 45, 1997,

pp. 169{179.

[11℄ V. Kaibel and G.M. Ziegler, Counting Latti
e

Triangulations. To appear in: \British Combinatorial

Surveys" (C. D. Wensley, ed.), Cambridge University

Press.

[12℄ http://www.zib.de/rambau/TOPCOM/

[13℄ D. Randall, G. Rote, F. Santos, and J. Snoeyink,

Counting triangulations and pseudo-triangulations of

wheels, in Pro
. 13th Annual Canadian Conferen
e

on Computational Geometry CCCG 2001, Waterloo,

Canada, 2001, pp. 149{152.

[14℄ F. Santos and R. Seidel, A better upper bound on

the number of triangulations of a planar point set.

Journal of Combinatorial Theory, Series A 102(1),

2003, pp. 186{193.


