2,137 research outputs found

    Counting Triangulations and other Crossing-Free Structures Approximately

    Full text link
    We consider the problem of counting straight-edge triangulations of a given set PP of nn points in the plane. Until very recently it was not known whether the exact number of triangulations of PP can be computed asymptotically faster than by enumerating all triangulations. We now know that the number of triangulations of PP can be computed in O∗(2n)O^{*}(2^{n}) time, which is less than the lower bound of Ω(2.43n)\Omega(2.43^{n}) on the number of triangulations of any point set. In this paper we address the question of whether one can approximately count triangulations in sub-exponential time. We present an algorithm with sub-exponential running time and sub-exponential approximation ratio, that is, denoting by Λ\Lambda the output of our algorithm, and by cnc^{n} the exact number of triangulations of PP, for some positive constant cc, we prove that cn≤Λ≤cn⋅2o(n)c^{n}\leq\Lambda\leq c^{n}\cdot 2^{o(n)}. This is the first algorithm that in sub-exponential time computes a (1+o(1))(1+o(1))-approximation of the base of the number of triangulations, more precisely, c≤Λ1n≤(1+o(1))cc\leq\Lambda^{\frac{1}{n}}\leq(1 + o(1))c. Our algorithm can be adapted to approximately count other crossing-free structures on PP, keeping the quality of approximation and running time intact. In this paper we show how to do this for matchings and spanning trees.Comment: 19 pages, 2 figures. A preliminary version appeared at CCCG 201

    A QPTAS for the Base of the Number of Triangulations of a Planar Point Set

    Full text link
    The number of triangulations of a planar n point set is known to be cnc^n, where the base cc lies between 2.432.43 and 30.30. The fastest known algorithm for counting triangulations of a planar n point set runs in O∗(2n)O^*(2^n) time. The fastest known arbitrarily close approximation algorithm for the base of the number of triangulations of a planar n point set runs in time subexponential in n.n. We present the first quasi-polynomial approximation scheme for the base of the number of triangulations of a planar point set

    Counting a black hole in Lorentzian product triangulations

    Full text link
    We take a step toward a nonperturbative gravitational path integral for black-hole geometries by deriving an expression for the expansion rate of null geodesic congruences in the approach of causal dynamical triangulations. We propose to use the integrated expansion rate in building a quantum horizon finder in the sum over spacetime geometries. It takes the form of a counting formula for various types of discrete building blocks which differ in how they focus and defocus light rays. In the course of the derivation, we introduce the concept of a Lorentzian dynamical triangulation of product type, whose applicability goes beyond that of describing black-hole configurations.Comment: 42 pages, 11 figure

    Entropy of unimodular Lattice Triangulations

    Full text link
    Triangulations are important objects of study in combinatorics, finite element simulations and quantum gravity, where its entropy is crucial for many physical properties. Due to their inherent complex topological structure even the number of possible triangulations is unknown for large systems. We present a novel algorithm for an approximate enumeration which is based on calculations of the density of states using the Wang-Landau flat histogram sampling. For triangulations on two-dimensional integer lattices we achive excellent agreement with known exact numbers of small triangulations as well as an improvement of analytical calculated asymptotics. The entropy density is C=2.196(3)C=2.196(3) consistent with rigorous upper and lower bounds. The presented numerical scheme can easily be applied to other counting and optimization problems.Comment: 6 pages, 7 figure

    Monte Carlo simulations of 4d simplicial quantum gravity

    Get PDF
    Dynamical triangulations of four-dimensional Euclidean quantum gravity give rise to an interesting, numerically accessible model of quantum gravity. We give a simple introduction to the model and discuss two particularly important issues. One is that contrary to recent claims there is strong analytical and numerical evidence for the existence of an exponential bound that makes the partition function well-defined. The other is that there may be an ambiguity in the choice of the measure of the discrete model which could even lead to the existence of different universality classes.Comment: 16 pages, LaTeX, epsf, 4 uuencoded figures; contribution to the JMP special issue on "Quantum Geometry and Diffeomorphism-Invariant Quantum Field Theory

    Singular Vertices and the Triangulation Space of the D-sphere

    Get PDF
    By a sequence of numerical experiments we demonstrate that generic triangulations of the D−D-sphere for D>3D>3 contain one {\it singular} (D−3)−(D-3)-simplex. The mean number of elementary D−D-simplices sharing this simplex increases with the volume of the triangulation according to a simple power law. The lower dimension subsimplices associated with this (D−3)−(D-3)-simplex also show a singular behaviour. Possible consequences for the DT model of four-dimensional quantum gravity are discussed.Comment: 15 pages, 9 figure

    Introducing Quantum Ricci Curvature

    Get PDF
    Motivated by the search for geometric observables in nonperturbative quantum gravity, we define a notion of coarse-grained Ricci curvature. It is based on a particular way of extracting the local Ricci curvature of a smooth Riemannian manifold by comparing the distance between pairs of spheres with that of their centres. The quantum Ricci curvature is designed for use on non-smooth and discrete metric spaces, and to satisfy the key criteria of scalability and computability. We test the prescription on a variety of regular and random piecewise flat spaces, mostly in two dimensions. This enables us to quantify its behaviour for short lattices distances and compare its large-scale behaviour with that of constantly curved model spaces. On the triangulated spaces considered, the quantum Ricci curvature has good averaging properties and reproduces classical characteristics on scales large compared to the discretization scale.Comment: 43 pages, 27 figure

    Dimension and Dimensional Reduction in Quantum Gravity

    Full text link
    If gravity is asymptotically safe, operators will exhibit anomalous scaling at the ultraviolet fixed point in a way that makes the theory effectively two-dimensional. A number of independent lines of evidence, based on different approaches to quantization, indicate a similar short-distance dimensional reduction. I will review the evidence for this behavior, emphasizing the physical question of what one means by `dimension' in a quantum spacetime, and will discuss possible mechanisms that could explain the universality of this phenomenon.Comment: For proceedings of the conference in honor of Martin Reuter: "Quantum Fields---From Fundamental Concepts to Phenomenological Questions"; 14 pages; based in part on my review article arXiv:1705.0541

    Transversal structures on triangulations: a combinatorial study and straight-line drawings

    Get PDF
    This article focuses on a combinatorial structure specific to triangulated plane graphs with quadrangular outer face and no separating triangle, which are called irreducible triangulations. The structure has been introduced by Xin He under the name of regular edge-labelling and consists of two bipolar orientations that are transversal. For this reason, the terminology used here is that of transversal structures. The main results obtained in the article are a bijection between irreducible triangulations and ternary trees, and a straight-line drawing algorithm for irreducible triangulations. For a random irreducible triangulation with nn vertices, the grid size of the drawing is asymptotically with high probability 11n/27×11n/2711n/27\times 11n/27 up to an additive error of \cO(\sqrt{n}). In contrast, the best previously known algorithm for these triangulations only guarantees a grid size (⌈n/2⌉−1)×⌊n/2⌋(\lceil n/2\rceil -1)\times \lfloor n/2\rfloor.Comment: 42 pages, the second version is shorter, focusing on the bijection (with application to counting) and on the graph drawing algorithm. The title has been slightly change
    • …
    corecore