1,215 research outputs found

    Some Computational Problems Related to Pseudo-intents

    Get PDF
    We investigate the computational complexity of several decision, enumeration and counting problems related to pseudo-intents. We show that given a formal context and a set of its pseudo-intents, checking whether this context has an additional pseudo-intent is in conp and it is at least as hard as checking whether a given simple hypergraph is saturated. We also show that recognizing the set of pseudo-intents is also in conp and it is at least as hard as checking whether a given hypergraph is the transversal hypergraph of another given hypergraph. Moreover, we show that if any of these two problems turns out to be conp-hard, then unless p = np, pseudo-intents cannot be enumerated in output polynomial time. We also investigate the complexity of finding subsets of a given Duquenne-Guigues Base from which a given implication follows. We show that checking the existence of such a subset within a specified cardinality bound is np-complete, and counting all such minimal subsets is #p-complete

    Formal Concept Analysis Methods for Description Logics

    Get PDF
    This work presents mainly two contributions to Description Logics (DLs) research by means of Formal Concept Analysis (FCA) methods: supporting bottom-up construction of DL knowledge bases, and completing DL knowledge bases. Its contribution to FCA research is on the computational complexity of computing generators of closed sets

    On the complexity of enumerating pseudo-intents

    Get PDF
    AbstractWe investigate whether the pseudo-intents of a given formal context can efficiently be enumerated. We show that they cannot be enumerated in a specified lexicographic order with polynomial delay unless P=NP. Furthermore we show that if the restriction on the order of enumeration is removed, then the problem becomes at least as hard as enumerating minimal transversals of a given hypergraph. We introduce the notion of minimal pseudo-intents and show that recognizing minimal pseudo-intents is polynomial. Despite their less complicated nature, surprisingly it turns out that minimal pseudo-intents cannot be enumerated in output-polynomial time unless P=NP

    Exploring finite models in the Description Logic ELgfp

    Get PDF
    In a previous ICFCA paper we have shown that, in the Description Logics EL and ELgfp, the set of general concept inclusions holding in a finite model always has a finite basis. In this paper, we address the problem of how to compute this basis efficiently, by adapting methods from formal concept analysis

    Efficient Axiomatization of OWL 2 EL Ontologies from Data by means of Formal Concept Analysis: (Extended Version)

    Get PDF
    We present an FCA-based axiomatization method that produces a complete EL TBox (the terminological part of an OWL 2 EL ontology) from a graph dataset in at most exponential time. We describe technical details that allow for efficient implementation as well as variations that dispense with the computation of extremely large axioms, thereby rendering the approach applicable albeit some completeness is lost. Moreover, we evaluate the prototype on real-world datasets.This is an extended version of an article accepted at AAAI 2024

    Aspects of Nucleon Chiral Perturbation Theory

    Get PDF
    I review recent progress made in the calculation of nucleon properties in the framework of heavy baryon CHPT. Topics include: Compton scattering, πN\pi N scattering, the anatomy of a low-energy constant and the induced pseudoscalar form factor.Comment: plain TeX (macro included), 12pp, lecture delivered at the workshop on "Chiral Dynamics: Theory and Experiments", MIT, July 25-29, 199

    Polynomial growth of concept lattices, canonical bases and generators:: extremal set theory in Formal Concept Analysis

    Get PDF
    We prove that there exist three distinct, comprehensive classes of (formal) contexts with polynomially many concepts. Namely: contexts which are nowhere dense, of bounded breadth or highly convex. Already present in G. Birkhoff's classic monograph is the notion of breadth of a lattice; it equals the number of atoms of a largest boolean suborder. Even though it is natural to define the breadth of a context as being that of its concept lattice, this idea had not been exploited before. We do this and establish many equivalences. Amongst them, it is shown that the breadth of a context equals the size of its largest minimal generator, its largest contranominal-scale subcontext, as well as the Vapnik-Chervonenkis dimension of both its system of extents and of intents. The polynomiality of the aforementioned classes is proven via upper bounds (also known as majorants) for the number of maximal bipartite cliques in bipartite graphs. These are results obtained by various authors in the last decades. The fact that they yield statements about formal contexts is a reward for investigating how two established fields interact, specifically Formal Concept Analysis (FCA) and graph theory. We improve considerably the breadth bound. Such improvement is twofold: besides giving a much tighter expression, we prove that it limits the number of minimal generators. This is strictly more general than upper bounding the quantity of concepts. Indeed, it automatically implies a bound on these, as well as on the number of proper premises. A corollary is that this improved result is a bound for the number of implications in the canonical basis too. With respect to the quantity of concepts, this sharper majorant is shown to be best possible. Such fact is established by constructing contexts whose concept lattices exhibit exactly that many elements. These structures are termed, respectively, extremal contexts and extremal lattices. The usual procedure of taking the standard context allows one to work interchangeably with either one of these two extremal structures. Extremal lattices are equivalently defined as finite lattices which have as many elements as possible, under the condition that they obey two upper limits: one for its number of join-irreducibles, other for its breadth. Subsequently, these structures are characterized in two ways. Our first characterization is done using the lattice perspective. Initially, we construct extremal lattices by the iterated operation of finding smaller, extremal subsemilattices and duplicating their elements. Then, it is shown that every extremal lattice must be obtained through a recursive application of this construction principle. A byproduct of this contribution is that extremal lattices are always meet-distributive. Despite the fact that this approach is revealing, the vicinity of its findings contains unanswered combinatorial questions which are relevant. Most notably, the number of meet-irreducibles of extremal lattices escapes from control when this construction is conducted. Aiming to get a grip on the number of meet-irreducibles, we succeed at proving an alternative characterization of these structures. This second approach is based on implication logic, and exposes an interesting link between number of proper premises, pseudo-extents and concepts. A guiding idea in this scenario is to use implications to construct lattices. It turns out that constructing extremal structures with this method is simpler, in the sense that a recursive application of the construction principle is not needed. Moreover, we obtain with ease a general, explicit formula for the Whitney numbers of extremal lattices. This reveals that they are unimodal, too. Like the first, this second construction method is shown to be characteristic. A particular case of the construction is able to force - with precision - a high number of (in the sense of "exponentially many'') meet-irreducibles. Such occasional explosion of meet-irreducibles motivates a generalization of the notion of extremal lattices. This is done by means of considering a more refined partition of the class of all finite lattices. In this finer-grained setting, each extremal class consists of lattices with bounded breadth, number of join irreducibles and meet-irreducibles as well. The generalized problem of finding the maximum number of concepts reveals itself to be challenging. Instead of attempting to classify these structures completely, we pose questions inspired by Turán's seminal result in extremal combinatorics. Most prominently: do extremal lattices (in this more general sense) have the maximum permitted breadth? We show a general statement in this setting: for every choice of limits (breadth, number of join-irreducibles and meet-irreducibles), we produce some extremal lattice with the maximum permitted breadth. The tools which underpin all the intuitions in this scenario are hypergraphs and exact set covers. In a rather unexpected, but interesting turn of events, we obtain for free a simple and interesting theorem about the general existence of "rich'' subcontexts. Precisely: every context contains an object/attribute pair which, after removed, results in a context with at least half the original number of concepts
    corecore