
Discrete Applied Mathematics 159 (2011) 450–466

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the complexity of enumerating pseudo-intents
Felix Distel a, Barış Sertkaya b,∗

a Theoretical Computer Science, TU Dresden, Nöthnitzer Str. 46 01187 Dresden, Germany
b SAP Research Center Dresden, Chemtnitzer Str. 48 01187 Dresden, Germany

a r t i c l e i n f o

Article history:
Received 16 May 2010
Received in revised form 8 October 2010
Accepted 7 December 2010
Available online 12 January 2011

Keywords:
Formal concept analysis
Implications
Duquenne-Guigues Base
Pseudo-intents
Complexity

a b s t r a c t

We investigate whether the pseudo-intents of a given formal context can efficiently be
enumerated. We show that they cannot be enumerated in a specified lexicographic order
with polynomial delay unless P = NP. Furthermore we show that if the restriction on
the order of enumeration is removed, then the problem becomes at least as hard as enu-
merating minimal transversals of a given hypergraph. We introduce the notion of minimal
pseudo-intents and show that recognizing minimal pseudo-intents is polynomial. Despite
their less complicated nature, surprisingly it turns out that minimal pseudo-intents cannot
be enumerated in output-polynomial time unless P = NP.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Formal Concept Analysis (FCA) [16] is a field of applied mathematics with its roots in order theory, in particular the
theory of complete lattices. FCA emerged in the 1980s from efforts to restructure lattice theory with the purpose of
providing a lattice-theoretic formalization of the notions of a concept and a conceptual hierarchy [42,43]. Since then it has
proven successful in various fields, including data analysis, machine learning and knowledge acquisition. Given a set of
data consisting of objects and some of the properties of these objects, FCA builds an ordered set that reveals the inherent
hierarchical structure and the implicit dependencies that occur between the properties of these objects.

In FCA, data is represented in a binary matrix called a formal context. A formal context is a simple way of specifying
which objects have which attributes. Given a formal context, one way to analyze the data in this formal context is to
compute (a canonical base of) the implications between its attributes. Implications between attributes are dependencies of
the form ‘‘every object that has the attributes mi1, . . . ,mik also has the attributes mj1, . . . ,mjl’’. A formal context can have
many implications, more precisely exponentially many in its size. Moreover, a large fraction of these implications are
redundant, i.e., they can be derived from other implications. Therefore, one is interested in computing a non-redundant
set of implications from which all implications of the formal context can be derived. In [20] Duquenne and Guigues
give the definition of such an implicational base, which is called the Duquenne–Guigues Base of a formal context. The
Duquenne–Guigues Base is not only non-redundant, but it is also of minimum cardinality, i.e., it contains the mininum
number of implications that generate all implications. The Duquenne–Guigues Base of a formal context consists of the
implications whose left hand sides are the so-called pseudo-intents of this formal context. Therefore, it is of crucial
importance to efficiently enumerate pseudo-intents. Kuznetsov shows in [29] that the number of pseudo-intents can be
exponential in the size of the formal context. Given this fact, it is clearly not possible to enumerate them in polynomial time.
Therefore it makes sense to analyze this problem using the criteria introduced for measuring performance of enumeration

∗ Corresponding author. Tel.: +49 35148116225; fax: +49 62277853723.
E-mail addresses: felix@tcs.inf.tu-dresden.de (F. Distel), baris.sertkaya@sap.com (B. Sertkaya).

0166-218X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2010.12.004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81148371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.dam.2010.12.004
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:felix@tcs.inf.tu-dresden.de
mailto:baris.sertkaya@sap.com
http://dx.doi.org/10.1016/j.dam.2010.12.004

F. Distel, B. Sertkaya / Discrete Applied Mathematics 159 (2011) 450–466 451

Table 1
Formal context of quadrilaterals.

Kq Concave Square Rectangle 4 equal sides Parallelogram
1 ×

2
3 × ×

4 × × × ×

5 × ×

6 ×

Fig. 1. Objects of the formal context of quadrilaterals.

problems [24]. Existing algorithms for enumerating pseudo-intents are not efficient w.r.t. these criteria. The most well-
known algorithm next-closure introduced by Ganter in [14,15], besides pseudo-intents always generates the so-called
concept intents as well, which can be exponentially more than the pseudo-intents. That is, the runtime of the algorithm
is not bounded by a polynomial in the size of the output, i.e., it is not output-polynomial. Similarly, the time complexity of
the attribute incremental algorithm introduced in [35] also depends on both the number of pseudo-intents and the number of
concept intents. In the light of our current knowledge, it is not clear whether pseudo-intents can efficiently be enumerated.

The present work aims to answer this question. In Section 4, we investigate whether pseudo-intents can be enumerated
in a specified lexicographic order with polynomial delay, i.e., with at most polynomial time between every pseudo-intent.
It turns out that the first pseudo-intent can be computed in polynomial time, however, it is not possible to enumerate
all of them with polynomial delay, unless p = np. In Section 5, we remove the restriction on the order of enumeration and
investigate whether it is possible to enumerate pseudo-intents in output polynomial time, i.e., time polynomial in the size of
the input formal context and the number of pseudo-intents of this formal context. We show that in this setting enumerating
pseudo-intents is at least as hard as enumerating the minimal transversals of a hypergraph, which is a prominent open
problem. However, whether it is possible to enumerate them in output polynomial time or not, remains open. In Section 6
we restrict our attention to pseudo-intents thatwe callminimal pseudo-intents, which are pseudo-intents that do not contain
another pseudo-intent. We show that minimal pseudo-intents can be recognized in polynomial time, however surprisingly
they cannot be enumerated in output-polynomial time (unless p = np) despite their less complicated nature. Some of our
results have already appeared in [38,4].

2. Preliminaries

2.1. Formal concept analysis

In FCA, one represents data in the form of a formal context, which in its simplest form is a way of specifying which objects
have which attributes:

Definition 1 (Formal Context). A formal context is a triple K = (G,M, I), where G is a set of objects, M is a set of attributes,
and I ⊆ G×M is a relation that associates each object g with the attributes satisfied by g . In order to express that an object
g is in relation I with an attribute m, we write gIm.

A formal context is visualized as a cross table, where the rows represent the objects, and the columns represent the
attributes of the context. A cross in columnm of row g means that object g has attributem, and the absence of a cross means
that g does not have attributem. In the present work we consider only formal contexts with finite attribute sets. Example 2
demonstrates a formal context about quadrilaterals and some of their properties. In the following we are going to refer to a
formal context only as a context for short.

Example 2. Table 1 demonstrates a context about quadrilaterals and their attributes concave, square, rectangle, 4 equal sides,
and parallelogram. The objects of the context are depicted in Fig. 1. For instance the object 3 has the attributes rectangle and
parallelogram, but it does not have the attributes concave, square and 4 equal sides.

Given a context, one can ask for the set of objects sharing a common set of attributes, or dually the set of attributes that
are possessed by a common set of objects. These operations are called derivation operations.

Definition 3 (Derivation Operator). Let K = (G,M, I) be a context. For a set of objects A ⊆ G, we define the set of attributes
that all objects in A have in common as A′

:= {m ∈ M | ∀g ∈ A. gIm}. Similarly, for a set of attributes B ⊆ M , we define the
set of objects that have all attributes in B as B′

:= {g ∈ G | ∀m ∈ B. gIm}.

452 F. Distel, B. Sertkaya / Discrete Applied Mathematics 159 (2011) 450–466

For A1 ⊆ A2 ⊆ G (resp. B1 ⊆ B2 ⊆ M), it is easy to see that

• A′

2 ⊆ A′

1 (resp. B′

2 ⊆ B′

1),
• A1 ⊆ A′′

1 and A′

1 = A′′′

1 (resp. B1 ⊆ B′′

1 and B′

1 = B′′′

1).

As an easy consequence of this, one obtains that double application of the derivation operator, i.e. (·)′′, yields a closure
operator on both G and M . Using this closure operator one can describe a ‘‘natural clustering’’ between the objects and the
attributes of a context.

Definition 4 (Formal Concept). Let K = (G,M, I) be a context. A formal concept of K is a pair (A, B), where A ⊆ G, B ⊆ M
such that A′

= B and B′
= A. A is called the extent, and B is called the intent of (A, B).

In the following, instead of formal concept, we will say concept for short. For every set A ⊆ G, A′ is an intent of some
concept since (A′′, A′) is always a concept. A′′ is the smallest extent containing A. Consequently a set A ⊆ G is an extent if
and only if A = A′′. The same applies to intents. The intersection of any number of extents (respectively intents) is always
an extent (intent). Hence the set of all extents forms a closure system on G, and the set of all intents forms a closure system
onM [16].

Given a set of data as a context, the most common method to analyze it is to find (a canonical base of) the implications
between the attributes of this context. Implications between attributes are dependencies that hold in a given context.

Definition 5 (Implication Between Attributes). Let K = (G,M, I) be a context. An implication between the attributes inM is a
pair of sets L, R ⊆ M , written as L → R. An implication L → R holds in K if every object of K that has all of the attributes in
L also has all of the attributes in R, i.e., if L′

⊆ R′. We denote the set of all implications that hold in K by Imp(K), and call it
the implicational theory of K.

An implication L → R holds in K iff R is contained in the (·)′′-closure of L, i.e., if R ⊆ L′′. A set of implications induces its
own closure operator, which is defined as follows:

Definition 6 (Implicational Closure). Let L be a set of implications. For a set P ⊆ M , the implicational closure of P under L,
denoted by L(P), is the smallest subset Q of M such that P ⊆ Q , and L → R ∈ L and L ⊆ Q imply R ⊆ Q . It is easy to see
that L(·) is indeed a closure operator.

From the view point of logic, computing the implicational closure is just computing consequences in propositional
Horn logic. In fact, the notions we have just defined can easily be reformulated in propositional logic. To this purpose,
we view the attributes as propositional variables. An implication L → R can then be expressed by the formula φL→R :=

r∈R(

ℓ∈L ℓ → r). Let ΓL be the set of formulae corresponding to the set of implications L. Then L(P) = {b ∈ M |

ΓL ∪ {

p∈P p} |H b}, where |H stands for classical propositional consequence. Since the formulae in ΓL are Horn formulae,
the implication closure L(B) can be computed in time linear in the sizes of L and B using methods for deciding satisfiability
of sets of propositional Horn clauses [5]. Alternatively, these formulae can be viewed as expressing functional dependencies
in a relational database, and thus the linearity result can also be obtained by using methods for deriving new functional
dependencies from the given ones [33].

Definition 7 (Implication Base). The implication L → R is said to follow from a set of implications J if R ⊆ J(L). The set of
implications J is called complete for a set of implications L if every implication in L follows from J. It is called sound for L
if every implication that follows from J is contained in L. A set of implications J is called a base for a set of implications L
if it is both sound and complete for L, and no strict subset of J satisfies this property.

For a given context K = (G,M, I), and a set of implications J, if J is sound and complete for Imp(K) then the two closure
operators that we have introduced until now coincide, i.e., B′′

= J(B) for all B ⊆ M . Consequently, given a base J for
Imp(K), any question of the form ‘‘B1 → B2 ∈ Imp(K)?’’ can be answered in time linear in the size of J ∪ {B1 → B2} since
it is equivalent to asking whether B2 ⊆ B′′

1 = J(B1).
The implicational theory of a context can be large. More precisely it can be exponentially large in the size of the

given context [29]. Thus, one is interested in ‘‘small’’ bases generating the implicational theory. There may exist different
implicational bases for a given context, not necessarily all of themwith minimum cardinality. A base J of Imp(K) is called a
minimum base if no other base of Imp(K) has cardinality less than the cardinality of J. In [20] Duquenne and Guigues have
defined such a base for contexts with a finite set of attributes. It is called the Duquenne–Guigues Base or the stem base of a
context. The definition is based on the notion of a pseudo-intent:

Definition 8 (Pseudo-Intent). A set P ⊆ M is called a pseudo-intent of K = (G,M, I) if P ≠ P ′′ and Q ′′ (P holds for every
pseudo-intent Q (P . Equivalently, a set P ⊆ M is called a pseudo-intent if P ≠ P ′′, it is a quasi-intent, and for every
quasi-intent Q (P,Q ′′ (P holds, where a quasi-intent is defined as a set Q ⊆ M that satisfies R′′

⊆ Q or R′′
= Q ′′ for any

R ⊆ Q .

The Duquenne–Guigues Base of a context K consists of the implications that have the pseudo-intents of K as left hand
sides.

F. Distel, B. Sertkaya / Discrete Applied Mathematics 159 (2011) 450–466 453

Definition 9 (Duquenne–Guigues Base). The Duquenne–Guigues Base of a context K is the set of implications {P → P ′′
| P

a pseudo-intent of K}.

It has been shown in [20] that the Duquenne–Guigues Base is sound, complete and it is of minimum cardinality, i.e., it is
a minimum base.

Example 10. For instance the Duquenne–Guigues-Base of the context Kq in Example 2 consists of the following 5
implications:

{concave, parallelogram} → {square, rectangle, 4 equal sides}
{square} → {rectangle, 4 equal sides, parallelogram}

{rectangle} → {parallelogram}

{4 equal sides} → {parallelogram}

{rectangle, 4 equal sides, parallelogram} → {square}.

The pseudo-intents of a context have the following property that we are often going to make use of in the coming proofs.

Proposition 11. Let K = (G,M, I) be a formal context and U ⊆ M a set of attributes. If U is not closed with respect to (·)′′ then
there is a pseudo-intent P ⊆ U such that P ′′

⊈ U.

Proof. In the case where there is a pseudo-intent Q (U such that Q ′′
⊈ U the claim holds trivially. We examine the

remaining case where every pseudo-intent Q that is strictly contained in U satisfies Q ′′
⊆ U . Since U is not closed with

respect to (·)′′ it holds in particular that U ≠ Q ′′ for every pseudo-intent Q (U . Hence Q ′′ (U holds for every pseudo-
intent Q (U . Therefore U is itself a pseudo-intent by Definition 8. We have thus shown that U is a pseudo-intent that
satisfies U ⊆ U and U ′′

⊈ U , i.e. the original claim holds for P = U . �

2.2. Complexity of enumeration problems

As alreadymentioned in Section 1, themain problem thatwe consider in the presentwork is the problem of enumerating
the pseudo-intents of a given context. For analyzing this problemwe are often going to refer to notions from computational
complexity theory [17,36], especially to notions about the complexity of enumeration problems which were introduced
in [24].

In complexity theory we are sometimes interested not only in deciding whether a problem has a solution or not, but also
in enumerating all solutions of this problem. We call such problems enumeration problems. For analyzing the complexity of
enumeration problems where the number of solutions can be exponential in the size of the input, one needs appropriate
measures. One such measure is the notion of polynomial delay [24]. We say that an algorithm that enumerates all solutions
of an enumeration problem runs with polynomial delay if the time until the first solution is generated, and thereafter the
time between every two consecutive solutions is bounded by a polynomial in the size of the input. An example of such an
algorithm is the one given in [40] that enumerates all maximal independent sets of a graph with polynomial delay.

Anothermeasure of performance for enumeration algorithms is to take into account not only the size of the input, but also
the size of the output. We say that an algorithm runs in output polynomial time (or polynomial total time) [24] if it outputs
all solutions in time polynomial in the size of the input and the output. Clearly, every polynomial delay algorithm is also
an output polynomial algorithm, i.e., the notion of polynomial delay is stronger than the notion of output polynomial. An
output polynomial algorithm runs in polynomial time (in the size of the input) if the problem has only polynomially many
solutions.

A more complicated situation is when the solutions are required to be output in some prespecified order such as a
lexicographic order. Obviously, this makes sense only in the case of polynomial delay; since if we are only interested in
an output polynomial algorithm, then we can generate all solutions, sort them, and output them in the required order. A
good example of such a polynomial delay algorithm is the one introduced in [24] that generates maximal independent sets
of a graph in lexicographic order with polynomial delay.

2.3. Hypergraphs

In the coming sections while analyzing our problem of enumerating pseudo-intents, we are going to point out its close
relation to a well-known enumeration problem in another field of mathematics, namely hypergraph theory. Therefore,
we briefly recall basic notions from hypergraphs here. Hypergraph theory [2] is a field of discrete mathematics with
many important applications in both theoretical and applied computer science. In its simplest form a hypergraph is a
generalization of a graph, where edges can connect any number of vertices.

Definition 12. A hypergraphH = (V , E) is a pair consisting of a set of vertices V = {vi | 1 ≤ i ≤ n}, and a set of (hyper)edges
E = {Ej | 1 ≤ j ≤ m} where Ej ⊆ V .

454 F. Distel, B. Sertkaya / Discrete Applied Mathematics 159 (2011) 450–466

Note that in the literature, e.g. [2], the edge set E , as well as the edges Ej are sometimes required to be non-empty.
Moreover, every node is required to occur in an edge, i.e.,

E∈E E = V . For the sake of convenience with respect to the

problems considered in the later sections, in the present work we adopt these requirements.

Definition 13. A set of vertices W ⊆ V is called a transversal of H if it intersects every edge of H , i.e., ∀E ∈ E . E ∩ W ≠ ∅.
A transversal is called minimal if no proper subset of it is a transversal. The set of all minimal transversals of H constitutes
another hypergraph on V called the transversal hypergraph of H , which is denoted by Tr(H).

Outside hypergraph theory, a hypergraph is just a collection of sets, a transversal is called a hitting set, and a minimal
transversal is called a minimal hitting set. In graphs, a transversal is called a vertex cover, and a minimal transversal is called
a minimal vertex cover. The minimal vertex covers of a graph can be efficiently computed. In [40,32] it has been shown that
maximal independent sets of a graph, which are nothing but complements of minimal vertex covers, can be enumerated
with polynomial delay. In [24] this result has been further improved, and it has been shown that maximal independent
sets can be enumerated with polynomial delay even if they are required to be output in a specified lexicographic order.
The problem is more challenging in the hypergraphs setting. Computing minimal transversals, i.e., generating Tr(H), is a
prominent open problem:

Problem: transversal enumeration (trans-enum)
Input: A hypergraph H = (V , E) on a finite set V .
Output: The edges of the transversal hypergraph Tr(H).
The well-known decision problem associated to this computation problem is defined as follows:

Problem: transversal hypergraph (trans-hyp)
Input: Two hypergraphs H = (V , EH) and G = (V , EG).
Question: Is G the transversal hypergraph of H , i.e., does Tr(H) = G hold?
Computational complexity of this problem has now been extensively studied [7,8,13,10,27,26,11,12], and many

important problems from various fields of computer science have been shown to be computationally equivalent to this
problem. Some of these problems are: from relational databases the problem fd-relation equivalence, which is checking
whether a given set of functional dependencies that is in Boyce-Codd Normal Form is a cover of a given relation instance [8],
the problem additional key for relation instances, which is the problem of checking whether an additional key exists for a
given relation instance and a set ofminimal keys thereof [8], and from logic the problemmonotone Boolean duality, which
is checking whether two monotone Boolean functions given by their irredundant disjunctive normal forms are mutually
dual [13]. Other equivalent problems from artificial intelligence can be found in [9,25], problems from data mining can be
found in [21], and a comprehensive survey on related problems from various fields of computer science can be found in [22].
trans-hyp is known to be in conp, however whether it is conp-hard or whether it is solvable in polynomial time has now
been open formore than 20 years. Similarly, it is an open problemwhether trans-enum can be solved in output-polynomial
time. It is known that if trans-hyp turns out to be conp-complete then, unless p = np, trans-enum cannot be solved in
output-polynomial time. In a landmark paper [13] Fredman and Khachiyan proved that monotone Boolean duality, and
thus trans-hyp, can be solved in no(log n) time, which implies that these problems are most likely not conp-hard.

In the following we say that a decision problem Π is trans-hyp-hard if trans-hyp can be reduced to Π by a standard
polynomial transformation. We say that Π is trans-hyp-complete if it is trans-hyp-hard and Π can be reduced to trans-
hyp by a polynomial transformation.

3. Related work and previous results

Pseudo-intents and computational problems related to them have attracted major interest in the FCA community
[14,6,41,29,30,23,37,35,31,38,39,15,1] since their introduction in [20]. Due to the key role they play in FCA, it is of crucial
importance to enumerate pseudo-intents efficiently. It is well known that the number of pseudo-intents of a context
K = (G,M, I) can be exponential in the size of the attribute set, i.e., |M|. This is for instance the case when object intents are
precisely all possible subsets ofM with cardinality |M|/2. However, in this case both the number of objects, i.e., |G|, and the
size of the incidence relation, i.e., |I| are also exponential in |M|. Thus the number of pseudo-intents is polynomial in |I|. For
a long time it was not known whether the number of pseudo-intents can also be exponential in |I|. In [29] Kuznetsov has
shown that this can be the case. He has given an example of a context where the number of pseudo-intents is exponential in
the size of the incidence relation. Moreover, he has also shown that determining the number of pseudo-intents is a #P-hard
problem, i.e., it is intractable. Given the fact that the number of pseudo-intents can be exponential in the size of the context,
it is clearly not possible to enumerate all pseudo-intents in time polynomial in the size of the input context. Therefore it
makes sense to analyze the problem using the measures introduced in Section 2.2.

For enumerating pseudo-intents the most well-known algorithm is the next-closure algorithm [14,15] by Ganter.
Originally, the algorithm was designed to enumerate all closed sets of a given closure operator. It is not specifically tailored
for enumerating pseudo-intents. Given a closure operator, it enumerates all closed sets in a particular lexicographic order
called the lectic order:

F. Distel, B. Sertkaya / Discrete Applied Mathematics 159 (2011) 450–466 455

Table 2
Context where the number of intents is
exponential in the number of pseudo-intents.

K4 1 2 3 4
g1 X X
g2 X X
g3 X X
g4 X X
g5 X X
g6 X X

Definition 14 (Lectic Order). Let M = {m1, . . . ,mn} and fix some linear order m1 < m2 < · · · < mn on M . This order
imposes a linear order on the power set ofM , called the lectic order, which is also denoted by <, and is defined as:

A < B iff ∃mi ∈ B \ A : A ∩ {m1, . . . ,mi−1} = B ∩ {m1, . . . ,mi−1}. �

Obviously, < extends the strict subset order, i.e., A (B implies A < B, and thus ∅ is the smallest andM is the largest set
w.r.t. <.

In Section 2.1 we have mentioned that the set of all intents of a context forms a closure system on M , and the set of all
extents forms a closure system on G. Given the closure operator (·)′′ on the attribute set M (respectively on the object set
G) of a context K = (G,M, I) the next-closure algorithm enumerates all concept intents (respectively extents) of K in the
lectic order. Moreover, the algorithm is efficient since it has polynomial delay in the size of K.

In addition to introducing the next-closure algorithm, in [14,15] Ganter has also shown that the intents of a context
together with its pseudo-intents form another closure system. By using this property and the next-closure algorithm, one
can easily enumerate the intents and the pseudo-intents of a context. The only thing needed is the closure operator for this
new closure system. In order to find the pseudo-intents, whenever the algorithm generates a new closed set, one checks
whether it is an intent. If this is not the case, then it is a pseudo-intent. Recall that checking whether a given set A ⊆ M is
an intent can easily be done in polynomial time by checking whether A = A′′ holds. This way we can enumerate all pseudo-
intents. However, note that this is not an efficient method for enumerating pseudo-intents. It is well-known that a context
can have exponentially many intents. Thus, for such a context, the algorithm might have to generate exponentially many
intents between two consecutive pseudo-intents, i.e., it is not polynomial delay. Even worse, as seen in Example 15, the
number of intents of a context can be exponential in the number of its pseudo-intents. Thus the runtime of the algorithm is
not bounded by a polynomial in the number of pseudo-intents, i.e., it is not even output-polynomial.

Example 15. Consider a context Kn = (Gn,Mn, In), whereMn = {1, . . . , n} and all subsets ofMn with cardinality n − 2 are
object intents. Thus the context has n(n − 1)/2 objects, and n attributes. The pseudo-intents of Kn are exactly those sets of
cardinality n − 1, because they are not closed and all sets of cardinality less than n − 1 are closed i.e., they are intents. That
is there are 2n

− n − 1 intents, while there are only n pseudo-intents. The case for n = 4 is shown in Table 2. �

One other well-known algorithm for enumerating pseudo-intents is the attribute-incremental algorithm introduced by
Obiedkov and Duquenne in [35]. As in the case of the next-closure algorithm, the runtime of this algorithm depends not only
on the number of pseudo-intents, but also on the number of intents. That is this algorithm is not output-polynomial either.

A number of special cases of the problem have been considered in the literature as well. In [23] Janssen and Nourine have
shown that for the case where the concept lattice is meet-semidistributive, there are at most polynomially many pseudo-
intents, and they can be enumerated in polynomial time. For the case where the concept lattice is modular, Wild has shown
in [41] that an optimal base, i.e., a base that not only contains the minimum number of implications, but also contains the
minimumnumber of attributes, can be computed in polynomial time. In [6] Duquenne has shown that for locally distributive
lattices a minimum cardinality base can be computed in polynomial time.

Apart from enumerating them, various other computational aspects of pseudo-intents have been considered in the
literature. In [18] Gély et al. have investigated possible reasons why the number of pseudo-intents can be exponential
in the size of the given context. They have shown that in some cases the exponential blow-up arises from the so-called
P-clone attributes, which are attributes that can be exchanged to give new pseudo-intents. Moreover, they have introduced
an operation that can be used to have a compact representation of pseudo-intents by using the P-clone attributes. In [34]
Medina et al. have presented efficient algorithms for detectingwhether two given attributes are clone attributes. In [19] Gély
and Nourine have worked on closure systems that have the same set of non-unit pseudo-intents, i.e., pseudo-intents that
have cardinality greater than one. They have given a polynomial algorithm that computes the meet-irreducible elements
of a minimal closure system that preserves the implications whose left hand sides are pseudo-intents of this type. In [3]
Colomb and Nourine have pointed out the relation between k-conformal hypergraphs and the keys of a context, where a
key means a set of attributes that is not contained in any object intent. They have also shown that the problem of deciding
whether a key of size larger than a given number is np-complete.

One other important problem on pseudo-intents is of course recognizing them, i.e., deciding whether a given set is a
pseudo-intent of a given context. In [30,31] Kuznetsov and Obiedkov have shown that this problem is in conp. The lower

456 F. Distel, B. Sertkaya / Discrete Applied Mathematics 159 (2011) 450–466

Algorithm 1 Algorithm for finding the lectically first pseudo-intent
1: Input: K = (G,M, I), linear order < onM s.t. m1 < · · · < mn
2: S0 := M , n := |M|

3: for i = 1 to n do
4: if Si−1 \ {mi} contains a pseudo-intent then
5: Si = Si−1 \ {mi}

6: else
7: Si = Si−1
8: end if
9: end for

10: if Sn = M then
11: print K has no pseudo-intents
12: else
13: return Sn
14: end if

bound of this problem has been open for a long time, i.e., it was not known whether it is conp-hard, or polynomial time
solvable. Recently in [1] Babin and Kuznetsov have shown that it is conp-hard.1 In [37] Rudolph has presented a worst case
exponential algorithm for this problem, and given an optimization based on reduced contexts.

4. Complexity of enumerating pseudo-intents in a specified order

In the present section we investigate whether it is possible to efficiently enumerate pseudo-intents in the lectic order
with polynomial delay as in the case of intents. Clearly, in order to be able to do this, we need to be able to compute the
lectically first pseudo-intent in polynomial time. We start with analyzing the complexity of this problem.

4.1. Complexity of computing the lectically first pseudo-intent

Our problem is formally defined as follows:
Problem: lectically first pseudo-intent (first-pi)

Input: A formal context K = (G,M, I), a linear order onM .
Output: The pseudo-intent that is the first one w.r.t. the lectic order induced by the given linear order.
As we shall see next, first-pi can be solved in polynomial time. Our algorithm is based on the following property:

Lemma 16. Let S ⊆ M be a set of attributes. S contains a pseudo-intent iff S or one of the sets S \ {m}, where m ∈ S, is not
closed.

Proof. (⇒) Assume that all the sets S \ {m}, m ∈ S, and S itself are closed. All strict subsets of S can be written as the
intersection of sets of the form S \ {m}. The intersection of closed sets is closed and therefore no strict subset of S can
be a pseudo-intent. Since S is closed S cannot be a pseudo-intent itself. This contradicts the assumption that S contains a
pseudo-intent. Therefore, at least one of the sets S or S \ {m}, m ∈ S, must be closed.

(⇐) Let U be a set of attributes that is not closed. Proposition 11 shows in particular that every set that is not closed
contains a pseudo-intent. Hence, S must contain a pseudo-intent. �

Recall that checking whether a set is closed can be performed in O(|G| |M|) time. Therefore checking whether S contains
a pseudo-intent can be done in O(|G| |M| |S|) time. Algorithm 1 is based on Lemma 16.

Lemma 17 (Correctness of Algorithm 1). Let K = (G,M, I) and a linear order m1 < · · · < mn on M be given.
Algorithm 1 terminates after a polynomial number of steps, and upon termination returns lectically the first pseudo-intent of
K if it has any.

Proof. Termination is clear since n is finite. Let P be lectically the first pseudo-intent. We show by induction that after the
i-th iteration of the for-loop it holds that P ∩ {m1, . . . ,mi} = Si ∩ {m1, . . . ,mi} and P ⊆ Si. This statement is true for
i = 0 (P ∩ ∅ = S0 ∩ ∅). Assume that P ∩ {m1, . . . ,mi−1} = Si−1 ∩ {m1, . . . ,mi−1} and P ⊆ Si−1. We need to show that
mi ∉ P if and only if Si−1 \ {mi} contains a pseudo-intent.

(⇐) Let Q be a pseudo-intent that is contained in Si−1 \ {mi}. If P = Q , obviously P does not contain mi. If P < Q , the
smallest attribute that distinguishes P and Q must be in Q . Thus P cannot containmi.

1 In [39] Sertkaya has given a proof that this problem is trans-hyp-hard. However, later it turned out that there was a mistake in this proof. The second
author would like to thank Mikhail A. Babin for pointing out this error.

F. Distel, B. Sertkaya / Discrete Applied Mathematics 159 (2011) 450–466 457

(⇒) If Si−1 \ {mi} does not contain a pseudo-intent then in particular P ⊈ Si−1 \ {mi}. Since P ⊆ Si−1, it follows that
mi ∈ P . Therefore upon termination, i.e. after the n-th iteration of the for-loop it holds that P = P ∩ M = Sn ∩ M = Sn.

The for-loop iterates at most n times. Since checking whether a set Si−1 \ {mi} contains a pseudo-intent can be done in
O(|G| |M| |Si−1 \ {mi}|) time, the whole algorithm terminates in O(|G| |M|

3) time. �

The result is encouraging, but as we shall see next in Section 4.2 unfortunately it does not mean that pseudo-intents can
efficiently be enumerated in the lectic order. After computing the first one, we cannot efficiently compute the subsequent
ones.

4.2. Complexity of enumeration in the lectic order

In the present section we investigate the complexity of computing the subsequent pseudo-intents after computing
lectically the first one. In order to analyze this computation problem, we consider the following decision problem.
Problem: Lectically first-n pseudo-intents (first-n-pi)

Input: A formal context K = (G,M, I) and pseudo-intents P1, . . . , Pn.
Question: Are P1, . . . , Pn lectically the first n pseudo-intents of K?
As we shall see later, if this problem is not decidable in polynomial time, then pseudo-intents cannot be enumerated in

the lectic order with polynomial delay. We first show that this problem is in conp.

Proposition 18. P1, . . . , Pn are not lectically the first n pseudo-intents of K iff there is a set Q ⊆ M such that
1. Q is lectically smaller than Pj for some j ∈ {1, . . . , n}, and
2. Q is not closed, and
3. for all i ∈ {1, . . . , n} either Pi ⊈ Q or P ′′

i ⊆ Q .

Proof. (⇐) Since Q is not closed, by Proposition 11 there is a pseudo-intent P of K such that P ⊆ Q but P ′′
⊈ Q . Because

of 3 it holds that P ∉ {P1, . . . , Pn}. P is lectically smaller than Pj because Q is lectically smaller than Pj and P ⊆ Q . Thus
P1, . . . , Pn are not the lectically smallest pseudo-intents of K.

(⇒) Let P be a pseudo-intent that is lectically smaller than Pj, for some j ∈ {1, . . . , n} but not contained in {P1, . . . , Pn}.
Then Q = P satisfies the three conditions 1–3. �

Lemma 19 (Containment in conp). first-n-pi is in conp.

Proof. Whether a set Q ⊆ M satisfies conditions 1–3 in Proposition 18 can be checked in time polynomial in the size
of K and P1, . . . , Pn. In order to decide whether P1, . . . , Pn are not lectically the first n pseudo-intents of K one can non-
deterministically guess a subset Q ⊆ M and then check in polynomial time whether it satisfies the conditions 1–3. Hence
the dual problem is in np and thus first-n-pi is in conp. �

Next we show that first-n-pi is conp-hard. For showing hardness, we give a reduction from the well-known conp-hard
problem validity [36]. The validity problem asks whether a given Boolean formula in DNF is valid, i.e., it evaluates to true
for every truth assignment. Recall that validity is closely related to satisfiability, which is the problem of checking whether
a given CNF Boolean formula is satisfiable. A CNF formula ϕ is unsatisfiable if and only if ¬ϕ is valid, which implies that
validity is conp-hard.
Problem: validity

Input: A Boolean formula f given in DNF.
Question: Is f valid?
In order to prove that first-n-pi is at least as hard as validity, we use the following construction: Let an instance

of validity be given with the DNF formula f (p1, . . . , pm) = D1 ∨ · · · ∨ Dk, where Di = (xi1 ∧ · · · ∧ xili) and xir ∈

{p1, . . . , pm} ∪ {¬p1, . . . ,¬pm} for all i ∈ {1, . . . , k} and all r ∈ {1, . . . , li}. From f we construct a formal context
Kf = (G,M, I) as follows: We define the set of attributes M = {α1, . . . , αm, t1, . . . , tm, f1, . . . , fm}, and order the elements
ofM as α1 < · · · < αm < t1 < f1 < · · · < tm < fm.

In order to define the object intents, for every i ∈ {1, . . . , k} we define a set

Ai = M \ {fj | pj occurs in Di as a positive literal} \ {tj | pj occurs in Di as a negative literal} \ {αj | pj occurs in Di}.

Furthermore for every i ∈ {1, . . . , k} and every j ∈ {1, . . . ,m} we define two sets Fij and Tij as Tij = Ai \ {fj, αj}, and
Fij = Ai\{tj, αj}. Using thesewe define the set of objects asG = {u1, . . . , u2 m}∪{gTij | i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}}∪{gFij |

i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}}. The relation I is defined so that every object gTij has all the attributes that are contained in
the set Tij and analogously for gFij . Every singleton set {tj} or {fj} occurs as the intent of some object ur . More formally, we
define:

I = {(u2j−1, tj) | j ∈ {1, . . . ,m}} ∪ {(u2j, fj) | j ∈ {1, . . . ,m}}

∪{(gFij , x) | i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}, x ∈ Fij} ∪ {(gTij , x) | i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}, x ∈ Tij}.

Table 3 demonstrates the context Kf . Note that Kf has 2mk + 2m objects and 3m attributes, so its size is O(m2k + m2).
Finally we define the sets P1, . . . , Pm as: Pj = {tj, fj} for j ∈ {1, . . . ,m}.

458 F. Distel, B. Sertkaya / Discrete Applied Mathematics 159 (2011) 450–466

Table 3
Context Kf constructed from the Boolean DNF formula f .

Kf α1 · · · αm t1 f1 t2 f2 · · · tm fm
u1 X
.
.
. · · ·

u2m X
gT11 · · · T11 · · ·

.

.

.
.
.
.

gTkm · · · Tkm · · ·

gF11 · · · F11 · · ·

.

.

.
.
.
.

gFkm · · · Fkm · · ·

The construction may look complicated at first glance. The basic ideas underlying the construction are as follows:

• Any assignment of truth values φ corresponds naturally to a subset of {t1, f1, . . . , tm, fm}, namely the set

Sφ := {tj | φ(pj) = true} ∪ {fj | φ(pj) = false}. (4.2.1)

• If φ makes Di true then Sφ is a subset of Ai.
• If Sφ is a subset of some set Ai then Sφ is closed.

To prove that first-n-pi is at least as hard as validity, we need to show two things. First, we need to show that Kf and
P1, . . . , Pm indeed constitute an instance of first-n-pi and second, we need to show that f is valid if and only if P1, . . . , Pm
are lectically the firstm pseudo-intents of Kf .

Lemma 20. Kf and P1, . . . , Pm constitute an instance of first-n-pi.

Proof. We have to show that Pj, j ∈ {1, . . . ,m}, are pseudo-intents of Kf . Note that all strict subsets of Pj are closed in Kf
(this is because all singleton subsets {tj} and {fj} are object intents of some ur). To see that αj ∈ P ′′

j and thus P ′′

j ≠ Pj consider
the sets Ai for i ∈ {1, . . . , k}. If Pj = {tj, fj} ⊆ Ai then by definition of Ai, pj does not occur in Di. Therefore αj ∈ Ai. Let
s ∈ {1, . . . ,m} be an index of some set Tis. If Pj ⊆ Tis then Pj ⊆ Ai and j ≠ s. Then αj ∈ Ai holds and because j ≠ s it follows
that αj ∈ Tis = Ai \ {fs, αs}. Analogously αj ∈ Fis if Pj ⊆ Fis. Therefore all objects that have all attributes from Pj also have
αj as an attribute, and thus αj ∈ P ′′

j holds. Therefore P ′′

j ≠ Pj holds. Hence Pj is a pseudo-intent. Hence Kf and P1, . . . , Pm
indeed constitute an instance of first-n-pi. �

Next we show that Kf has a pseudo-intent that is lectically smaller than P1 if and only if f is not valid. For this we first
show some auxiliary lemmas. Let φ be an assignment that maps all variables pj to a truth value in {true, false}. Let Sφ be
defined as in Eq. (4.2.1). Note that Sφ contains exactly one element of {tj, fj} for every j ∈ {1, . . . ,m}.

Lemma 21. There is some i ∈ {1, . . . , k} for which Sφ ⊆ Ai if and only if f (φ(p1), . . . , φ(pm)) = true.

Proof. (⇒) Let φ be such that Sφ ⊆ Ai. Then by definition of Ai it holds that fj ∉ Sφ , and thus φ(pj) = true, for all pj that
occur as positive literals in Di (we have removed fj from Ai). Analogously, φ(pj) = false for all pj that occur as negative
literals. Hence all literals in Di evaluate to true and therefore both Di and the whole formula evaluate to true.

(⇐) Now letφ be an assignment thatmakes f true. Since f is in DNF it evaluates to true iff at least one of the k implicants
evaluates to true. Let Di for some i ∈ {1, . . . , k} be an implicant that evaluates to true. Then φ(pj) = true for all pj that
occur as positive literals in Di and φ(pj) = false for all pj that occur as negative literals in Di. By definition of Ai and Sφ this
implies Sφ ⊆ Ai. �

Lemma 22. If Sφ ⊆ Ai then Sφ can be written as

Sφ =

j∈{1,...,m}

φ(pj)=true

Tij ∩

j∈{1,...,m}

φ(pj)=false

Fij.

Proof. We denote the right hand side of the above equation by R. By definition Sφ does not contain fj if φ(pj) = true. Thus
Sφ ⊆ Ai − {fj, αj} = Tij for all j ∈ {1, . . . ,m} for which φ(pj) = true. Likewise, Sφ ⊆ Ai − {tj, αj} = Fij for all j ∈ {1, . . . ,m}

for which φ(pj) = false. Thus Sφ ⊆ R. To prove the other inclusion consider some x ∈ R. For every j ∈ {1, . . . ,m} it holds
that αj ∉ Fij and αj ∉ Tij. If φ(pj) = true then R ⊆ Tij, otherwise R ⊆ Fij. So in either case αj ∉ R. Therefore x ≠ αj holds
for all j ∈ {1, . . . ,m}. Assume that x = tj for some j. Then φ(pj) = true must hold, for otherwise R would be a subset of
Fij which does not contain tj. Now φ(pj) = true implies x = tj ∈ Sφ . The case x = fj for some j can be treated analogously.
Thus for every x ∈ R it holds that x ∈ Sφ and thus R ⊆ Sφ . Hence Sφ = R. �

F. Distel, B. Sertkaya / Discrete Applied Mathematics 159 (2011) 450–466 459

Lemma 23. f is valid if and only if for all assignments φ the set Sφ is closed in Kf .

Proof. (⇐) Assume that there is an assignment φ that makes f false. From Lemma 21 it follows that Sφ ⊈ Ai for all
i ∈ {1, . . . , k}. But then no object in G has all the attributes in Sφ because every object intent is either a singleton set or
a subset of some Ai. Therefore S ′′

φ = M and thus Sφ is not closed. This contradicts the assumption, and thus f must be valid.
(⇒) Assume that there is some φ for which Sφ is not closed. We know that the intersection of closed sets is also closed.

This implies in particular that Sφ cannot be written as the intersection of object intents. From Lemma 22 it follows that
Sφ ⊈ Ai for all i ∈ {1, . . . , k}. But then Lemma 21 shows that φ makes f false. This is a contradiction to the assumption that
f is valid. Therefore Sφ must be closed for all φ. �

Lemma 24. P1, . . . , Pm are lectically the smallest pseudo-intents of Kf if and only if for all assignments φ the set Sφ is closed
in Kf .

Proof. (⇒) Assume that some Sφ is not closed. By Proposition 11 there is a pseudo-intent P ⊆ Sφ . The definition of Sφ shows
that αj ∉ P and {tj, fj} ⊈ P for all j ∈ {1, . . . ,m}. Therefore, the smallest attribute that distinguishes P and P1 must be either
t1 or f1; both are in P1. Thus, P is lectically smaller than P1. Also P must be different from all the Pj because Sφ does not include
any of the Pj. This is a contradiction to the assumption that P1, . . . , Pm are the lectically smallest pseudo-intents of K.

(⇐) Let Q ⊆ M be a set of attributes that is lectically smaller than P1. Then Q cannot contain any αj because otherwise
Q would be lectically larger than P1. Therefore Q must be a subset of {t1, f1, . . . , tm, fm}. Case 1: There is some j ∈ {1, . . . ,m}

such that Pj ⊆ Q . Then αj ∈ P ′′

j \ Q and thus P ′′

j ⊈ Q . Therefore either Q is equal to Pj or Q is not a pseudo-intent. Case 2:
For all j ∈ {1, . . . ,m} it holds that Pj ⊈ Q . Define

φt(pj) =

true tj ∈ Q
false fj ∈ Q
true otherwise

φf (pj) =

true tj ∈ Q
false fj ∈ Q
false otherwise.

Both φt and φf are well-defined since Q cannot contain both tj and fj for any j. With φt and φf defined as above it holds
that Q = Sφt ∩ Sφf . Since all Sφ are closed the intersection of Sφt and Sφf must also be closed. Therefore Q cannot be a
pseudo-intent. �

Theorem 25 (Hardness of first-n-pi). first-n-pi is conp-hard.
Proof. From Lemmas 23 and 24 it follows that P1, . . . , Pm are lectically the first pseudo-intents of Kf if and only if f is valid.
Since the reduction we have given can be done in polynomial time, and validity is conp-hard, it follows that first-n-pi is
conp-hard. �

The following is an immediate consequence of Lemma 19 and Theorem 25.

Corollary 26. first-n-pi is conp-complete.

What consequence does Theorem 25 have for enumerating pseudo-intents in a given lectic order? In order to understand
this, assume that there is an algorithm A that given a context enumerates its pseudo-intents in the lectic order and with
polynomial delay. This means that there is a polynomial p(|G|, |M|) such that the delay between the computation of two
consequent pseudo-intents is bounded by p(|G|, |M|).

In order to solve first-n-pi for an input context K = (G,M, I) and the sets P1, . . . , Pn, one can construct a new algorithm
A′ that works as follows: A′ lets A run for time n · p(|G|, |M|). Upon termination, A outputs lectically the first n pseudo-
intents of K. A′ compares the output of A with P1, . . . , Pn and returns yes if they are equal, and no otherwise. The runtime
of A′ is bounded by n · p(|G|, |M|), i.e., polynomial in the size of the input. This means that if we had an algorithm that
enumerates the pseudo-intents of a given context in the lectic order with polynomial delay, then using this algorithm we
could solve the conp-hard problem first-n-pi in polynomial time.

Theorem 27. Unless p = np, pseudo-intents cannot be enumerated in the lectic order with polynomial delay.

It turns out that unlike concept intents, pseudo-intents cannot be efficiently enumerated in the lectic order. Having this
result, the next question if of course what happens if we remove the restriction on the order of the output. Does the problem
become easier if we do not require them to be output in the lectic order? We try to answer these questions next.

5. Complexity of enumerating pseudo-intents without order

In the present section we investigate whether pseudo-intents can be enumerated in output-polynomial time. Our
problem is defined as:
Problem: pseudo-intent enumeration (pie)

Input: A formal context K.
Output: The set of pseudo-intents of K.
In order to investigate its complexity, we formalize two decision problems, and analyze their complexities in the next

sections.

460 F. Distel, B. Sertkaya / Discrete Applied Mathematics 159 (2011) 450–466

5.1. Checking the existence of an additional pseudo-intent

Our first decision problem is to decide for a given context and a given set of pseudo-intents of it, whether there is an
additional pseudo-intent. As we will see, it has crucial importance for determining the complexity of pie.
Problem: additional pseudo-intent (api)

Input: A formal context K = (G,M, I), and a set P of pseudo-intents of K, i.e., P ⊆ {P | P ⊆ M, P pseudo-intent of K}.
Question: Is there an additional pseudo-intent, i.e., Q ⊆ M s.t. Q is a pseudo-intent of K and Q ∉ P ?
Proposition 28 says that if this problem cannot be decided in polynomial time then, unless p = np, pie cannot be solved

in output polynomial time. Its proof is based on a generic argument that for instance can be found in [28,38]. Therefore we
are not going to give its proof here.

Proposition 28. If api cannot be decided in polynomial time, then unless p = np, pie cannot be solved in output-polynomial
time.

The proposition shows that determining the complexity of api is indeed crucial for determining the complexity of pie.
We can decide api by using the algorithm in [30]. We first non-deterministically guess a Q ⊆ M , then using this algorithm
check whether Q is a pseudo-intent. However, this gives us an np algorithmwith a conp oracle, i.e., its complexity would be
npconp, since the algorithm in [30] is a conp algorithm. As we will see next, it is actually possible to decide api in np.

Proposition 29. api is in np.

Proof. Given an instance of api with the input K and P , construct the set of implications L = {P → P ′′
| P ∈ P } and

non-deterministically guess a set Q ⊆ M . We can verify in polynomial time that Q → Q ′′ does not follow from L, i.e., there
is a pseudo-intent that is not in P . �

In the following we investigate the lower complexity bound for this problem. We show that it is at least as hard as the
complement of a prominent open problem on hypergraphs. However, whether api is np-hard remains unfortunately open.

We first need to introduce somemore notions fromhypergraphs. A hypergraphH = (V , E) is called saturated [8] if every
subset of V is contained in at least one of the edges of H , or it contains at least one edge of H , i.e., for everyW ⊆ V ,W ⊆ E
holds, or E ⊆ W holds for some E ∈ E . It has been shown in [8] that checking whether a hypergraph is saturated is
conp-complete. There, a special case of the problem, where the given hypergraph is restricted to be simple, has also been
considered. A hypergraph is called simple if no edge contains another edge.
Problem: simple hypergraph saturation (simple-h-sat)

Input: A simple hypergraph H = (V , E)
Question: Is H saturated?
It is not difficult to see that this problem is in conp. However, up to now there has neither been a proof that it is conp-hard,

nor a proof that it is in p. It has been shown in [8] that this problem is under polynomial transformations computationally
equivalent to trans-hyp. In the following we show that api is at least as hard as the complement of simple-h-sat:

Theorem 30. api is cosimple-h-sat-hard.

Proof. Let an instance of simple-h-sat be given by the simple hypergraph H = (V , E), where E = {E1, . . . , En}. From H
we construct the context KH = (G,M, I), where M = V , and G and I are defined as follows: For every Ei, 1 ≤ i ≤ n, we
create the following objects: For every D (Ei such that |D| = |Ei|−1, we create an object with the intent D. Ei has |Ei|-many
such subsets. We denote these objects by gij, where 1 ≤ i ≤ n and 1 ≤ j ≤ |Ei|. In total, G contains

∑n
i=1 |Ei| objects. We

construct P by just taking the edges of H , i.e., P = {E1, . . . , En}. Obviously, both KH and P can be constructed in time
polynomial in the size of H .

Note that KH has the following property: Since H is simple, no edge is contained in another edge, and obviously not in
a strict subset of another edge. Then, for every i ∈ {1, . . . , n}, E ′

i = ∅ and E ′′

i = M holds. That is Ei is not closed. Moreover
every strict subset D (Ei can be written as the intersection of concept intents of the form {gij}′. Hence all strict subsets of
an edge Ei are closed. Thus, the edges Ei are pseudo-intents of KH , which means that KH and P indeed form an instance of
api. We claim that H is not saturated if and only if KH has an additional pseudo-intent.

(⇒) AssumeH is not saturated. Then, there exists aW ⊆ V such that for every i ∈ {1, . . . , n},W ⊈ Ei holds and Ei ⊈ W
holds. Assume without loss of generality that W is minimal with respect to the property W ⊈ Ei for every 1 ≤ i ≤ n. Since
W is not contained in any Ei, and obviously not contained in any strict subset of any Ei,W ′

= ∅ and W ′′
= M . That is W is

not closed. Take any X (W . Since W is minimal, X ⊆ Ei holds for some 1 ≤ i ≤ n. We know that Ei ⊈ W , then X = Ei
cannot hold, thus X satisfies X (Ei. Since all strict subsets of Ei are closed, X is closed. We have shown thatW is not closed
but all its strict subsets are closed, thus W is a pseudo-intent. Moreover, it is an additional pseudo-intent since W ≠ Ej, for
all 1 ≤ j ≤ n.

(⇐) Assume KH has an additional pseudo-intent, i.e., a pseudo-intent Q such that Q ≠ Ei for every 1 ≤ i ≤ n. Since
strict subsets of Ei are closed, Q cannot be a strict subset of any Ei. Thus Q ⊈ Ei for every 1 ≤ i ≤ n. Moreover, by definition
Q contains the closure of strictly smaller pseudo-intents. We know that for every 1 ≤ i ≤ n, Ei is a pseudo-intent, and

F. Distel, B. Sertkaya / Discrete Applied Mathematics 159 (2011) 450–466 461

E ′′

i = M . Since Q does not strictly contain M , it cannot strictly contain any Ei either. Together with Q ≠ Ei, this implies
that Ei ⊈ Q . We have shown that there exists a Q ⊆ V such that Q ⊈ Ei and Ei ⊈ Q for every 1 ≤ i ≤ n, thus H is not
saturated. �

The following is an immediate consequence of Theorem 30 above and Theorem 4.12 in [8]:

Corollary 31. api is cotrans-hyp-hard.

5.2. Recognizing the set of pseudo-intents

The second decision problemwe consider for analyzing pie is deciding whether a given set of pseudo-intents is precisely
the set of all pseudo-intents of a given context.
Problem: pseudo-intents (pis)

Input: A formal context K = (G,M, I), and a set P ⊆ PM .
Question: Is P precisely the set of pseudo-intents of K?
As in the case of api, determining the complexity of pis is important for determining the complexity of pie.

Proposition 32. If pis cannot be decided in polynomial time, then unless p = np, pie cannot be solved in output-polynomial
time.

The proof of Proposition 32 is based on the same generic argument as the proof of Proposition 28. Therefore we here we
leave out the proof, which can be found in [38].

Proposition 33. pis is in conp.

Proof. Given an instance with the input K = (G,M, I) and P , an algorithm that decides pis for this instance first checks
whether the elements of P are pseudo-intents of K. If it encounters an element that is not a pseudo-intent, it terminates
and returns no. If every P ∈ P is a pseudo-intent, then it continues as in the algorithm in the proof of Proposition 29.
The algorithm constructs the set of implications L = {P → P ′′

|P ∈ P } and non-deterministically guesses a set Q ⊆ M .
Obviously the implication Q → Q ′′ holds in K, thus if L is a base for K then Q → Q ′′ follows from L. Then the algorithm
verifies that this is not the case.

It is not difficult to see that this is a conp algorithm. In the first step the algorithm performs polynomially-many checks,
each of which can be done in conp by using the algorithm in [30]. In the second step the algorithm non-deterministically
guesses a Q and in polynomial time verifies that Q → Q ′′ does not follow from L, which means that L is not a base, which
implies that P is not the set of all pseudo-intents of K. This step can be performed in conp as well, thus the whole algorithm
is a conp algorithm. �

For the lower bound of pis, we just use our result on the lower bound of api. In fact it is not difficult to see that pis is at least
as hard as the complement of api. We take an instance of api and create an instance of pis just by taking the same context
and the set of pseudo-intents as the set of subsets of M . This set is precisely the set of pseudo-intents if and only if there
is no additional pseudo-intent. Thus pis is coapi-hard. Since we have shown in Corollary 31 that api is cotrans-hyp-hard, it
follows that pis is trans-hyp-hard.

Corollary 34. pis is trans-hyp-hard.

6. Recognizing and enumerating minimal pseudo-intents

In the present section we restrict our attention to the pseudo-intents that we call minimal pseudo-intents, and analyze
the complexity of recognizing and enumerating them. We say that P is a minimal pseudo-intent of K if P is a pseudo-intent
of K and P does not contain any other pseudo-intent of K. An equivalent definition is the following.

Definition 35 (Minimal Pseudo-Intent). A minimal pseudo-intent of a context is a set P ⊆ M such that

• P is not closed, and
• every strict subset S ⊂ P is closed.

Minimal pseudo-intents play an important role in implicational bases. They occur as premises not only in the
Duquenne–Guigues Base, but also in all other bases of a formal context. In order to see this assume thatL is an implicational
base for the context K, P is a minimal pseudo-intent of K, and L contains no implication with the premise P . Since all strict
subsets of P are closed, there can be no implication C → D in L such that C ⊆ P and D ⊈ P . But then P → P ′′ does not
follow from L, and thus L is not complete, which contradicts our initial assumption that L is an implicational base for K.

Lemma 36. If L is an implication base of a given context K = (G,M, I) and P is a minimal pseudo-intent of K, then L contains
an implication P → D where D ⊆ M.

462 F. Distel, B. Sertkaya / Discrete Applied Mathematics 159 (2011) 450–466

6.1. Recognizing minimal pseudo-intents

Aswehave alreadymentioned in Section 3, the best known algorithm for recognizing pseudo-intents runs in conp[30,31].
In the followingwe show that forminimal pseudo-intents the problem is solvable in polynomial time. Our algorithm is based
on the following simple property.

Lemma 37. All strict subsets of a set P are closed if and only if all sets P \ {m}, where m ∈ P, are closed.

Proof. Assume that all sets of the form P \ {m}, wherem ∈ P , are closed. Take a proper subset S (P . S can be written as the
intersection S =

m∈P\S(P \ {m}). Since the intersection of closed sets is itself closed, S must be closed. The other direction

of the claim is trivial. �

Lemma 37 enables us to recognize a minimal pseudo-intent without testing all of its proper subsets for closedness. In
order to check whether a given set P is a minimal pseudo-intent it suffices to check whether the subsets P \ {m}, where
m ∈ P , are closed, and P itself is not closed. Since this requires only polynomially many closedness tests and each such test
is polynomial, the whole test can be done in polynomial time.

6.2. Enumerating minimal pseudo-intents without order

In Section 5wehave shown that enumerating pseudo-intents of a contextwithout order is at least as hard as enumerating
minimal transversals of a hypergraph. In the present section we investigate the complexity of this enumeration problem for
minimal pseudo-intents. Interestingly, it turns out that this problem is not solvable in output polynomial time unless p= np.

Like in Section 5, we define a decision problem associated to the enumeration problem we are going to investigate.
Problem: All minimal pseudo-intents (all-mpi)

Input: A formal context K = (G,M, I) and a set of minimal pseudo-intents P .
Question: Is P the set of all minimal pseudo-intents of K?
It turns out that this problem is conp-complete.

Theorem 38. all-mpi is conp-complete.

Proof. We prove that the problem is in conp. By Lemma 37 we know that testing whether a set Q ⊆ M is a minimal
pseudo-intent can be done in polynomial time. In order to decide whether P contains all minimal pseudo-intents of K, one
can non-deterministically guess a set Q ⊆ M such that Q ∉ P and then check in polynomial time whether it is a minimal
pseudo-intent. Thus the dual problem of all-mpi can be decided in non-deterministic polynomial time. Therefore all-mpi is
in conp.

For showing hardness we use the same construction as in the proof of Theorem 25. Given an instance of validity with
the propositional formula f in DNF, we construct the same context Kf shown in Table 3. Additionally, we construct
P = {P1, . . . , P2m} by defining P1 = {t1, f1}, . . . , Pm = {tm, fm}, Pm+1 = {α1}, . . . , P2m = {αm}. In the proof of Theorem 25
we have already shown that P1, . . . , Pm are minimal pseudo-intents. Let g ∈ G be an object and let j ∈ {1, . . . ,m}. By
construction of Kf the attribute αj is contained in g ′ if and only if {tj, fj} ⊆ g ′. Therefore {tj, fj} is contained in {αj}

′′, i.e., {αj}

is not closed. Since the only proper subset of a set {αj}, namely the empty set, is closed in Kf , Pm+1 = {α1}, . . . , P2m = {αm}

are minimal pseudo-intents. Kf and P constructed this way indeed form an instance of all-mpi. We claim that P contains
all minimal pseudo-intents of Kf if and only if f is valid. Using Lemma 23 we can reformulate this claim to the following:
P1, . . . , P2m are all minimal pseudo-intents of K iff for all assignments φ the set Sφ is closed in K.

(⇒) Assume that some Sφ is not closed. Then Sφ must contain a minimal pseudo-intent P ⊆ Sφ . The definition of Sφ

(Eq. (4.2.1)) shows that Sφ does not contain αj, and it contains either tj or fj but not both, for all j ∈ {1, . . . ,m}. Thus Sφ does
not contain any of the P1, . . . , P2m. Therefore the minimal pseudo-intent P must be an additional minimal pseudo-intent.
This contradicts the assumption that Sφ is not closed, and therefore Sφ must be closed.

(⇐) Assume that there is an additional minimal pseudo-intent Q ⊆ M , i.e. Q is a minimal pseudo-intent such that
Q ≠ Pi for all j ∈ {1, . . . , 2m}. If Q contains some αj then Q cannot be a minimal pseudo-intent. Therefore Q is a subset of
{t1, f1, . . . , tm, fm}. If Q contains {t1, f1} then Q cannot be a minimal pseudo-intent either. Hence the smallest attribute that
distinguishes Q and P1 = {t1, f1} is contained in P1, i.e. Q is lectically smaller than P1. This contradicts Lemma 24, which
states that such a pseudo-intent Q cannot exist if all sets Sφ are closed.

We have now shown that P1, . . . , P2m are all minimal pseudo-intents of Kf iff for all assignments φ the set Sφ is closed
in Kf . Together with Lemma 23 this implies that P1, . . . , P2m are all minimal pseudo-intents of Kf iff f is valid, and thus
all-mpi is conp-hard. �

Theorem 38 implies that our original enumeration problem, namely enumerating minimal pseudo-intents, cannot be
solved in output polynomial time. The proof of this claim is based on the general argument used also in the proof of
Proposition 28.

Corollary 39. The set of all minimal pseudo-intents of a context K cannot be computed in output-polynomial time unless p = np.

F. Distel, B. Sertkaya / Discrete Applied Mathematics 159 (2011) 450–466 463

Table 4
Context K∗

f .

x y α1 · · · αm t1 f1 · · · tm fm
u1 X
.
.
. · · ·

u2m X
gT11 X · · · T11 · · ·

.

.

.
.
.
.

.

.

.

gTkm X · · · Tkm · · ·

gF11 X · · · F11 · · ·

.

.

.
.
.
.

.

.

.

gFkm X · · · Fkm · · ·

gT01 · · · T01 · · ·

.

.

.
.
.
.

gT0m · · · T0m · · ·

gF01 · · · F01 · · ·

.

.

.
.
.
.

gF0m · · · F0m · · ·

At first glance one might think that this result also holds for enumerating all pseudo-intents, and not only the minimal
ones. However, a closer look reveals that this is unfortunately not the case. It would be the case if the total number of pseudo-
intents of a context were bounded by a polynomial in the number of its minimal pseudo-intents. Currently we do not know
whether this holds but we conjecture it does not. It is definitely an interesting point to investigate in the future.

6.3. Computing the lectically last minimal pseudo-intent

Wehave seen that it is possible to find the lectically first pseudo-intent in polynomial time. Since the lectic order extends
the subset order, the lectically first pseudo-intent of a context is also the lectically first minimal pseudo-intent of a context.
A related problem is finding the lectically last pseudo-intent. We cannot say anything about the complexity of this problem
for pseudo-intents in general. However, we can modify the context from Table 3 to yield a reduction for the corresponding
problem for minimal pseudo-intents, or more precisely the decision version of it:

Problem: Lectically last minimal pseudo-intent (last-mpi)
Input: A formal context K = (G,M, I) and a pseudo-intent P .
Question: Is P the lectically last minimal pseudo-intent of K?
It is not hard to see that last-mpi is in conp. One can non-deterministically guess a set of attributes A ⊆ M and check in

polynomial time whether A is lectically larger than P , and by using Lemma 37 whether it is a minimal pseudo-intent. We
shall see that last-mpi is closely related to the following decision problem.

Problem: Element of a minimal pseudo-intent (ϵ-mpi)
Input: A formal context K = (G,M, I) and an attribute a ∈ M .
Question: Is there a minimal pseudo-intent P of K such that a ∈ P?
ϵ-mpi can be decided in non-deterministic polynomial time. One can non-deterministically guess a set of attributes

A ⊆ M and check whether a ∈ A holds and A is a minimal pseudo-intent.

Lemma 40. last-mpi is in conp and ϵ-mpi is in np.

In order to show hardness for these two related problems, we again use a reduction from validity. Let f be a formula
f (p1, . . . , pm) = D1 ∨ · · · ∨ Dk, where Di = (xi1 ∧ · · · ∧ xili) and xir ∈ {p1, . . . , pm} ∪ {¬p1, . . . ,¬pm} for all i ∈ {1, . . . , k}
and all r ∈ {1, . . . , li}. We construct a context K∗

f = (G,M∗, I∗) (Table 4) which is obtained from Kf = (G,M, I) (Table 3)
by adding attributes x and y to M and adding objects gT0j and gF0j for all j ∈ {1, . . . ,m}. The incidence relation I∗ of K∗

f is
obtained from I by adding the pairs (x, gTij) and (x, gFij) for all i ∈ {1, . . . , k} and j ∈ {1, . . . ,m}. For all j ∈ {1, . . . ,m} the
object intents of the new objects gT0j and gF0j are defined to be g I∗

T0j
= T0j and g I∗

T0j
= F0j, respectively, where

T0j = M \ {x, y} \ {αj, fj},
F0j = M \ {x, y} \ {αj, tj}.

464 F. Distel, B. Sertkaya / Discrete Applied Mathematics 159 (2011) 450–466

Proposition 41. Let φ be any assignment of truth values to the propositional variables p1, . . . , pm, and Sφ be defined as in
Eq. (4.2.1). Then all subsets R ⊆ Sφ are closed in K∗

f . Furthermore, for all i ∈ {1, . . . , k} and for every set Q ⊆ Sφ ∩ Ai the
set {x} ∪ Q is closed in K∗

f .

Proof. R can be written as

R =

j∈{1,...,m}

fj∉R

T0j ∩

j∈{1,...,m}

tj∉R

F0j =

j∈{1,...,m}

fj∉R

g ′

T0j ∩

j∈{1,...,m}

tj∉R

g ′

F0j ,

while Q can be written as

Q =

j∈{1,...,m}

fj∉Q

Tij ∩

j∈{1,...,m}

tj∉Q

Fij

and thus

{x} ∪ Q =

j∈{1,...,m}

fj∉Q

{x} ∪ Tij ∩

j∈{1,...,m}

tj∉Q

{x} ∪ Fij

=

j∈{1,...,m}

fj∉Q

g ′

Tij ∩

j∈{1,...,m}

tj∉Q

g ′

Fij .

Therefore both R and {x} ∪ Q can be written as the intersection of concept intents and therefore they are closed. �

Lemma 42. K∗

f has a minimal pseudo-intent that contains x iff f is not valid.

Proof. (⇐) If f is not valid then there is a truth assignment φ that makes f false. Then by Lemma 21, Sφ ⊈ Ai holds for all
i ∈ {1, . . . , k}. Let Q be a minimal subset of Sφ such that Q ⊈ Ai still holds for all i ∈ {1, . . . , k}. Define P = {x} ∪ Q . P is not
closed (it is not contained in any concept intent), but every strict subset of P is closed because of Proposition 41. Therefore
P is a minimal pseudo-intent that contains x.

(⇒) Using the same arguments as in the proofs of Lemma 20 and Theorem 38we can show that {t1, f1}, . . . , {tm, fm} and
{α1}, . . . , {αm} are minimal pseudo-intents. Furthermore, it holds that {y}′′ = M∗ and ∅

′′
= ∅. Therefore {y} is a minimal

pseudo-intent, too. IfK∗

f has aminimal pseudo-intent P that contains x then by definition P does not contain another pseudo-
intent. Thus P = {x} ∪ Q , where Q ⊆ Sφ for some assignment φ. Since P is a minimal pseudo-intent it cannot be closed. By
Proposition 41 this implies that Q is not a subset of Ai for 1 ≤ i ≤ k. Thus for all 1 ≤ i ≤ k it holds that S ⊈ Ai. It follows
from Lemma 21 that Sφ makes f false, i.e., f is not valid. �

We need the following proposition for completing the proof of hardness of last-mpi.

Corollary 43. Let the order on the attributes be x < y < α1 < · · · < αm < t1 < f1 < · · · < tm < fm. {y} is the lectically
greatest minimal pseudo-intent of K∗

f iff f is valid.

Proof. {y} is the lectically greatest minimal pseudo-intent iff there is no minimal pseudo-intent that contains {x}. The rest
follows from Lemma 42. �

Theorem 44. last-mpi is conp-complete and ϵ-mpi is np-complete.

Proof. Hardness of ϵ-mpi follows from Lemma 42, and hardness of last-mpi follows from Lemma 42 and Corollary 43.
Together with Lemma 40 this shows completeness for ϵ-mpi and last-mpi. �

7. Concluding remarks and future work

We have investigated the computational complexity of the problem of enumerating the pseudo-intents of a given formal
context, which we have called pie. We have first considered enumeration in a specified lexicographic order, and shown that
lexicographically the first pseudo-intent can be computed in polynomial time (Algorithm 1). In order to investigate whether
the remaining ones can efficiently be enumerated, we have formulated a decision problem, namely first-n-pi, which is the
problem of checking whether n given pseudo-intents are lexicographically the first n ones. It turned out that this problem
is conp-complete (Corollary 26), which implies that unless p = np all pseudo-intents of a context cannot be enumerated in
lexicographic order with polynomial delay (Theorem 27).

Later we have removed the restriction on the order of output, and investigated whether in this setting the problem can
be solved in output polynomial time. To this purpose we have formulated two decision problems, namely api and pis, whose
complexity is crucial for determining the complexity of pie. We have shown that api is in np (Proposition 29), and pis is in
conp (Proposition 33). However we were not able to find matching lower bounds for these problems. We could show that
api is cosimple-h-sat-hard (Theorem 30), and pis is trans-hyp-hard (Corollary 34). Some interesting consequences of these
results can be summed up as follows:

F. Distel, B. Sertkaya / Discrete Applied Mathematics 159 (2011) 450–466 465

• If any of the problems api, or pis turns out to be intractable, then unless p = np, there cannot be an algorithm that solves
pie in output polynomial time (Propositions 28 and 32).

• Showing that any of the problems api or pis is polynomial implies that the open problems trans-hyp and simple-h-sat are
also polynomial (Theorem 30, Corollary 34, [8]).

• Even if trans-hyp and simple-h-sat turn out to be polynomial, api and pis can still be intractable, thus it can still be the
case that pie is not solvable in output polynomial time.

• Even if api and pis turn out to be polynomial, it can still be the case that pie is not solvable in output polynomial time
since Propositions 28 and 32 show only the other direction of the claim.

As future work in this direction, we are going to work on determining the exact complexity of the problems api and pis.
For api, we are going to investigate whether the hardness result [8] on hypergraph saturation for arbitrary graphs carries
over to api on arbitrary formal contexts. For pis, we are going to investigate the types of formal context where pis and trans-
hyp (and thus pie and trans-enum) become computationally equivalent problems, and find out whether this type of formal
contexts are natural in some applications, and how often they occur in practice.

In the present work we have also introduced the notion of a minimal pseudo-intent, which is a minimal pseudo-
intent that does not contain any other pseudo-intents. We have shown that minimal pseudo-intents can be recognized
in polynomial time (Section 6.1). In order to investigate whether minimal pseudo-intents can efficiently be enumerated,
we have formulated a decision problem, namely all-mpi, which is the problem of checking whether a given set of minimal
pseudo-intents are the set of all minimal pseudo-intents of a given context. Surprisingly it turned out that this problem
is conp-complete (Theorem 38), which implies that unless p = np all minimal pseudo-intents of a context cannot be
enumerated in output-polynomial time (Corollary 39). We have also shown that the problem of deciding whether a given
pseudo-intent is lexicographically the last minimal pseudo-intent, namely last-mpi, is conp-complete (Theorem 44).

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments that helped us to improve an earlier
version of this work.

References

[1] M.A. Babin, S. Kuznetsov, Recognizing pseudo-intents is coNP-complete, in: M. Kryszkiewicz, S. Obiedkov (Eds.), Proceedings of the 2010 International
Conference on Concept Lattices and their Applications, CLA 2010, CEUR Workshop Proceedings, vol. 672, 2010, pp. 294–301.

[2] C. Berge, Hypergraphs, Elsevier Science Publishers B.V., North Holland, 1989.
[3] P. Colomb, L. Nourine, About keys of formal context and conformal hypergraph, in: R.Medina, S.A. Obiedkov (Eds.), Proceedings of the 6th International

Conference on Formal Concept Analysis, ICFCA 2008, in: Lecture Notes in Computer Science, vol. 4933, Springer-Verlag, 2008, pp. 140–149.
[4] F. Distel, Hardness of enumerating pseudo-intents in the lectic order, in: L. Kwuida, B. Sertkaya (Eds.), Proceedings of the 8th International Conference

on Formal Concept Analysis, ICFCA 2010, in: Lecture Notes in Artificial Intelligence, vol. 5986, Springer-Verlag, 2010, pp. 124–137.
[5] W.F. Dowling, J.H. Gallier, Linear-time algorithms for testing the satisfiability of propositional Horn formulae, Journal of Logic Programming 3 (1984)

267–284.
[6] V. Duquenne, The core of finite lattices, Discrete Mathematics 88 (1991) 133–147.
[7] T. Eiter, G. Gottlob, Identifying the minimal transversals of a hypergraph and related problems, Technical Report CD-TR 91/16, Christian Doppler

Laboratory for Expert Systems, TU Vienna, 1991.
[8] T. Eiter, G. Gottlob, Identifying the minimal transversals of a hypergraph and related problems, SIAM Journal on Computing 24 (6) (1995) 1278–1304.
[9] T. Eiter, G. Gottlob, Hypergraph transversal computation and related problems in logic and AI, in: S. Flesca, S. Greco, N. Leone, G. Ianni (Eds.),

Proceedings of the European Conference on Logics in Artificial Intelligence, JELIA 2002, in: Lecture Notes in Computer Science, vol. 2424, Springer-
Verlag, 2002, pp. 549–564.

[10] T. Eiter, G. Gottlob, K. Makino, New results on monotone dualization and generating hypergraph transversals, in: Proceedings on 34th Annual ACM
Symposium on Theory of Computing, 2002, pp. 14–22.

[11] T. Eiter, G. Gottlob, K. Makino, New results on monotone dualization and generating hypergraph transversals, SIAM Journal on Computing 32 (2)
(2003) 514–537.

[12] T. Eiter, K. Makino, G. Gottlob, Computational aspects of monotone dualization: a brief survey, Discrete Applied Mathematics 156 (11) (2008)
2035–2049.

[13] M.L. Fredman, L. Khachiyan, On the complexity of dualization of monotone disjunctive normal forms, Journal of Algorithms 21 (3) (1996) 618–628.
[14] B. Ganter, Two basic algorithms in concept analysis, Technical Report Preprint-Nr. 831, TechnischeHochschule Darmstadt, Darmstadt, Germany, 1984.
[15] B. Ganter, Two basic algorithms in concept analysis, in: L. Kwuida, B. Sertkaya (Eds.), Proceedings of the 8th International Conference on Formal

Concept Analysis, ICFCA 2010, in: Lecture Notes in Artificial Intelligence, vol. 5986, Springer-Verlag, 2010, pp. 329–359. Reprint of [14].
[16] B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations, Springer-Verlag, Berlin, Germany, 1999.
[17] M.R. Garey, D.S. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness, W.H. Freeman & Company, New York, NY, USA,

1990.
[18] A. Gély, R. Medina, L. Nourine, Y. Renaud, Uncovering and reducing hidden combinatorics in Guigues-Duquenne bases, in: B. Ganter, R. Godin (Eds.),

Proceedings of the 3rd International Conference on Formal Concept Analysis, ICFCA 2005, in: Lecture Notes in Computer Science, vol. 3403, Springer-
Verlag, 2005, pp. 235–248.

[19] A. Gély, L. Nourine, About the family of closure systems preserving non-unit implications in the Guigues-Duquenne base, in: R. Missaoui, J. Schmid
(Eds.), Proceedings of the 4th International Conference on Formal Concept Analysis, ICFCA 2006, in: Lecture Notes in Computer Science, vol. 3874,
Springer-Verlag, 2006, pp. 191–204.

[20] J.-L. Guigues, V. Duquenne, Familles minimales d’implications informatives resultant d’un tableau de données binaries, Mathématiques, Informatique
et Sciences Humaines 95 (1986) 5–18.

[21] D. Gunopulos, R. Khardon, H. Mannila, H. Toivonen, Data mining, hypergraph transversals, and machine learning, in: Proceedings of the Sixteenth
Symposium on Principles of Database Systems, PODS 97, 1997, pp. 209–216.

[22] M. Hagen, Algorithmic and computational complexity issues of Monet, Ph.D. Dissertation, Institut für Informatik, Friedrich-Schiller-Universität Jena,
2008.

466 F. Distel, B. Sertkaya / Discrete Applied Mathematics 159 (2011) 450–466

[23] P. Janssen, L. Nourine, Minimum implicational basis for meet-semidistributive lattices, Information Processing Letters 99 (5) (2006) 199–202.
[24] D.S. Johnson, M. Yannakakis, C.H. Papadimitriou, On generating all maximal independent sets, Information Processing Letters 27 (3) (1988) 119–123.
[25] D.J. Kavvadias, C.H. Papadimitriou, M. Sideri, On Horn envelopes and hypergraph transversals, in: K.-W. Ng, P. Raghavan, N.V. Balasubramanian,

F.Y.L. Chin (Eds.), 4th International Symposium on Algorithms and Computation, ISAAC’93, in: Lecture Notes in Computer Science, vol. 762, Springer-
Verlag, 1993, pp. 399–405.

[26] D.J. Kavvadias, E.C. Stavropoulos, Checking monotone Boolean duality with limited nondeterminism, Technical Report TR2003/07/02, Computer
Technology Institute, Patras, Greece, 2003.

[27] D.J. Kavvadias, E.C. Stavropoulos, Monotone Boolean dualization is in conp[log2 n], Information Processing Letters 85 (1) (2003) 1–6.
[28] L.G. Khachiyan, E. Boros, K.M. Elbassioni, V. Gurvich, K. Makino, On the complexity of some enumeration problems for matroids, SIAM Journal of

Discrete Mathematics 19 (4) (2005) 966–984.
[29] S.O. Kuznetsov, On the intractability of computing the Duquenne–Guigues base, Journal of Universal Computer Science 10 (8) (2004) 927–933.
[30] S.O. Kuznetsov, S.A. Obiedkov, Counting pseudo-intents and #P-completeness, in: R. Missaoui, J. Schmid (Eds.), Proceedings of the 4th International

Conference on Formal Concept Analysis, ICFCA 2006, in: Lecture Notes in Computer Science, vol. 3874, Springer-Verlag, Dresden, Germany, 2006,
pp. 306–308.

[31] S.O. Kuznetsov, S.A. Obiedkov, Some decision and counting problems of the Duquenne–Guigues basis of implications, Discrete Applied Mathematics
156 (11) (2008) 1994–2003.

[32] E. Lawler, J. Lenstra, A.R. Kan, Generating all maximal independent sets: NP-hardness and polynomial time algorithms, SIAM Journal on Computing 9
(1980) 558–565.

[33] D. Maier, The Theory of Relational Databases, Computer Science Press, Maryland, 1983.
[34] R.Medina, C. Noyer, O. Raynauld, Efficient algorithms for clone items detection, in: R. Belohlavek, V. Snasel (Eds.), Proceedings of the 2005 International

Workshop on Concept Lattices and their Applications, CLA 2005, in: CEUR Workshop Proceedings, vol. 162, 2005.
[35] S.A. Obiedkov, V. Duquenne, Attribute-incremental construction of the canonical implication basis, Annals of Mathematics and Artificial Intelligence

49 (1–4) (2007) 77–99.
[36] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, Massachusetts, 1994.
[37] S. Rudolph, Somenotes on pseudo-closed sets, in: S.O. Kuznetsov, S. Schmidt (Eds.), Proceedings of the 5th International Conference on Formal Concept

Analysis, ICFCA 2007, in: Lecture Notes in Computer Science, vol. 4390, Springer-Verlag, 2007, pp. 151–165.
[38] B. Sertkaya, Some computational problems related to pseudo-intents, in: S. Ferré, S. Rudolph (Eds.), Proceedings of the 7th International Conference

on Formal Concept Analysis, ICFCA 2009, in: Lecture Notes in Artificial Intelligence, vol. 5548, Springer-Verlag, 2009, pp. 130–145.
[39] B. Sertkaya, Towards the complexity of recognizing pseudo-intents, in: F. Dau, S. Rudolph (Eds.), Proceedings of the 17th International Conference on

Conceptual Structures, ICCS 2009, in: Lecture Notes in Computer Science, Springer-Verlag, 2009.
[40] S. Tsukiyama, M. Ide, H. Ariyoshi, I. Shirakawa, A new algorithm for generating all maximal independent sets, SIAM Journal on Computing 6 (1977)

505–517.
[41] M. Wild, Optimal implicational bases for finite modular lattices, Quaestiones Mathematicae 23 (2000) 153–161.
[42] R. Wille, Restructuring lattice theory: an approach based on hierarchies of concepts, in: I. Rival (Ed.), Ordered Sets, Reidel, Dordrecht, Boston, 1982,

pp. 445–470.
[43] R.Wille, Restructuring lattice theory: an approach based on hierarchies of concepts, in: S. Ferré, S. Rudolph (Eds.), Proceedings of the 7th International

Conference on Formal Concept Analysis, ICFCA 2009, in: Lecture Notes in Artificial Intelligence, vol. 5548, Springer-Verlag, 2009, Reprint of [42].

	On the complexity of enumerating pseudo-intents
	Introduction
	Preliminaries
	Formal concept analysis
	Complexity of enumeration problems
	Hypergraphs

	Related work and previous results
	Complexity of enumerating pseudo-intents in a specified order
	Complexity of computing the lectically first pseudo-intent
	Complexity of enumeration in the lectic order

	Complexity of enumerating pseudo-intents without order
	Checking the existence of an additional pseudo-intent
	Recognizing the set of pseudo-intents

	Recognizing and enumerating minimal pseudo-intents
	Recognizing minimal pseudo-intents
	Enumerating minimal pseudo-intents without order
	Computing the lectically last minimal pseudo-intent

	Concluding remarks and future work
	Acknowledgements
	References

