22 research outputs found

    Counting independent sets in hypergraphs

    Full text link
    Let GG be a triangle-free graph with nn vertices and average degree tt. We show that GG contains at least e(1n1/12)12ntlnt(12lnt1) e^{(1-n^{-1/12})\frac{1}{2}\frac{n}{t}\ln t (\frac{1}{2}\ln t-1)} independent sets. This improves a recent result of the first and third authors \cite{countingind}. In particular, it implies that as nn \to \infty, every triangle-free graph on nn vertices has at least e(c1o(1))nlnne^{(c_1-o(1)) \sqrt{n} \ln n} independent sets, where c1=ln2/4=0.208138..c_1 = \sqrt{\ln 2}/4 = 0.208138... Further, we show that for all nn, there exists a triangle-free graph with nn vertices which has at most e(c2+o(1))nlnne^{(c_2+o(1))\sqrt{n}\ln n} independent sets, where c2=1+ln2=1.693147..c_2 = 1+\ln 2 = 1.693147... This disproves a conjecture from \cite{countingind}. Let HH be a (k+1)(k+1)-uniform linear hypergraph with nn vertices and average degree tt. We also show that there exists a constant ckc_k such that the number of independent sets in HH is at least ecknt1/kln1+1/kt. e^{c_{k} \frac{n}{t^{1/k}}\ln^{1+1/k}{t}}. This is tight apart from the constant ckc_k and generalizes a result of Duke, Lefmann, and R\"odl \cite{uncrowdedrodl}, which guarantees the existence of an independent set of size Ω(nt1/kln1/kt)\Omega(\frac{n}{t^{1/k}} \ln^{1/k}t). Both of our lower bounds follow from a more general statement, which applies to hereditary properties of hypergraphs

    The complexity of approximating bounded-degree Boolean #CSP

    Get PDF
    AbstractThe degree of a CSP instance is the maximum number of times that any variable appears in the scopes of constraints. We consider the approximate counting problem for Boolean CSP with bounded-degree instances, for constraint languages containing the two unary constant relations {0} and {1}. When the maximum allowed degree is large enough (at least 6) we obtain a complete classification of the complexity of this problem. It is exactly solvable in polynomial time if every relation in the constraint language is affine. It is equivalent to the problem of approximately counting independent sets in bipartite graphs if every relation can be expressed as conjunctions of {0}, {1} and binary implication. Otherwise, there is no FPRAS unless NP=RP. For lower degree bounds, additional cases arise, where the complexity is related to the complexity of approximately counting independent sets in hypergraphs

    Positive independence densities of finite rank countable hypergraphs are achieved by finite hypergraphs

    Full text link
    The independence density of a finite hypergraph is the probability that a subset of vertices, chosen uniformly at random contains no hyperedges. Independence densities can be generalized to countable hypergraphs using limits. We show that, in fact, every positive independence density of a countably infinite hypergraph with hyperedges of bounded size is equal to the independence density of some finite hypergraph whose hyperedges are no larger than those in the infinite hypergraph. This answers a question of Bonato, Brown, Kemkes, and Pra{\l}at about independence densities of graphs. Furthermore, we show that for any kk, the set of independence densities of hypergraphs with hyperedges of size at most kk is closed and contains no infinite increasing sequences.Comment: To appear in the European Journal of Combinatorics, 12 page

    Path Coupling Using Stopping Times and Counting Independent Sets and Colourings in Hypergraphs

    Full text link
    We give a new method for analysing the mixing time of a Markov chain using path coupling with stopping times. We apply this approach to two hypergraph problems. We show that the Glauber dynamics for independent sets in a hypergraph mixes rapidly as long as the maximum degree Delta of a vertex and the minimum size m of an edge satisfy m>= 2Delta+1. We also show that the Glauber dynamics for proper q-colourings of a hypergraph mixes rapidly if m>= 4 and q > Delta, and if m=3 and q>=1.65Delta. We give related results on the hardness of exact and approximate counting for both problems.Comment: Simpler proof of main theorem. Improved bound on mixing time. 19 page
    corecore