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It is shown in this note that approximating the number of independent sets in a k-uniform 
linear hypergraph with maximum degree at most � is NP-hard if � ≥ 5 · 2k−1 + 1. This 
confirms that for the relevant sampling and approximate counting problems, the regimes 
on the maximum degree where the state-of-the-art algorithms work are tight, up to 
some small factors. These algorithms include: the approximate sampler and randomised 
approximation scheme by Hermon et al. (2019) [5], the perfect sampler by Qiu et al. (2022) 
[6], and the deterministic approximation scheme by Feng et al. (2023) [7].

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

This note is concerned with the problem of counting independent sets in hypergraphs. We start with the basic definitions. 
A hypergraph H = (W , E) is specified by a set of vertices W and a set of hyperedges E , where each hyperedge e ∈ E is a 
subset of W . It is said to be k-uniform, if each hyperedge contains exactly k vertices. The degree of a vertex is the number 
of hyperedges in which it appears, and the degree � of the hypergraph is the maximum degree of its vertices. A set I ⊆ W
is a (weak) independent set if I ∩ e �= e holds for all e ∈ E . We remark that this problem is parameterised by k and �.

This problem was first studied by Bordewich, Dyer and Karpinski [1,2], where they showed that the straight-forward 
Markov chain over all independent sets is rapid mixing when � ≤ k − 2. This also yields a fully-polynomial randomised ap-
proximation scheme (FPRAS) for counting the number of independent sets by the standard counting-to-sampling reductions. 
For more information on such reductions, see for example [3] or [4]. The regime on the maximum degree was further im-
proved by Hermon, Sly and Zhang [5] to � ≤ c ·2k/2 for some absolute constant c > 0. A later work by Qiu, Wang and Zhang 
[6] provided a perfect sampler (i.e., the output distribution is unbiased) which runs in expected polynomial time when 
� ≤ c · 2k/2/k for some absolute constant c > 0. Very recently, Feng, Guo, Wang, Wang and Yin [7] further derandomised 
the Markov chain Monte Carlo approach and provided a fully-polynomial deterministic approximation scheme (FPTAS) when 
� ≤ c · 2k/2/k2 for some absolute constant c > 0. On the other hand, Bezáková, Galanis, Goldberg, Guo and Štefankovič [8]
proved that approximating the number of independent sets is intractable when � ≥ 5 · 2k/2 unless NP = RP. These results 
established a sharp computational phase transition for this problem.
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The notion of linear hypergraphs (aka. simple hypergraphs) has also attracted some attention. A hypergraph is considered 
linear if the intersection of any two hyperedges contains at most one vertex. When the input hypergraph is restricted to 
be linear, the tractability regime of the aforementioned algorithms can be extended. Specifically, the same work mentioned 
above also established the following regimes: � ≤ c · 2k/k2 for both the FPRAS and the perfect sampler, and � ≤ 2(1−o(1))k

for the FPTAS. Under this setting, can we also establish a computational phase transition up to some low-order factors? As 
the main claim of this note, we answer the question affirmatively. Our result holds for a larger class of hypergraphs with 
overlap b, where the intersection of any two hyperedges contains at most b vertices.

Theorem 1.1. For any k ≥ 2, 1 ≤ b ≤ k/2 and � ≥ 5 · 2k−b + 1, it is NP-hard to approximate the number of independent sets in 
k-uniform hypergraphs with maximum degree at most � and overlap at most b.

The hardness for the linear hypergraph can be obtained by setting b = 1 in the theorem. Additionally, it subsumes the 
general case presented in [8] by setting b := 	k/2
.

In the general case [8], the hardness can be shown by reducing from the hard-core model (counting weighted indepen-
dent sets) on graphs, where each vertex in the graph is replaced by k/2 copies in the resulting hypergraph, and each edge in 
the graph is associated with the hyperedge containing these copies. However, this approach naturally requires large overlaps 
in the resulting hypergraph. In our case, we ensure linearity (or small overlaps) by creating b copies for each vertex in the 
graph, and then filling up each hyperedge to k vertices. This boils down to a general anti-ferromagnetic 2-spin system, in-
stead of the hard-core model. The main complication is to establish the so-called “non-uniqueness” property, which allows 
us to utilize a classical result by Sly and Sun [9] to derive inapproximability.

An open problem is to determine the exact computational phase transition for the linear case, as there remains a �(k2)

gap in-between. Notably, for independent sets on the infinite linear hypertree, the uniqueness of the Gibbs distribution 
holds when � ≤ (1 + o(1)) 2k/k [8]. It is still unclear which of these three thresholds, if any, would be the ground truth for 
the computational phase transition point.

The phenomenon of a more relaxed algorithmic regime (and thus a more restricted hardness regime) existing for linear 
hypergraphs is also observed in the context of hypergraph q-colouring problem. Currently, the best known algorithmic 
bound in the general hypergraph is � � qk/3 as established in [10,11,7].1 In the case of linear hypergraphs, the bound can 
be improved to qk/2−o(k) , as shown in [12]. From the hardness side, the approximate counting problem is known to be 
NP-hard when � ≥ 5 · qk/2 [13] in the general case when q is even, but � ≥ 2kqk log q + 2q in the linear case [13].

The problem of sampling hypergraph independent sets and q-colourings are both special cases of sampling solutions 
of constraint satisfaction problems (CSPs), and the computational results for these problems can be interpreted in the local 
lemma regime. In this framework, each hyperedge is treated as a constraint associated with a “bad event” that this constraint 
fails when all vertices are independently assigned values uniformly at random. Suppose that each bad event occurs with 
probability at most p and depends on at most D other bad events. By noticing that D = k� −1 in the hypergraph setting, the 
inapproximability conditions for counting both general hypergraph independent sets and colourings are unified as the form 
of pD2 � 1. In contrast, the well-known Lovász local lemma [14] provides a solution to any CSP when pD � 1, and such a 
solution can be efficiently constructed using the Moser-Tardos Algorithm [15]. This confirms the presence of a quadratic gap 
between the complexity of approximate counting/sampling and searching. For general CSPs, the conjectured tractable regime 
is pD2 � 1, and there is a bunch of supporting evidence, see for example [16]. However, in light of the recent developments 
concerning linear hypergraphs, the tractable regime for CSPs with bounded overlap might extend further to pD � 1.

2. Reduction from 2-spin systems

Our reduction is based on the hardness of approximating the partition function of the 2-spin system on graphs. A 2-spin 
system on a graph G = (V , E) is specified by an interaction matrix B and a vector h for the external field:

B =
[
β 1
1 γ

]
, h =

[
λ

1

]
, (1)

where β, γ , λ ≥ 0. The system is called anti-ferromagnetic, if βγ < 1. A configuration σ : V → {0, 1} assigns each vertex 
v ∈ V with a spin either 0 or 1. The weight of a configuration σ is defined by

wt(σ ) := λn0(σ )βm00(σ )γ m11(σ )

where n0(σ ) is the number of vertices assigned 0 under σ , and m00(σ ) (resp. m11(σ )) is the number of edges whose both 
endpoints are assigned 0 (resp. 1) under σ . The partition function is defined by

Zβ,γ ,λ(G) :=
∑
σ

wt(σ ).

1 The notations � and � hide low-order factors.
2
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The 2-spin system we are interested in is specified by the following choices of parameters:

β = 1, γ = 1 − 1

2k−2b
, λ = 2b − 1. (2)

The subscription in Zβ,γ ,λ is thus omitted as the parameters are now fixed.
We now state the reduction. For any given �-regular graph G = (V , E), construct the hypergraph HG according to the 

following steps.

(T1) Interpret the graph as a 2-uniform hypergraph.
(T2) Replace each vertex with b vertices.
(T3) For each hyperedge, insert another k − 2b vertices independently.

Below is an example illustrating the reduction where k = 7, b = 3 and � = 3.

T1 T2 T3

It is immediate to verify that HG is k-uniform, has overlap b and maximum degree �. Let I(HG ) be the set of indepen-
dent sets of HG .

Lemma 2.1. For any �-regular graph G = (V , E) and the constructed hypergraph HG , it holds that |I(HG)| = 2|E|(k−2b) Z(G).

Proof. We define the following partition over all the independent sets I(HG ) = ⊎
σ S(σ ) in the hypergraph HG , where σ

ranges over all configurations of the 2-spin system. For any vertex v ∈ V , let B v be the set of constructed vertices in HG

corresponding to v as in step (T2) of the construction. Given an independent set I ∈ I(HG ), the part S(σ ) that I falls into 
is given by, for any v ∈ V ,

• σ(v) = 0, if |B v ∩ I| ≤ b − 1;
• σ(v) = 1, if |B v ∩ I| = b (namely, B v ⊆ I).

This is a partition because each I ∈ I(HG) falls into exactly one part. Next, we demonstrate that |S(σ )| = 2|E|(k−2b)wt(σ ), 
which can be immediately used to establish the lemma. In subsequent discussions, a partial configuration of a subset 
S ⊆ V (HG) refers to a subset of vertices S ′ ⊆ S that is included in the (weak) independent set of HG . A partial configuration 
S ′ of S is considered feasible if there exists an independent set I ∈ I(HG ) such that I ∩ S = S ′ .

• Consider the vertices constructed in (T2).
– For each v ∈ V such that σ(v) = 0, there are 2b − 1 feasible partial configurations of B v .
– For each v ∈ V such that σ(v) = 1, there is just one feasible partial configuration of B v .

• Consider the vertices constructed in (T3).
– For each edge e such that both its endpoints take spin 1, the rest k − 2b vertices of the corresponding hyperedge 

cannot be in an independent set together, so there are 2k−2b − 1 feasible partial configurations.
– For any other edge, the corresponding k − 2b vertices are free to be included in an independent set, so there are 

2k−2b feasible partial configurations.

In all, this gives

|S(σ )| =
(

2k−2b − 1
)m11(σ ) (

2k−2b
)|E|−m11(σ ) (

2b − 1
)n0(σ ) = 2|E|(k−2b)wt(σ ). �

Our goal then boils down to showing the inapproximability of the constructed 2-spin system. To establish this, we invoke 
the following celebrated result by Sly and Sun [9], which connects the so-called non-uniqueness property of any general 
anti-ferromagnetic 2-spin system with computational hardness. Denote by T� the infinite �-regular tree, and by T̂� the 
infinite (� − 1)-ary tree.
3
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Theorem 2.2 ([9]). For any nondegenerate homogeneous anti-ferromagnetic 2-spin system specified by the interaction matrix B and 
the external field h on �-regular graphs that lies in the T� non-uniqueness region, the partition function is NP-hard to approximate, 
even within a factor of 2cn for some constant c > 0 depending on � and the spin system.

We remark that uniqueness/non-uniqueness regions for T� coincide with those for T̂� . However, (� − 1)-ary trees 
are more convenient to handle, so we move to T̂� onwards. It is known that the T̂� (non-)uniqueness region can be 
characterised by the solutions of the standard tree recursion formula on the ratio of the marginal probability of the root 
induced by the Gibbs measure. The following lemma, originally due to Martinelli, Sinclair and Weitz [17, Section 6.2], 
characterises these solutions.

Lemma 2.3 ([18, Lemma 7]). For � ≥ 3 and an anti-ferromagnetic 2-spin system specified by (1), consider the system of equations

x = R(y), y = R(x), where R(z) := λ

(
βz + 1

z + γ

)�−1

and x, y ≥ 0. (3)

Then,

• in the T̂� uniqueness region, the system has a unique solution (Q ×, Q ×);
• in the T̂� non-uniqueness region, the system has three solutions (Q +, Q −), (Q ×, Q ×), (Q −, Q +) where Q + > Q × > Q − .

R(z) in (3) is called the one-step recursion. For any pair of solutions (x, y) to (3), we have that R(R(x)) = x and R(R(y)) =
y. Therefore, both x and y are fixed points of the two-step recursion R(R(z)). Let d := � − 1. Using the above lemma, it 
suffices to show that the two-step recursion has three fixed points Q + > Q × > Q − in order to establish non-uniqueness. 
Equivalently, in the regime of parameters specified in Theorem 1.1, we need to show that the following function, obtained 
by plugging the parameters specified in (2) into the two-step recursion, has three distinct zeros in (0, +∞):

f (z) := (2b − 1)

⎛
⎜⎝1 + 1

2k−2b(2b − 1)
(

1 + 1
2k−2b z+2k−2b−1

)d + 2k−2b − 1

⎞
⎟⎠

d

− z. (4)

Since the solution Q × is the unique fixed point of the one-step recursion, that is, Q × = R(Q ×), it is also helpful to consider 
the function

g(z) := (2b − 1)

(
1 + 1

2k−2b z + 2k−2b − 1

)d

− z (5)

obtained by plugging the parameters specified in (2) into the one-step recursion. The following lemma is sufficient to derive 
our main theorem.

Lemma 2.4. Assume integers k ≥ 2, 1 ≤ b ≤ k/2 and d = 5 · 2k−b . Define z∗ := d/2k−2b = 5 · 2b. Then f (z∗) > 0 and g(z∗) < 0.

Proof of Theorem 1.1. Note that g(0) > 0 and limz→+∞ g(z) = −∞. By g(z∗) < 0, we know that the unique zero of g , which 
is Q × , is smaller than z∗ . On the other hand, by f (z∗) > 0 and limz→+∞ f (z) = −∞, there is a zero of f on (z∗, +∞), and 
it cannot be Q × . This establishes non-uniqueness due to Lemma 2.3. NP-hardness then follows after Theorem 2.2. �

In the proof of Lemma 2.4, the following standard inequality is useful.

exp{x} >

(
1 + x

y

)y

> exp

{
xy

x + y

}
for all x, y > 0. (6)

Proof of Lemma 2.4. The g(z∗) part is due to a straightforward estimation:

g(z∗) ≤ (2b − 1)

(
1 + 1

5 · 2k−b

)5·2k−b

− 5 · 2b < (2b − 1)e − 5 · 2b < 0.

When k = 2, b can only take 1, and a direct calculation gives f (z∗) > 16.0 in this case. For k ≥ 3, we have

f (z∗) =(2b − 1)

⎛
⎜⎝1 + 1

2k−2b(2b − 1)
(

1 + 1
k−2b

)d + 2k−2b − 1

⎞
⎟⎠

d

− 5 · 2b
d+2 −1

4
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≥(2b − 1)

⎛
⎝1 + 1

2k−2b(2b − 1)
(
1 + 1

d

)d + 2k−2b − 1

⎞
⎠

d

− 5 · 2b

>(2b − 1)

(
1 + 1

2k−2b(2b − 1)e + 2k−2b − 1

)d

− 5 · 2b

>(2b − 1)

(
1 + 1

2k−2b(2b − 1)e + 2k−2b

)d

− 5 · 2b

>(2b − 1)exp

{
5 · 2b+k

2k + 22b + 2k(2b − 1)e

}
− 5 · 2b. (By (6) and d = 5 · 2k−b)

Note that the fraction in exp{·} is monotone increasing with respect to k. We can further analyse this by considering two 
cases.

• Fix b ≥ 2. The whole term is minimised at k = 2b. Plugging this in, we further get

f (z∗) > (2b − 1)exp

{
5 · 2b

2 + (2b − 1)e

}
− 5 · 2b =: h(b).

Now it suffices to show h(b) > 0 for b ≥ 2. If b = 2, we have h(2) > 1.5. If b ≥ 3, then

h(b) > (2b − 1)exp

{
5 · 2b

e · 2b

}
− 5 · 2b > 1.29 · 2b − 6.29 > 0.

• Fix b = 1. The whole term is minimised at k = 3 (we assume k ≥ 3), and the value is at least 0.7.

Combining all these facts, the proof is complete. �
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