44,213 research outputs found

    Counting Configurations in Designs

    Get PDF
    AbstractGiven a t-(v, k, λ) design, form all of the subsets of the set of blocks. Partition this collection of configurations according to isomorphism and consider the cardinalities of the resulting isomorphism classes. Generalizing previous results for regular graphs and Steiner triple systems, we give linear equations relating these cardinalities. For any fixed choice of t and k, the coefficients in these equations can be expressed as functions of v and λ and so depend only on the design's parameters, and not its structure. This provides a characterization of the elements of a generating set for m-line configurations of an arbitrary design

    Aberration in qualitative multilevel designs

    Full text link
    Generalized Word Length Pattern (GWLP) is an important and widely-used tool for comparing fractional factorial designs. We consider qualitative factors, and we code their levels using the roots of the unity. We write the GWLP of a fraction F{\mathcal F} using the polynomial indicator function, whose coefficients encode many properties of the fraction. We show that the coefficient of a simple or interaction term can be written using the counts of its levels. This apparently simple remark leads to major consequence, including a convolution formula for the counts. We also show that the mean aberration of a term over the permutation of its levels provides a connection with the variance of the level counts. Moreover, using mean aberrations for symmetric sms^m designs with ss prime, we derive a new formula for computing the GWLP of F{\mathcal F}. It is computationally easy, does not use complex numbers and also provides a clear way to interpret the GWLP. As case studies, we consider non-isomorphic orthogonal arrays that have the same GWLP. The different distributions of the mean aberrations suggest that they could be used as a further tool to discriminate between fractions.Comment: 16 pages, 1 figur
    • …
    corecore