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Given a t-(v, k, ) design, form all of the subsets of the set of blocks. Partition
this collection of configurations according to isomorphism and consider the
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be expressed as functions of v and 1 and so depend only on the design’s parameters,
and not its structure. This provides a characterization of the elements of a generating
set for m-line configurations of an arbitrary design.  © 2001 Academic Press

1. INTRODUCTION

Much of the work in design theory has been devoted to questions of
existence. This paper is concerned more with the structure of a design—
specifically, how numerous various substructures are. One of the first to
pose a question of this nature appears to be Erdés [8], when he asked
about Steiner triple systems where there is an r so that no set of j blocks
requires just j+ 2 points, for all 2 < j<r. Recent examples of progress on
questions of this nature include studies of Steiner triple systems with no
Pasch configurations by Griggs et al. [11], and of Steiner triple systems
with a maximal number of Pasch configurations by Stinson and Wei [ 15].
We will generalize previous results about regular graphs and Steiner triple
systems and show that the number of occurences of substructures in a
design are related to each other by linear equations that can be determined
with knowledge of only the design’s parameters.

DEerFINITION 1.1.  The pair (V, 4) is a t-(v, k, A) design if V' is a set of v
elements called points (or vertices) and 4 is a set of k element subsets of
V called blocks (or lines) with the property that every t-element subset of
V is a subset of exactly 4 blocks from %.
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We allow the possibility that a design has repeated blocks, though our
examples and presentation favor designs without repeated blocks. The one
caveat is that references to sets of blocks should really be treated as collec-
tions and when considering the sizes of these collections the repeated
blocks should be counted as many times as they appear.

DerINITION 1.2, If D=(V, #) is a design, then an n-line configuration
from D is a subset ¥ = # with size n. If the size is not important, we will
simply refer to it as a configuration.

Configurations are also known as partial designs, since they can be
described as sets of blocks of size k from V' with the property that every set
of size t is contained in at most A blocks. Two configurations of a design
(V, #) are isomorphic if there is a permutation of V' that preserves the
blocks of the configurations. Suppose we construct the set of all 2!#!
possible configurations of a design, and partition the set according to
isomorphism. What are the cardinalities of these isomorphism classes?
Informally phrased, how often does each configuration (substructure)
occur in a design? Our purpose here is to show how a few of these numbers
determine all the others. This in turn provides a useful tool for analyz-
ing the structure of a design. The next definition makes this idea more
precise.

For a configuration %, we denote the size of its isomorphism class in a
design by ||%].

DerFiniTION 1.3.  Given integers m, t and k, the set of configurations
{6,,,, .., 6} is a generating set for m-line configurations in t-(v, k, 1)
designs if for any t-(v, k, 1) design the size of the isomorphism class of any
n-line configuration with #n <m is equal to a linear combination of the sizes
16, 16,1, ..., ||€,] where the coefficients of the linear combination are
independent of the choice of the particular design, excepting a dependence
on the values of v and A through multinomials in these two parameters.

A minimal generating set is known as a linear basis.

The determination of generating sets for configurations was initiated
independently in [ 1, 4, 10]. In [ 10] Grannell et al. determine a linear basis
for 4-line configurations in 2-(v, 3, 1) designs (Steiner triple systems) for all
v and give explicit linear equations with solutions. They suggest that more
general results for triple systems with arbitrary values of 4 would be of
interest. Working in the setting of regular graphs, in [1, 4] the present
author determines a generating set for m-line configurations (subgraphs
with m edges) in 1-(v, 2, 1) designs (regular graphs on v vertices with
degree A) for all m, v, and .
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More general results about Steiner triple systems are obtained by Horak
et al. in [ 12]. They determine the nature of a generating set for m-line con-
figurations in 2-(v, 3, 1) designs for any m and v. With this result, in the
cases where m =5 and m =6 they show that the generating sets obtained
are also linear bases. They remark that their results could be extended to
determine generating sets for m-line configurations in 2-(v, k, 1) designs for
all m, v and k, and give without proof a description of the configurations
in the generating set.

While Horak et al. give a more theoretical description of the elements of
a linear basis and the linear equations that involve the sizes of the
isomorphism classes of Steiner triple systems, Danziger et al. [ 7] build on
this result to give explicit linear equations relating the sizes of the fifty-six
isomorphism classes of 5-line configurations in a Steiner triple system,
together with their solutions. In the case of 7-line configurations in a
Steiner triple system, Urland [ 16] has constructed the additional nineteen
configurations necessary to extend the generating set for 6-line configura-
tions found by Horak et al. to a generating set for 7-line configurations.
With the generating set enumerated, Urland proves that it is minimal, and
hence is a linear basis. A more complete description of previous work on
this problem for Steiner triple systems can be found in the survey article by
Grannell and Griggs [9].

Here we describe the linear equations relating the sizes of the
isomorphism classes of m-line configurations in #-(v, k, A) designs for all
m, t, v, k, and A. This provides a description of a generating set for this
more general setting. The description of the linear equations is specific
enough to determine the form of their unique solutions. As an illustration,
we compute the linear equations, and their solutions, for 3-line configura-
tions in 2-(v, 4, 1) designs—a procedure which is possible, with sufficient
computational power, for any fixed values of m, ¢, and k. Finally, the result
of a computational experiment proves that our generating set for 8-line
configurations in regular graphs of degree r on n vertices is also a linear
basis.

2. LINEAR EQUATIONS

The next theorem specifies the linear equations relating the sizes of the
isomorphism classes in a design. We begin with some definitions and nota-
tion. The first definition describes the central object constructed in the
proof.

DerFNITION 2.1. If D= (V, %) is a design, then a marked configuration
from D will be a triple (&, B, W) where § =%, Be & and W< B.
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DerFINITION 2.2. If ve V is a point and % is a configuration, then the
degree of v in € is the number of blocks in ¥ that contain v. If the degree
is zero we will call the point trivial.

The notation %, , ; will denote an n-line configuration with s non-trivial

points, and j will be used to index among the isomorphism classes of con-
figurations with n blocks and s non-trivial points.

THEOREM 2.1.  Suppose that D= (V, %) is a t-(v, k, 1) design and € is a
configuration with n blocks and s non-trivial points. Suppose also that there
is a set of t points, X, such that X is a subset of some block B from €, and
B— X is composed entirely of points of degree one in €. Let q denote the
number of points of X which have degree two or more in €. Then there exists
a configuration €' which has n —1 blocks and s — k + t non-trivial points so
that

s—1

a(, ) 16" = Y. Yay 1%, |l +a* |€], (1)
i=s—k+q j
where a* is a positive integer constant, the a, ; are nonnegative integer con-
stants, and a(v, 1) is a multinomial in v and A having rational coefficients.
Furthermore, these constants are independent of the choice of D and their
determination depends only on the values of t, v, k, 4, q and the choice of €,
B, and X.

Proof.  We build a set of marked configurations, M, and by counting
its elements in two different ways, arrive at the two sides of Eq. (1). We
view configurations as containing all of the points of V, and not just those
that lic on the blocks of the configuration, so typically (presuming v is
large and n is small) there are many points of degree zero present. The
proof employs three different isomorphisms—however, it is important to
realize that in each case the mapping, o: V' — V/, is a bijection of the full set
V. First, two configurations, & and &', are isomorphic if ¢ carries blocks
of & to blocks of &'. Second, two pairs, (&, W) and (&', W’) (where
W, W' <= V'), are isomorphic if ¢ is an isomorphism from & to &’ and a( W)
= W'. Finally, two marked configurations, (&, B, W) and (&', B, W'), are
isomorphic if ¢ is an isomorphism from & to &' so that o(B)= B’ and
a(W)=Ww"

To begin building the set of marked configurations, take the configura-
tion ¥ and remove the block B. The resulting configuration is ¢’, which
obviously has n — 1 blocks, and has s — k + ¢ non-trivial points since B has
exactly kK — ¢ points of degree one.

Now consider the action of the automorphism group of %’, acting on the
entire set of points V' (thus including those of degree zero). Extend this
action to the natural action on sets of size ¢ and consider the orbit of the
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set X, o(X). For a configuration & that is isomorphic to %’ fix an
isomorphism ¢ taking ¢’ to & Now range over all z-sets Weo(X) and
create the pairs (&, g(W)). Repeat this construction for every possible
choice of &. This creates a set of |o(X)| |4'| distinct pairs, each of which
is a precursor of several marked configurations. Notice that each of these
pairs is isomorphic to the others—the required isomorphisms can be con-
structed from two isomorphisms with domain %’ (inverting one of them)
and then forming a composition with an automorphism of %"

Now we convert each pair into several marked configurations. For a pair
(&, a(W)) let / denote the number of blocks in & that contain o( W).
Because D is a t-(v, k, 4) design, there are exactly A blocks in # that
contain o(W). (N.B. This is the one place where the defining regularity
condition of the ¢-design comes into play.) Thus there are 4 —/ blocks of
% — & which contain the t-set a( W). For each such block F, add it to the
pair (&, a(W)) to form a marked configuration (& L {F}, F, a(W)). Since
all of the pairs (&, a( W)) are isomorphic, the number / is the same for
each. If we repeat this production of each pair into A —/ marked configura-
tions, then we create a set of |o(X)| (1 —7) ||¢’| marked configurations.
This is the desired set M and the preceding expression for its cardinality is
the left-hand side of the equation in the statement of the theorem.

It is worth noting here that if ¢ < ¢, then the removal of B from % causes
X to contain some points of degree zero in ¢’. Because the automorphism
group of ¢’ permutes these degree zero points with those present originally
in €, the value of |o(X)| depends on v, typically through a binomial coef-
ficient of the form (“_Stt’;_q ). In the case where g = ¢, X has no degree zero
points in €’ so o(X) is an integer that depends only on the structure of ¢’
and X, and is independent of wv.

Now we count the elements of M in a different fashion. Each marked
configuration in M has n blocks. Since ¥ has s non-trivial points, the
removal of B results in the configuration ¢’ with s—k + ¢ non-trivial
points. When a new block is added to a configuration isomorphic to %’,
and the new block contains an image of an element of o(X), at most k — ¢
trivial points are promoted to non-zero degree. Thus the elements of M
have between s —k + ¢ and s non-trivial points (inclusive).

For a configuration %, ; ; with s —k 4 ¢ <i<s choose a block F and a
t-set YS F so the pair (%, ; ,—F, Y) is isomorphic to (%', X). For each
such possible choice of F and Y, we can create a marked configuration
(6, ,,F, Y) in M, and every element of M can be constructed in this
manner. Let a; ; denote the number of ways to choose an F and Y for
%,,: ;- Notice that this number depends only on the structure of 4, ; ;, ¢’
and X, and therefore is independent of D, v and A. Furthermore, it is identi-
cal for each element of the isomorphism class of &, So we can build all

n, i, j*
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of M by constructing a, ; [|%,
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n, 1, j

TABLE 1

1,8, J

Configurations with m =3 or Fewer Blocks, Each of Size k =4

| marked configurations at a time.
Summing over the appropriate values of i yields the cardinality of M again.
Finally, we consider the terms in the summation where i=s. Suppose

a, ; #0. This means we can find in %, ; ; a block F and a set Y < F so that

n=01
Co0.1 Cra1
12 34

n=2

Cas Ca6.1 Cor1 Cz8,.1

1234 1 2 3 4 1 234 1 23 4

123 5 o 56 1 5067 5 6 78
n=3

Cas1 Ca6.1 Ca6.2 C3,6,3 C3.6,4
1234 123 4 123 4 1234 123
123 5 123 5 123 5 12 5 6 12 5 6
1 2 4 5 123 6 1 2 4 1 345 3 5 6
Ca71 C37,2 C373

1 2 3 4 1 23 4 12 34

1 2 3 5 1 23 5 123 5

1t 2" 6 7 1* 4* 6 7 4* 5* 6 7

C37.4 C37s C38.1

123 4 1234 T 23 4

1 2 5 6 1 2 5 6 1 23 5

1 3 5 7 345 7 1* 6" 7 8

Cis,2 C3s8.3 Caga

1 2 3 4 1 23 4 123 4

1 2 5 6 1 2 5 6 1 2 5 6

1 2* 7 8 1* 3* 7 8 3" 4 7 8

03,8,5 Cag.6 Cs0.1

123 4 1 23 4 1 2 3 4

1 2 5 6 1* 5" 6 7 1* 2* 5 6

3* 5* 7 8 2 3 4 8 1 789

Cs0,2 Cao3 C30,4

12 3 4 12 3 4 1 23 4

1 56 7 1 5 67 5% 6 7 8

2+ 3 8 9 2* 5* 8 123 9

Cs.10,1 C3,10,2 C3.10.3

1 2 3 4 1* 2 3 4 1 2 3 4

1 56 7 1 5 6 7 5 6 7
1* 8 9 10 2 8§ 9 10 1 2> 10
C311,1 C312.1

1 23 4 123 4

56 78 5 6 7 8
1 9* 10 11 9% 100 11 12
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(6,...;,— F, Y) is isomorphic to (4’, X). So F must have k —g points of
degree one in %, . ;. With this observation it is easy to extend the
isomorphism between %, , ;—F and %’ to an isomorphism between %, , ;
and % which also maps F to B. Therefore a, ;>0 if and only if %,  ; is
isomorphic to ¥ and we can break out the terms of the sum with i=s as
simply a* ||| where a* is positive. Equating these two expressions for the
cardinality of M completes the proof. |

As an illustration of this result consider the case of 3-line configurations
in a 2-(v,4, 1) design. Table 1 depicts representatives for the thirty-one
possible isomorphism classes of configurations with three or fewer blocks
of size k =4 (including the empty configuration with no blocks). The rows
are the blocks of the configuration, organized so that the degrees of the
points are easy to see. For each configuration that admits a set X (as
described in the statement of Theorem 2.1) for the case when =2, the
block B and the set X are indicated by an asterisk on the members of X

TABLE II

Linear Equations for a 2-(v, 4, 1) Design

(;)/\“Co,o,lll = 6]|Craall
6(A =1 iCraall = 6||C25ll +2]|Co8ll
4w - DA liCLanll = 6lICosall +8[iCo6all + 6]IC2z1ll
-4
(3 )Meraal = 2iCanli+6lcarall + 12iCanl
3A-2)[ICesall = 3lICasall +91Cs6.1ll +2){Cs.6.2/ + lICs7,1l
6(A =1 {{Cosall = 12||Cs5,1ll + 41iCs,6,2ll + 2[iC3,6,3l + [|C3,7.2]l
MiCosall = 3lCasall +HCae5ll + 1IC3,7,3ll
3 = 8)MCasall = 9ICs6.11l +41(Cs6,2l + liCs,8,3l + 41Ca,7.1] + 21IC3,7,2l + 31Ca8,ll
A=2MC261lt = lICap2ll +2ICa,7,11} + 31IC3,8.2ll
8(A-1)ICzeall = 4liCsp2ll +6Cs63ll +4NCaz1ll +21|C3,7,2]l + 6(Ca,7,4ll +2]IC3,8,3l
20 = DiiCzeall = 20ICs6,3ll + 61Cs,6,4ll + [ICa,7,2]l + 2[1C3,7.5]] +2{(C5,8,4l}
WiCeall = HCas2ll +41Ca6all + 12]iCa 6,4l + 31IC3,7,4lf + 41ICa,7,5]| + [|Ca,8.5]l
2w = 3)A|ICasall = 2[Ca6.2ll +21iCa63ll + 2|ICaz2ll + 4]/Ca.7.3l + 3|IC3,8,6ll
6(A ~1}{[Co7all = 3ICar2ll +41iCasall + 2([Cas.all + 21/Ca.1]l
6(A =1} ICozall = IC372ll +6[Ca 73l + 21ICa,,5ll + 2[ICa,811l + 21iCa,8,5]| + 31iCa8.6ll + [{C3.9.2ll
[[Co71ll = 2/Csz2ll + 61ICa,7.3]l + 4[[Ca,7,5]l + [ICa,8.5ll +41{Ca8.5ll + 3|Ca 05l
-5
(37 )A0Cesall = Cazall+ ICazall+ 1Carall +3Casal + 31Cusall + 6Csaal
(v =DMlC2rall = 2[Cs8,1ll + [ICs83l +4/IC39,1]f + 91C500,11]
16A[ICos1ll = 4ICsall +3({Cassll +2][Cas.2ll + [IC3,10.2l
1200 = DIC21ll = 2[ICa8,4]l +31IC3,8,6ll + [[C30,2|| + 61/Cs,9,4]] +21C3,10,3])
8(v —8)AlICasall = 3ICap.2ll+6Ca0.4ll + 41ICs,10.2]l + 8IC5,10,3]l + 6 [IC3.11,10i

v—8
(“2 )Ancz,s,ln = |ICs.102ll +2[Ca.t0,81) + 6 ICs,11,111 + 18 iCa,12,
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within block B. Table II lists the resulting instances of Eq. (1). For each
equation, the configuration listed furthest to the right plays the role of €
in the statement of Theorem 2.1. The interested reader might find it instruc-
tive to recreate the thirteenth of these equations (the one formed by choos-
ing % to be %; g ¢)—except for the fact that /=0, it is as general as
possible.

3. GENERATING SETS

We now apply Theorem 2.1 to the construction of generating sets for
m-line configurations in #-(v, k, /) designs.

DerFINITION 3.1. A configuration € from a #-(v, k, 1) design is a generator
if every block has more than ¢ points of degree two or more in %.

Notice that this definition is phrased to allow the empty configuration
(one with no blocks) to be a generator vacuously. In the preceding example
(Table I), the generators are the nine configurations where no points are
tagged with asterisks. Configurations that are generators can be described
informally as “tight.” Alternatively, a generator could be defined as a
configuration where every block has strictly fewer than k—¢ points of
degree one in %, or a non-generator could be defined as a configuration
that has a block with k —¢ or more points of degree one in %.

THEOREM 3.1. The set of all n-line configurations that are generators, with
n<m, is a generating set for the m-line configurations in t-(v, k, 1) designs.

Proof. Theorem 2.1 implies that the size of the isomorphism class of
any non-generator configuration may be expressed as a linear combination
of the sizes of isomorphism classes of configurations with the same number
of blocks and strictly fewer non-trivial points, or with strictly fewer blocks.
Repeatedly replacing the sizes of isomorphism classes of non-generator
configurations with linear combinations of the sizes of “lesser” configura-
tions will ultimately yield a linear combination that involves only gener-
ators, since this reduction process will halt with the empty configuration
containing zero blocks and zero non-trivial points, and this configuration
is a generator. Alternatively, a double induction, on the number of blocks
and the number of non-trivial points, will arrive at the same conclusion.

Recall that the coefficient ¢* is a non-zero integer constant. Since the
coefficients in Eq. (1) are integer constants and multinomials in v and A
with rational coefficients, the recursive procedure described above will yield
linear combinations in the generators with coefficients that are again multi-
nomials in v and 4 with rational coefficients. This solution process, and the
resulting expressions, are described explicitly as Theorem 5.1. ||
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For Steiner triple systems, the elements of a generating set are described
in the following corollary. It is easy to see that whenever k=¢+1 this
formulation is equivalent to Theorem 3.1.

COROLLARY 3.1 [12, Theorem 1]. The set of all n-line configurations
such that n <m and every vertex has degree at least two, is a generating set
for the m-line configurations in Steiner triple systems.

4. LINEAR BASES

DEerINITION 4.1. Given integers ¢t and k, a linear basis for the m-line
configurations in t-(v, k, ) designs is a generating set for m-line configura-
tions in #-(v, k, 1) designs with the property that no proper subset will serve
as such a generating set.

Linear bases when t=2, k=3 and m <7, in the case where A=1 (i.e.
Steiner triple systems), have been found [10, 12, 16]. In every instance,
these sets are identical to the set of generators of Corollary 3.1. The proce-
dure in each case is to first determine the number of configurations in a
generating set, say g. Then find a collection of g specific non-isomorphic
designs with common and appropriate values of #, v, k, and A. For each
such design compute the vector of sizes of the isomorphism classes for all
of the generator configurations with m or fewer blocks. Make these vectors
the columns of a matrix G. If G has rank g, then no generator configura-
tion is redundant for this collection of designs. Since no subset of the
generating set can be a generating set for the values of ¢, v, k, and 4 in effect
for these specific designs, the generating set cannot be reduced in general
(and still function for all v and 1) and hence is a linear basis.

This technique works only for a fixed value of m and the effort involved
just in finding g becomes considerable as m increases (for example, see
Urland [ 16] which is largely devoted to this first step). However, once the
elements of a generating set are known it appears that the set of specific
designs can be selected without much care, once three precautions are
observed. First, v must not be smaller than km. Otherwise, the configura-
tion composed of m disjoint blocks will never arise in any of the designs,
giving its isomorphism class zero cardinality in each case. Since this con-
figuration is always a non-generator, the size of its isomorphism class can
be written as a linear combination of the sizes of the isomorphism classes
of the generators (for example, see the last equation in Table I1T). Thus this
same linear combination will be a relation of linear dependence on the
rows of the matrix G, automatically dooming it to less than full rank.
Second, the value of A should be chosen large enough that it does not
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prevent some generator configurations from occuring among the specific
designs. If 4 is chosen too small, the matrix G has a zero row, again
preventing full rank. Finally (and perhaps obviously), v and 4 must be
chosen so that at least g non-isomorphic examples of #-(v, k, 4) designs exist.
We now report the results of applying this technique to regular graphs.
This theorem is perhaps simpler than previous results for linear bases in
Steiner triple systems since the values of ¢ and k are each one smaller.

TABLE III

Cardinalities for a 2-(v, 4, 1) Design

A (=1+v) v[ICo0.ll

fCraall = 12
-1+ A} A (~1+ C
loeall = CEERACLHD vlConl gy,
-10 -1+ Co.0,
IComall = A6+ +v)1)s( v) vliCooall 30zl
-1 ~36+ A (88~ 17v+v2)) [|Co,

liC2gall = Aetron ( 2(88 v+ %)) Wooall i€2,51Hl
lICsrall = 3(=2+X) [IC251ll — 3Casall —9ICa6.1ll — 2[[C3,6.2lf
ICsz2ll = 6(=1+A) IC2sll = 12ICa51ll - 41iCa62ll — 21ICas.3]l
fCsall = AliCasall = 3HCasall = [ICas.3ll
ICssall = (12+ A (=13+0)) €25l + 12ICa,5,1ll + 9 liCaall + 41iCai6.2l] + [ICa,6,3l)

_ 2) (= C
Coall = AEEAEN) L1000l 6 g3 iy + 20Cusall+ 61Caal + iCnsal
[iCasall = (~1+X0)A(=14v) v][Copall + (30 — 241) {|Co5.][ + 18(ICas,1} + 181ICa 6!l +6iCs62lt = lICs6ll - 3 [1Ca,7.4ll

2

eaall = SN ACLED 200l 46— 63) a0l + 6l1Cosall+ 20Caall = 31Caaall = 1Css
ICsssll = (=14+X) A2 (=1+2) viiCoonll = 12AM|Casull = ICs6.2ll = 4[1Ca.5ll — 12]ICs6.al) — 31ICa7.4lt — 4 13,7511
Conell = HEFACLLD Canall g ey 4 2)Caoal + 20500
gl = (AFAAUZEACIO+D) L) viCooill (542 (<25 +v)) ICasall - 24[Casall — 36 1Cacal

6
~8|iCs 52l +21iCs5.ll +3ICa,r.ll
Kesoall = CLENACFACIL0) CLE0 0 Mooull 4 (g4 x (82 - 40)) Cantll - 300Casal = 18ICsal

~ 8|Cs,6.2ll +81ICa.6,3lt + 24 1C,5,4ll + 6{|Ca.7.4ll + 61ICa.7,5]
A (—2 + 1824 2% (—20+ v)) (—1+v) v|Co0all N

Csoall = 5 (=6+27X) {IC2.5.11l + 8(|C3,5.4ll = 61IC,6.11l +2{[Ca62ll +
91ICs 6.l + 16 [Ca,g.all + 5 ICaz,all+ 411Cs 151
A (2140 - 210+ 02
ICaoall = (—6+ ——(—Tﬂ) IC2 41l 91Cs 5.1l = 31ICa.1ll = 2/ICas.2lt = Capall
- = A2 (244 - 290 +0? C
ICoronll = A(=1+v)v (126 +18A (~19 +1?2+ ( v +v%)) {ICo0ll + (184 A (19 + ) |ICasall +

6]1Css.1fl + 123,611 + 2[IC3.6.2lf = ICs.6.511 = lIC3.7.4ll

- -22 AZ (262 - 29v +v? Co.0,
(Cononll = Al=1+v)v (544122 (224 v) + A% ( v +v%)) {ICo0all +(60+ A (=130 + 6v)) [ICosall +

18
36(1Ca.6.111 + 2 |C3,6.20 — 22|ICs.6,3ll ~ 361 6.4l — 12[IC5.7.4ll ~ 8[IC3,7.5ll
A(=1+v) v (724 A% (204 — 250+ v?) ~ A (276 — 250 + v?)) {ICo 0.l A (252 - 250 +v%)
liCs.108l = ( ) v ( ¢ 8 ) ( ) +136- m IC2 5.1l +
18)1Ca,5l1 + 1811C3.6( + 5 lIC36.2ll = 411Ca0,3ll — 91iCs6.4ll - 3ICa.7.4ll = 21{Car.sll
A(=1+v)v (—648+ 61 (544 — 41v +v?) + A? (—3448+ 5700 — 39v* + v*)) [ICo 0]l .

ICsall =

216
-1 3v?
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However, it is more general than these results since m is one larger, and
more importantly, it holds not just for 4 =1, but for all values of .

THEOREM 4.1. When t=1 and k=2, the set of all n-line generators with
n<8 is a linear basis for 8-line configurations in 1-(v, 2, 1) designs.

Proof. While this theorem is stated in the language of designs, it is
really a statement about regular graphs and we will use that terminology
for the proof.

In the case of regular graphs, a generator is a graph with no vertices of
degree one. McKay’s makeg program [ 13] creates an exhaustive list of the
788 non-isomorphic graphs on 8 or fewer edges, and 46 of these qualify as
generators. The largest degree of any vertex across all of these generators
is 5. So for the reasons outlined above, we chose to populate our set of
specific graphs with 46 regular graphs of degree 5 on 16 vertices. These
were obtained by sampling at random from the output of makeg. For each
of these 46 specific graphs, we built the 3%_ (*?) =100 146 724 subgraphs
on 8 or fewer edges. Those subgraphs that are generators were classified
according to isomorphism using McKay’s nauty program [ 13, 147, so the
column vectors of G could be constructed. Finally, the square matrix G of
size 46 was entered in Mathematica where its determinant was computed,
and found to be non-zero. Thus, G has full rank, and the generating set is
a linear basis. Further details (the 46 generators, the 46 regular graphs and
G) are available upon request. |

This result, and the linear bases obtained by others for Steiner systems,
prompt us to make the following conjecture.

Conjecture 4.1 Given fixed values of 7 and £, the set of n-line generators
with n<m is a linear basis for m-line configurations in 7-(v, k, 1) designs.

Given the abundance of regular graphs, and numerous constructions for
infinite families of regular graphs, it would be interesting to first consider
this conjecture in the case when r=1 and k=2, and try to extend
Theorem 4.1 from m < 8 to all values of m.

5. SOLUTIONS

Horak et al. [12] show that generating sets for Steiner triple systems
exist, much in the spirit of Theorem 3.1, without concern for the actual
linear equations involved. Others have proceeded to list these linear
equations explicitly and solve them. In [1, 4] the present author gives
formulae for the sizes of the isomorphism classes of 4-edge subgraphs of an



352 ROBERT A. BEEZER

arbitrary regular graph of degree r on n vertices as linear combinations of
the generators with coefficients that are multinomials in » and r. In this
case the generators can be described as subgraphs without any vertices of
degree one.

For Steiner triple systems, Grannell et al. [ 10] give expressions for 4-line
configurations that are linear combinations of the two elements of a linear
basis (an empty configuration and the Pasch configuration) where the coef-
ficients are polynomials in v. This result is extended in Danziger et al. [7]
where the mitre configuration is added to the basis and the remaining fifty-
five 5-block configurations are written as linear combinations of the three
basis elements with coefficients that are polynomials in v. Here the authors
mention that “in theory therefore the whole process of determining a
formula for the number of occurences of each configuration may be
systematized ....” An indication of how that systematization may be realized
is contained in the following theorem, which exploits the characteristics of
Eq. (1) to show the nature of the solutions to a complete system of these
linear equations.

THEOREM 5.1.  Suppose that 6, , . is a non-generator configuration for a
t-(v, k, 1) design. Then

n—1 s—1

G sl = 2 2 2 b (0 ) G sl + 2 X bi 116, (2)
m=0 i j

i=0 j

where the b, ; ;(v, 4) are multinomials in v and A with rational coefficients,
and the b, ; are rational numbers. Furthermore, on the right-hand side of the
equation only generating configurations have non-zero coefficients.

Proof. This equation results from the solution to a system of linear
equations that we describe as a matrix equation. Build the vector of
unknowns, x, with indeterminates %, ; ;| for 0 <m <n, 0 <i<km and for
all possible indices j. Order the entries of this vector lexicographically on
the subscripts m, i, and j. For the vector of constants, b, place zero in loca-
tions that correspond to non-generator configurations, and in locations
that correspond to generator configurations place the corresponding value
of [, il

For the matrix of coefficients, A, the rows corresponding to non-generat-
ing configurations come from the equations described in Theorem 2.1 by
rearranging Eq. (1) to have a zero on one side. For rows corresponding to
generator configurations set a single entry of one on the diagonal and zeros
elsewhere. We now show that the statements in the theorem follow from
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analyzing the structure of this matrix in light of the conclusions of
Theorem 2.1.

Generally 4 is a lower triangular matrix with entries that are multi-
nomials in v and 4. However, we can say more about the entries as we
move closer to the diagonal. Partition A4 between rows and columns where
the index m (the number of blocks) changes. Since the a; ; of Theorem 2.1
are constants, the diagonal block matrices under this partitioning have
integer entries, without any ¢’s or A’s. Create a finer partition, by dividing
wherever the index i (the number of non-trivial points) changes. Again,
from Theorem 2.1, since a* is the only nonzero coefficient for i=s, the
diagonal block matrices under this finer partition will themselves be
diagonal matrices. Finally, taking the finest partition possible, the diagonal
entries are either the various nonzero +a* or the I’s introduced for the
rows corresponding to generating configurations.

By the construction of the matrix equation, any solution gives the values
of |, ;I, and in particular it contains the value of |4,  ,|/. Since the
coefficient matrix has a nonzero determinant, there is a unique solution,
A~'b. The lower triangular and block diagonal structures of 4 translate to
similar properties for its inverse. In particular, the construction of b and the
lower triangular form of 4~! imply that a component of the solution
vector that corresponds to a non-generator configuration is a linear com-
bination of the sizes of isomorphism classes for generator configurations
that precede it in the ordering of the components of the vector. Since the
determinant of A4 is an integer, the coefficients in this linear combination
are multinomials in v and 4 with rational coefficients (the b, ; ;(v, 2)).
However, when 4 ~! is partitioned where the index m changes, the diagonal
blocks will have rational entries, so in the solution for |4, .| the
coefficients of (|, ; ;| (the b, ;) will be rational numbers. Finally, consider
the partition of 4~' where the index i changes. The resulting diagonal
blocks will be diagonal matrices, so in the solution for |4, .| the
coefficients of |4, , ;|I, j#r, will be zero. |

This theorem implements the recursive procedure described in the proof
of Theorem 3.1. Besides the theoretical uses of this result, the procedure
suggests a simple method for a computer algebra system to solve the
system of equations. We now describe briefly our work automating the
production of these equations and their solutions.

McKay’s program makebg [13] creates exhaustive lists of non-
isomorphic bipartite graphs subject to a variety of conditions on the
number of vertices, number of edges and the degrees of the vertices. For
fixed values of m and k& we employ this program to generate bipartite graph
representations of all the m-line configurations with block size k. The result
is similar to that shown in Table I, but without the asterisks on the sets X.
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Another program, written by the author, takes as input a list of repre-
sentatives of the isomorphism classes of all the configurations having m or
fewer blocks of size k, and a fixed value of 7. For each non-generator con-
figuration % it identifies: X and B, €', |o(X)|, /, the a,, ; ; and a*. (The set
X is selected to have as many vertices of degree two or more as possible.
In this way, ¢ is as large as possible and the resulting equation will
generally have fewer terms.) Then an instance of Eq. (1) can be produced.
This program relies on McKay’s nauty canonical graph labeling routine
[ 13, 14] to test pairs of marked configurations for isomorphism. The result
is a list of linear equations for fixed m, ¢t and k with coefficients involving
symbolic values of v and /A, similar to those in Table II. Finally, these equa-
tions are processed by a computer algebra system. In our case, we used
Mathematica, which at its most fundamental level works by manipulating
strings subject to pattern-matching and replacement rules. Because of the
recursive process for solving these equations (see the proof of Theorem 3.1)
or because of the lower-triangular nature of the coefficient matrix 4 (see
the proof of Theorem 5.1) it is enough to present Mathematica with the
equations in the natural lexicographic order, one at a time, and ask that
they be immediately simplified. The subsequent simplifications and
reductions to a linear combination of the indeterminate cardinalities of
the generator configurations is a very natural task for Mathematica. The
resulting output for the example begun earlier (m=3, t=2, and k=4) is
presented in Table III.

The chief bottlenecks in these computations are the creation of an
exhaustive list of non-isomorphic configurations, finding generators of the
automorphism group of the configuration ¢’ so that |o(X)| can be com-
puted, and testing the isomorphism of marked configurations. In these
cases the programs makebg and nauty have been indispensable. The
author would like to publicly thank Brendan McKay for making efficient
and portable implementations of his algorithms freely available.

The results of these programs have been checked against the solutions
presented in three published accounts: solutions for 4-line configurations in
Steiner triple systems, created by hand by Grannell ef al. [ 10]; solutions
for 5-line configurations in Steiner triple systems created by hand by
Danziger et al. [ 7]; and solutions for 4-edge subgraphs of a regular graph
created by the present author [ 1] using an entirely distinct set of programs
designed for studying graphs rather than designs. As an added experiment,
a program was written to take a design as input and form all configura-
tions with m or fewer blocks. The program then partitions this exhaustive
list of small configurations according to isomorphism to determine the
cardinality of each isomorphism class. This program was applied to the
3-(8, 4, 1) design to construct the cardinalities for configurations with m =3
or fewer blocks. Viewing this design as a 2-(8, 4, 3) design, the cardinalities
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of the generator configurations were substituted into the equations of
Table IIT and the calculated cardinalities of the non-generator configura-
tions were checked against those tabulated by the program.

6. CONSTANT CONFIGURATIONS

A problem that has been studied with the aid of results similar to ours
is the question of which configurations are “constant” and which are
“variable” [7, 12]. In the setting of Steiner triple systems, a configuration
is called constant if the size of its isomorphism class is simply a function
of v, and hence identical for all such systems with a common value of v.
Otherwise, it is termed variable, since it will also depend on the cardinality
of some element(s) of a linear basis. The reader will have noticed that we
have carried throughout our computational example the term [%; o 11l
which is trivially 1. This decision was made to avoid the need to speak of
constant and variable configurations when describing generating sets and
linear bases—the empty configuration is vacuously a generator. Thus, we
would define a constant configuration as the empty configuration, or a
non-generator whose solution in the form of Eq. (1) is a single term formed
by a multinomial in v and A multiplying [|% o, |-

At first glance the solutions presented in Table 11T appear to present just
two constant configurations among the configurations with three or fewer
blocks from an arbitrary 2-(v, 4, 1) design—the empty configuration and
the configuration with a single block. However, if we choose A =1, then
since every non-empty generator has at least one 2-set that occurs on two
or more blocks, each such generator has an empty isomorphism class. It
then follows that each configuration on 3 or fewer blocks is constant. But
for A =2 there are several generators, and the empty configuration together
with the configuration with a single block are the only constant configura-
tions on 3 or fewer blocks. With the results of Table III extended to a
greater number of blocks, a similar analysis could identify the constant
configurations with greater numbers of blocks.

7. EXTREMAL DESIGNS

The results obtained here can be useful for studying the structure of
designs with extreme numbers of various configurations. For example,
Erdés [8] asked about the existence of Steiner triple systems where no set
of j blocks requires just j+2 points, for every 2< j<r. Brouwer [5]
studied this question for r =4 (no Pasch configurations), with some results
for r=35 (no Pasch and no mitre configurations, termed “5-sparse” in [6]).
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Steiner triple systems with no occurences of the Pasch configuration are
studied further by Griggs, Murphy and Phelan [ 11], while Colburn ez al.
[6] study Steiner triple systems without mitre configurations. Taking the
opposite approach, Stinson and Wei [15] consider Steiner triple systems
with a maximal number of Pasch configurations. The applicability of
explicit formulae for the 4-line configurations to these questions was noted
by Grannell ez al. [ 10]. Similar investigations about z-designs with extreme
numbers of given configurations could similiarly benefit from explicit
descriptions of the number of occurences of configurations. For more on
questions of this nature specific to Steiner triple systems see [9].

Regular graphs with prescribed girth have been studied by the present
author [3] with the aid of linear equations relating the sizes of isomor-
phism classes of subgraphs. The generators in the case of a regular graph
are subgraphs possessing no vertices of degree one. Since a tree (or forest)
must have a vertex of degree one, the generators cannot be acyclic, and
must possess a circuit. However, if a regular graph is required to have a
specific girth, then there are no circuits with fewer edges than the girth.
Thus, for a graph with given girth, the sizes of the isomorphism classes for
generators with fewer edges are known to be zero. It follows then that these
graphs are extremal with respect to other subgraphs, in particular
matchings. It is then possible to conclude that the girth of a regular graph
can be recovered from its matching polynomial. Regular graphs of given
degree and girth which are minimal with respect to their number of vertices
are known as cages. So if a cage is unique for its degree and girth, then it
is also characterized by its matching polynomial.

By the observations made above, a regular graph with girth m has the
property that every element of a generating set with fewer than m edges has
an empty isomorphism class. This property can be used for an alternative
definition of girth for regular graphs that is also general enough to apply
to designs.

DerFINITION 7.1. A #-(v, k, A) design has girth m if every generator con-
figuration with m — 1 or fewer blocks (excluding the empty configuration)
has an empty isomorphism class, and some generator configuration on m
blocks has a non-empty isomorphism class.

It would be interesting to mimic the search for cages and determine the
designs of fixed girth with the fewest number of points. For example, the
smallest Steiner triple system of girth 5 is the (unique) Steiner triple system
with 9 points, whose automorphism group is AGL,(3), the affine linear
transformations on GF(32). Perhaps further examples of minimal designs of
fixed girth will have the same flavor as many of the cages—possessing rich
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automorphism groups and elaborate structure. A more complete explora-
tion of these ideas, with the results of some computational experiments, can
be found in [2].
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