696 research outputs found

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Neural Radiance Fields: Past, Present, and Future

    Full text link
    The various aspects like modeling and interpreting 3D environments and surroundings have enticed humans to progress their research in 3D Computer Vision, Computer Graphics, and Machine Learning. An attempt made by Mildenhall et al in their paper about NeRFs (Neural Radiance Fields) led to a boom in Computer Graphics, Robotics, Computer Vision, and the possible scope of High-Resolution Low Storage Augmented Reality and Virtual Reality-based 3D models have gained traction from res with more than 1000 preprints related to NeRFs published. This paper serves as a bridge for people starting to study these fields by building on the basics of Mathematics, Geometry, Computer Vision, and Computer Graphics to the difficulties encountered in Implicit Representations at the intersection of all these disciplines. This survey provides the history of rendering, Implicit Learning, and NeRFs, the progression of research on NeRFs, and the potential applications and implications of NeRFs in today's world. In doing so, this survey categorizes all the NeRF-related research in terms of the datasets used, objective functions, applications solved, and evaluation criteria for these applications.Comment: 413 pages, 9 figures, 277 citation

    Survey of Transportation of Adaptive Multimedia Streaming service in Internet

    Full text link
    [DE] World Wide Web is the greatest boon towards the technological advancement of modern era. Using the benefits of Internet globally, anywhere and anytime, users can avail the benefits of accessing live and on demand video services. The streaming media systems such as YouTube, Netflix, and Apple Music are reining the multimedia world with frequent popularity among users. A key concern of quality perceived for video streaming applications over Internet is the Quality of Experience (QoE) that users go through. Due to changing network conditions, bit rate and initial delay and the multimedia file freezes or provide poor video quality to the end users, researchers across industry and academia are explored HTTP Adaptive Streaming (HAS), which split the video content into multiple segments and offer the clients at varying qualities. The video player at the client side plays a vital role in buffer management and choosing the appropriate bit rate for each such segment of video to be transmitted. A higher bit rate transmitted video pauses in between whereas, a lower bit rate video lacks in quality, requiring a tradeoff between them. The need of the hour was to adaptively varying the bit rate and video quality to match the transmission media conditions. Further, The main aim of this paper is to give an overview on the state of the art HAS techniques across multimedia and networking domains. A detailed survey was conducted to analyze challenges and solutions in adaptive streaming algorithms, QoE, network protocols, buffering and etc. It also focuses on various challenges on QoE influence factors in a fluctuating network condition, which are often ignored in present HAS methodologies. Furthermore, this survey will enable network and multimedia researchers a fair amount of understanding about the latest happenings of adaptive streaming and the necessary improvements that can be incorporated in future developments.Abdullah, MTA.; Lloret, J.; Canovas Solbes, A.; García-García, L. (2017). Survey of Transportation of Adaptive Multimedia Streaming service in Internet. Network Protocols and Algorithms. 9(1-2):85-125. doi:10.5296/npa.v9i1-2.12412S8512591-

    A review on deep learning techniques for 3D sensed data classification

    Get PDF
    Over the past decade deep learning has driven progress in 2D image understanding. Despite these advancements, techniques for automatic 3D sensed data understanding, such as point clouds, is comparatively immature. However, with a range of important applications from indoor robotics navigation to national scale remote sensing there is a high demand for algorithms that can learn to automatically understand and classify 3D sensed data. In this paper we review the current state-of-the-art deep learning architectures for processing unstructured Euclidean data. We begin by addressing the background concepts and traditional methodologies. We review the current main approaches including; RGB-D, multi-view, volumetric and fully end-to-end architecture designs. Datasets for each category are documented and explained. Finally, we give a detailed discussion about the future of deep learning for 3D sensed data, using literature to justify the areas where future research would be most valuable.Comment: 25 pages, 9 figures. Review pape

    Engineered repeating prints: computer-aided design approaches to achieving continuity of repeating print across a garment using digital engineered print method

    Get PDF
    This Master’s research investigated approaches for engineering of repeating prints using digital textile printing technology and universally available computer-aided design software. Current practices for alignment of designs in yardage printed fabrics at garment seams are wasteful and do not allow for mass customisation. This inefficiency can be overcome with engineered digital printing, a method that allows for an integration of prints with garment patterns to generate Ready-to-Print images. Engineered printing offers more cost-effective use of materials, improved visual appearance, potential for mass customisation and more sustainable manufacturing. Still, technical difficulties exist in the integration of prints with garment patterns. As a result, application for apparel is limited to non-repeating prints and one-off fashion show garments. The integration of repeating prints presents even more difficulties. However, the advances in digital printing and computer-aided design technologies call for an examination of possible approaches for achieving improved continuity of a repeating print across a garment. The research used a three-stage mixed method approach. The first qualitative stage examined current practices for design and printing of repeating prints. By undertaking Applied Thematic Analysis, the diversity of meanings assigned to words describing attributes of repeating prints as a result of historical and current usage were identified and the terminology consolidated. A taxonomy of repeating print attributes was established, with three levels observed: a superordinate level for a surface, a basic for a repeat, and a subordinate for a motif. Quantifiable attributes of repeating prints were assigned to each level. The analysis also suggested three potential directions for engineered repeating prints: Modularity Design, Flexible Tiling and Distortion. The second quantitative stage evaluated suggested design directions in four experimental studies: one for each of the directions and a final study combining all three directions to engineer repeating prints for a graded garment. Practical computer-aided design techniques, based on accessible Adobe software tools, were developed for integration of repeating prints with garment patterns. The techniques were then tested in comparison with mainstream printing practices. In each experiment, repeating print attributes were examined for their impact on the adaptability of repeating prints for engineered printing. All three directions were validated as suitable for engineering of repeating prints. Statistical analyses revealed relationships between repeating print attributes and their impact on the adaptability of repeating prints for the engineered printing method. The final stage analysed the combined results of the previous two stages. Existing computer- aided design solutions were found to offer opportunities regarding their ability to be integrated into current digital production for innovative and sustainable engineered printing. While the suggested techniques require knowledge of more advanced dynamic editing tools, the research highlights the benefits for both fashion and textile designers to utilise such tools in order to fully embrace the potential digital printing technology has to offer. The research also highlights the need for dedicated software solutions for integration of repeating prints with garment patterns. The findings on the impact of repeating print attributes on the adaptability for engineered printing can help in the development of dedicated software

    Spationomy

    Get PDF
    This open access book is based on "Spationomy – Spatial Exploration of Economic Data", an interdisciplinary and international project in the frame of ERASMUS+ funded by the European Union. The project aims to exchange interdisciplinary knowledge in the fields of economics and geomatics. For the newly introduced courses, interdisciplinary learning materials have been developed by a team of lecturers from four different universities in three countries. In a first study block, students were taught methods from the two main research fields. Afterwards, the knowledge gained had to be applied in a project. For this international project, teams were formed, consisting of one student from each university participating in the project. The achieved results were presented in a summer school a few months later. At this event, more methodological knowledge was imparted to prepare students for a final simulation game about spatial and economic decision making. In a broader sense, the chapters will present the methodological background of the project, give case studies and show how visualisation and the simulation game works

    Using Two Simulation Tools to Teach Concepts in Introductory Astronomy: A Design-Based Research Approach

    Full text link
    Technology in college classrooms has gone from being an enhancement to the learning experience to being something expected by both instructors and students. This design-based research investigation takes technology one step further, putting the tools used to teach directly in the hands of students. The study examined the affordances and constraints of two simulation tools for use in introductory astronomy courses. The variety of experiences participants had using two tools; a virtual reality headset and fulldome immersive planetarium simulation, to manipulate a lunar surface flyby were identified using a multi-method research approach with N = 67 participants. Participants were recruited from classes of students taking astronomy over one academic year at a two-year college. Participants manipulated a lunar flyby using a virtual reality headset and a motion sensor device in the college fulldome planetarium. Data were collected in the form of two post-treatment questionnaires using Likert-type scales and one small group interview. The small group interview was intended to elicit various experiences participants had using the tools. Responses were analyzed quantitatively for optimal flyby speed and qualitatively for salient themes using data reduction informed by a methodological framework of phenomenography to identify the variety of experiences participants had using the tools. Findings for optimal flyby speed of the Moon based on analysis of data for both the Immersion Questionnaire and the Simulator Sickness Questionnaire done using SPSS software determine that the optimal flyby speed for college students to manipulate the Moon was calculated to be .04 x the radius of the Earth (3,959 miles) or 160 miles per second. A variety of different participant experiences were revealed using MAXQDA software to code positive and negative remarks participants had when engaged in the use of each tool. Both tools offer potential to actively engage students with astronomy content in college lecture and laboratory courses

    Three-dimensional interactive maps: theory and practice

    Get PDF

    3D photogrammetric data modeling and optimization for multipurpose analysis and representation of Cultural Heritage assets

    Get PDF
    This research deals with the issues concerning the processing, managing, representation for further dissemination of the big amount of 3D data today achievable and storable with the modern geomatic techniques of 3D metric survey. In particular, this thesis is focused on the optimization process applied to 3D photogrammetric data of Cultural Heritage assets. Modern Geomatic techniques enable the acquisition and storage of a big amount of data, with high metric and radiometric accuracy and precision, also in the very close range field, and to process very detailed 3D textured models. Nowadays, the photogrammetric pipeline has well-established potentialities and it is considered one of the principal technique to produce, at low cost, detailed 3D textured models. The potentialities offered by high resolution and textured 3D models is today well-known and such representations are a powerful tool for many multidisciplinary purposes, at different scales and resolutions, from documentation, conservation and restoration to visualization and education. For example, their sub-millimetric precision makes them suitable for scientific studies applied to the geometry and materials (i.e. for structural and static tests, for planning restoration activities or for historical sources); their high fidelity to the real object and their navigability makes them optimal for web-based visualization and dissemination applications. Thanks to the improvement made in new visualization standard, they can be easily used as visualization interface linking different kinds of information in a highly intuitive way. Furthermore, many museums look today for more interactive exhibitions that may increase the visitors’ emotions and many recent applications make use of 3D contents (i.e. in virtual or augmented reality applications and through virtual museums). What all of these applications have to deal with concerns the issue deriving from the difficult of managing the big amount of data that have to be represented and navigated. Indeed, reality based models have very heavy file sizes (also tens of GB) that makes them difficult to be handled by common and portable devices, published on the internet or managed in real time applications. Even though recent advances produce more and more sophisticated and capable hardware and internet standards, empowering the ability to easily handle, visualize and share such contents, other researches aim at define a common pipeline for the generation and optimization of 3D models with a reduced number of polygons, however able to satisfy detailed radiometric and geometric requests. iii This thesis is inserted in this scenario and focuses on the 3D modeling process of photogrammetric data aimed at their easy sharing and visualization. In particular, this research tested a 3D models optimization, a process which aims at the generation of Low Polygons models, with very low byte file size, processed starting from the data of High Poly ones, that nevertheless offer a level of detail comparable to the original models. To do this, several tools borrowed from the game industry and game engine have been used. For this test, three case studies have been chosen, a modern sculpture of a contemporary Italian artist, a roman marble statue, preserved in the Civic Archaeological Museum of Torino, and the frieze of the Augustus arch preserved in the city of Susa (Piedmont- Italy). All the test cases have been surveyed by means of a close range photogrammetric acquisition and three high detailed 3D models have been generated by means of a Structure from Motion and image matching pipeline. On the final High Poly models generated, different optimization and decimation tools have been tested with the final aim to evaluate the quality of the information that can be extracted by the final optimized models, in comparison to those of the original High Polygon one. This study showed how tools borrowed from the Computer Graphic offer great potentialities also in the Cultural Heritage field. This application, in fact, may meet the needs of multipurpose and multiscale studies, using different levels of optimization, and this procedure could be applied to different kind of objects, with a variety of different sizes and shapes, also on multiscale and multisensor data, such as buildings, architectural complexes, data from UAV surveys and so on
    corecore