5 research outputs found

    Efficient Distance-based Query Processing in Spatial Networks

    Get PDF

    Cost-efficient spatial network partitioning for distance-based query processing

    No full text
    The efficiency of spatial query processing is crucial for many applications such as location-based services. In spatial networks, queries like k-NN queries are all based on network distance evaluation. Classic solutions for these queries rely on network expansion and are not efficient enough for large networks. Some approaches have improved the query efficiency but brought considerable space cost for index. To address these problems, we propose a hierarchical graph partitioning based index named Partition Tree. It organizes the vertices of a spatial network into a hierarchy through a series of graph partitioning processes. Meanwhile precomputed distances are associated with this hierarchy to facilitate efficient query processing. Inspired by the observation that queries are usually invoked around objects of interest, we propose a query-oriented optimization on top of the Partition Tree. It uses a cost model to evaluate the influence of the object distribution and partitioning topology on the query efficiency. Then a cost-efficient graph partitioning method is developed based on this cost model. Experimental results on real datasets demonstrate that our proposed index and algorithms have superior performance over the state-of-the-art approaches and are scalable to large spatial networks

    Efficient spatial keyword query processing on geo-textual data

    Get PDF

    SharkDB: an in-memory storage system for large scale trajectory data management

    Get PDF
    corecore