
Efficient Spatial Keyword Query Processing on Geo-textual Data

Bolong Zheng

Master of Engineering

A thesis submitted for the degree of Doctor of Philosophy at

The University of Queensland in 2017

School of Information Technology & Electrical Engineering

ii

Abstract

The past decades have witnessed a transformation from a desktop-based web to a predominantly

mobile web, where more often than not, users access the web from mobile devices. As a result, a huge

volume of geo-textual web objects that have both geographical location and textual description have

been generated. In literature, there have been lots of efforts in enabling efficient processing large-

scale geo-textual data under a variety of problem settings. In spite of the remarkable progress in this

field, unsolved challenges remain. In this PhD thesis, I investigate a few interesting but challenging

problems of this area. The contribution of this thesis can be summarized in three aspects. First, a set

of new query predicates has been defined with a target of more diversified data types (e.g., activity

trajectories), underlying spaces (e.g., road network) and query semantics, by which users can acquire

their interested results more easily and effectively. Second, from a technical point of view, I have de-

veloped I/O efficient indexing structures and search algorithms to assure that a query can be answered

within a reasonably small amount of time especially when dealing with massive geo-textual objects,

which is not uncommon in real application scenarios. Last but not least, extensive empirical studies

have been conducted based on real and large-scale datasets, which uncovered interesting patterns,

rules and trends. These insights have shown directions for further improving my methodologies and

also shed lights on future research. Below is a brief description of the contributions:

First, I study the keyword-oriented queries on activity trajectories (KOAT). The activity trajectory

is semantically enriched trajectory data, which embeds the information about behaviors of the moving

objects. Therefore, searching activity trajectory is able to support a variety of applications for a

better quality of location-based services. This work aims to return k trajectories that contain the most

relevant keywords to the query and yield the least travel effort in the meantime. The main difference

between this work and conventional spatial keyword query is that no query location exists in KOAT,

which means the search area cannot be localized. To improve the query performance, a spatial-textual

ranking function is first proposed between query keywords and activity trajectories. Then a best-first

search algorithm based on a hybrid index structure is developed by applying effective pruning rules

and efficient refinement strategies.

Second, the problem of keyword-aware continuous k nearest neighbour search on road networks

is studied, which computes the k nearest vertices that contain the query keywords issued by a moving

object, and maintains the results continuously as it is moving on the road network. In particular, a

iii

framework, called labeling approach for continuous query (LARC), is proposed for processing the

query with both low computation and communication overheads. First, a keyword-based pivot tree

(KP-tree) is proposed to improve the efficiency of the static k nearest neighbour query by avoiding

massive network traversals and sequential probe of keywords. Then, the concepts of dominance

interval and region on road network are developed, which share the similar intuition with safe region

in Euclidean space but are more complicated with a dedicated design.

Finally, a novel type of query called clue-based route search (CRS) is investigated, which allows

a user to provide clues on keywords and spatial relationships along the route. These personalized

requirements make the route search become distance-sensitive such that the distances between PoIs

along the route must be as close as possible to the user specified distance. To improve efficiency,

a branch-and-bound algorithm is proposed that prunes unnecessary vertices in query processing. In

order to quickly locate candidate, an AB-tree is proposed that stores both the distance and keyword

information in a tree structure. To further reduce the index size, a PB-tree is constructed by utilizing

the virtue of 2-hop label index to pinpoint the candidate.

iv

Declaration by Author

This thesis is composed of my original work, and contains no material previously published or

written by another person except where due reference has been made in the text. I have clearly stated

the contribution by others to jointly-authored works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical as-

sistance, survey design, data analysis, significant technical procedures, professional editorial advice,

and any other original research work used or reported in my thesis. The content of my thesis is the

result of work I have carried out since the commencement of my research higher degree candidature

and does not include a substantial part of work that has been submitted to qualify for the award of

any other degree or diploma in any university or other tertiary institution. I have clearly stated which

parts of my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and,

subject to the policy and procedures of The University of Queensland, the thesis be made available

for research and study in accordance with the Copyright Act 1968 unless a period of embargo has

been approved by the Dean of the Graduate School.

I acknowledge that copyright of all material contained in my thesis resides with the copyright

holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright

holder to reproduce material in this thesis.

v

Publications during candidature

Journal paper:

• Bolong Zheng, Han Su, Kai Zheng, Xiaofang Zhou. Landmark-based Route Recommendation

with Crowd Intelligence. Data Science and Engineering (DSE) 2016, 1(2), 86-100.

• Kai Zheng, Bolong Zheng∗, Jiajie Xu, Guanfeng Liu, An Liu, Zhixu Li. Popularity-aware

Spatial Keyword Search on Activity Trajectories. World Wide Web Journal (WWWJ) 2016,

1-25.

Conference paper:

• Bolong Zheng, Kai Zheng, Xiaokui Xiao, Han Su, Hongzhi Yin, Xiaofang Zhou, Guohui Li.

Keyword-Aware Continuous kNN Query on Road Networks. In Proceedings of IEEE Interna-

tional Conference on Data Engineering (ICDE) 2016, Helsinki, 871-882.

• Yaguang Li, Han Su, Ugur Demiryurek, Bolong Zheng, Kai Zeng, Cyrus Shahabi. PerNav:

A Route Summarization Framework for Personalized Navigation. In Proceedings of ACM In-

ternational Conference on Management of Data (SIGMOD) 2016, San Francisco, 2125-2128.

(DEMO)

• Bolong Zheng, Nicholas Jing Yuan, Kai Zheng, Xing Xie, Shazia Sadiq, Xiaofang Zhou. Ap-

proximate Keyword Search in Semantic Trajectory Database. In Proceedings of IEEE Interna-

tional Conference on Data Engineering (ICDE) 2015, Seoul, 975-986.

• Kai Zheng, Han Su, Bolong Zheng, Shuo Shang, Jiajie Xu, Jiajun Liu, Xiaofang Zhou. Inter-

active Top-k Spatial Keyword Queries. In Proceedings of IEEE International Conference on

Data Engineering (ICDE) 2015, Seoul, 423-434.

• Haozhou Wang, Kai Zheng, Jiajie Xu, Bolong Zheng, Xiaofang Zhou, Shazia Sadiq. SharkDB:

An In-memory Column-oriented Trajectory Storage. In Proceedings of ACM International

Conference on Information and Knowledge Management (CIKM) 2014, Shanghai, 1409-1418.

• Bolong Zheng, Kai Zheng, Mohamed A Sharaf, Xiaofang Zhou, Shazia Sadiq. Efficient Re-

trieval of Top-k Most Similar Users from Travel Smart Card Data. In Proceedings of IEEE

International Conference on Mobile Data Management (MDM) 2014, Brisbane, 259-268.

vi

• Jiping Wang, Kai Zheng, Hoyoung Jeung, Haozhou Wang, Bolong Zheng, Xiaofang Zhou.

Cost-Efficient Spatial Network Partitioning for Distance-Based Query Processing. In Proceed-

ings of IEEE International Conference on Mobile Data Management (MDM) 2014, Brisbane,

13-22.

vii

Publications included in this thesis

Bolong Zheng, Nicholas Jing Yuan, Kai Zheng, Xing Xie, Shazia Sadiq, Xiaofang Zhou. Approxi-

mate Keyword Search in Semantic Trajectory Database. ICDE 2015, Seoul, 975-986. - incorporated

as Chapter 3.

Contributor Statement of contribution

Bolong Zheng (Candidate)

Designed algorithm (50%)

Wrote the paper (60%)

Designed experiments (80 %)

Proofreading the paper (30 %)

Joined the discussion (30 %)

Nicholas Jing Yuan

Designed algorithm (30%)

Wrote the paper (30%)

Designed experiments (10 %)

Proofreading the paper (20 %)

Joined the discussion (20 %)

Kai Zheng

Designed algorithm (20%)

Wrote the paper (10%)

Designed experiments (10 %)

Proofreading the paper (20 %)

Joined the discussion (20 %)

Xing Xie
Proofreading the paper (10 %)

Joined the discussion (10 %)

Shazia Sadiq
Proofreading the paper (10 %)

Joined the discussion (10 %)

Xiaofang Zhou
Proofreading the paper (10 %)

Joined the discussion (10 %)

Bolong Zheng, Kai Zheng, Xiaokui Xiao, Han Su, Hongzhi Yin, Xiaofang Zhou, Guohui Li. Keyword-

Aware Continuous kNN Query on Road Networks. ICDE 2016, Helsinki, 871-882. - incorporated as

Chapter 4.

viii

Contributor Statement of contribution

Bolong Zheng (Candidate)

Designed algorithm (50%)

Wrote the paper (60%)

Designed experiments (80 %)

Proofreading the paper (20 %)

Joined the discussion (20 %)

Kai Zheng

Designed algorithm (20%)

Wrote the paper (30%)

Designed experiments (10 %)

Proofreading the paper (20 %)

Joined the discussion (20 %)

Xiaokui Xiao

Designed algorithm (30%)

Wrote the paper (10%)

Designed experiments (10 %)

Proofreading the paper (20 %)

Joined the discussion (20 %)

Han Su
Proofreading the paper (10 %)

Joined the discussion (10 %)

Hongzhi Yin
Proofreading the paper (10 %)

Joined the discussion (10 %)

Xiaofang Zhou
Proofreading the paper (10 %)

Joined the discussion (10 %)

Guohui Li
Proofreading the paper (10 %)

Joined the discussion (10 %)

Contributions by others to the thesis

In all of the presented research in this thesis, Prof Xiaofang Zhou, as my principal advisor, and Dr

Kai Zheng, as my associated advisor, have provided technical guidance for formulating the problems,

refinement of ideas as well as reviewing and polishing the presentation.

Statement of parts of the thesis submitted to qualify for the award of another degree

None.

ix

Acknowledgments:

I would like to give my sincere thanks to people who have supported and helped me during my

PhD years. It is a great pleasure to convey my gratitude to them all in my humble acknowledgment.

First and foremost, I would like to give my earnest appreciation to my principal advisor, Prof.

Xiaofang Zhou, who not only brought me into the exciting area of spatial-temporal database, but also

has been remarkably helpful in various stages of my research. Furthermore, I acknowledge him for

his valuable suggestions in each group discussion, and sparing his precious time to read my drafts and

give constructive comments about them.

I am deeply grateful to my associate advisor, Dr. Kai Zheng, who has been supportive since the

first day I came to The University of Queensland, and has oriented and guided me with patience and

care throughout my PhD study. His passion for research sets an example for me, and encourages me

to continue my career as an academic researcher in computer science. He is also a generous friend,

which I always appreciate from my heart. Without his consistent and impressive kindness, all my

papers that have been published or submitted, as well as this thesis, would not have been completed

or written.

I am also sincerely grateful to Prof. Xiaokui Xiao for providing me two research internships

at Nanyang Technological University, where he taught me useful research skills and gave insightful

comments from rich experience on my work. Acknowledge also goes to Dr. Nicholas Jing Yuan, who

provided me an internship at Microsoft Research Asia and helped to improve my work.

The DKE group has provided a very nice working environment for the past three years. I have

benefited greatly from the discussions with a number of faculty members in the group. It is my

pleasure to specially acknowledge Prof. Yufei Tao, Dr. Mohamed Sharaf, Prof. Shazia Sadiq, Dr.

Helen Huang, Prof. Hengtao Shen, Prof. Xue Li, Dr. Hongzhi Yin, and Dr. Sen Wang. In my

daily work I have been blessed with a friendly and cheerful group of fellow students. A big thank

you goes to Dr. Han Su, Dr. Haozhou Wang, Dr. Jialong Han, Mr. Peng Wang, Dr. Wen Hua

and Ms. Ruojing Zhang, I really couldn’t remember how many times exactly we have been together

to explore and enjoy the delicious food in Brisbane, especially the favorite hotpot. I will also give

thanks to Mr. Junhao Gan, Mr. Lei Li, and Mr. Xingzhong Du for our great “lunch routine”, in which

various thoughts and ideas are inspired and shared quite often. Thanks also go to my office mates, Mr.

Abdullah Albarrak and Mrs. Weiqing Wang, who offer me delightful mood to work in every single

x

day.

Of course, great appreciation is also owed to the Chinese Scholarship Council, which has funded

me all the way through my PhD study.

Last but not least, my deepest gratitude goes to my family. They have constituted the most won-

derful family I can ever imagine, and being a part of it is the luckiest possession in my life. My parents

who raised me with caring and gently love deserve special mention for their inseparable support. It is

their support and love that encourage me to pursue my dreams.

xi

Keywords

spatial keyword query, spatio-temporal database, trajectory database, point-of-interest, nearest neigh-

bour, shortest path, road network, algorithm, performance

Australian and New Zealand Standard Research Classifications (ANZSRC)

ANZSRC code: 080604, Database Management, 100%

Fields of Research (FoR) Classification

FoR code: 0806, Information Systems, 100%

xii

Contents

1 Introduction 1

1.1 Background . 2

1.1.1 Geo-textual Data . 2

1.1.2 Spatial Keyword Queries . 3

1.2 Problem Statement . 4

1.2.1 Keyword-oriented Queries on Activity Trajectories 5

1.2.2 Keyword-aware Continuous kNN Queries on Road Networks 6

1.2.3 Efficient Clue-based Route Search on Road Networks 6

1.3 Challenges and Contributions . 7

1.3.1 Keyword-oriented Queries on Activity Trajectories 8

1.3.2 Keyword-aware Continuous kNN Queries on Road Networks 8

1.3.3 Efficient Clue-based Route Search on Road Networks 9

1.4 Thesis Outline . 9

2 Literature Review 11

2.1 Spatial Queries . 11

2.1.1 Nearest Neighbour Queries . 11

2.1.2 Trajectory Query Processing . 14

2.1.3 Shortest Path and Distance Queries . 17

2.2 Spatial Keyword Queries . 18

2.2.1 Top-k Spatial Keyword Queries . 19

2.2.2 Continuous Spatial Keyword Queries . 22

xiii

xiv Contents

2.2.3 Travel Route Search . 24

3 Keyword-oriented Queries on Activity Trajectories 27

3.1 Introduction . 28

3.2 Problem Statement . 30

3.3 Existing Approaches . 33

3.3.1 Probe based Algorithm . 33

3.3.2 Inverted List based Algorithm . 33

3.4 Hybrid Index Structure . 34

3.4.1 Activity Grid Tree Index . 34

3.4.2 Keyword Reference Index . 36

3.5 Keyword-oriented Query Processing . 36

3.5.1 Candidate Retrieval . 37

3.5.2 Lower Bound Computation . 39

3.5.3 Candidate Validation . 42

3.6 Enhanced Query Processing . 43

3.6.1 Trajectory Segmentation . 44

3.6.2 Search with Segmented Trajectories . 47

3.7 Experiments . 48

3.7.1 Experimental Settings . 48

3.7.2 Efficiency Measurement . 49

3.8 Summary . 54

4 Keyword-aware Continuous kNN Queries on Road Networks 55

4.1 Introduction . 56

4.2 Problem Statement . 59

4.3 Algorithm LARC . 60

4.3.1 Keyword-based Label Index . 61

4.3.2 �kNN Query Processing . 63

4.3.3 Dominance Interval for �CkNN . 66

4.4 Algorithm LARC++ . 69

Contents xv

4.4.1 Path-based Dominance Updating . 70

4.4.2 Combination of LARC and LARC++ . 74

4.5 Experiments . 76

4.5.1 Experimental Settings . 76

4.5.2 Experimental Results . 77

4.6 Summary . 83

5 Efficient Clue-based Route Search on Road Networks 85

5.1 Introduction . 86

5.2 Problem Statement . 89

5.2.1 Problem Definition . 90

5.2.2 Preliminary: Distance Oracle . 91

5.3 Greedy Clue Search Algorithm . 92

5.4 Clue-based Dynamic Programming Algorithm . 94

5.5 Branch and Bound Algorithm . 96

5.5.1 All-Pair Distance Approach . 98

5.5.2 Keyword-based Label Approach . 105

5.6 Dynamic Maintenance . 109

5.6.1 Semi-Dynamic Index Structure . 109

5.7 Experiments . 110

5.7.1 Experimental Settings . 110

5.7.2 Performance Evaluation . 112

5.8 Conclusion . 116

6 Final Remarks 119

6.1 Conclusions . 119

6.2 Directions for Future Work . 120

6.2.1 Answering Why-not Spatial Keyword Queries on Road Networks 121

6.2.2 An In-memory Implementation of Spatial Keyword Queries 121

6.2.3 Spatial Keyword Search by Incorporating Social Influence 121

xvi Contents

List of Figures

1.1 Example of Spatial Keyword Queries . 3

3.1 Running example for KOAT query . 29

3.2 Grid keyword index overview . 35

3.3 Query processing of KOAT. 43

3.4 Effect of k for KOAT query . 50

3.5 Effect of |Q| for KOAT query . 51

3.6 Effect of |D| for KOAT query . 51

3.7 Effect of d for KOAT query . 52

3.8 Effect of λ for KOAT query . 53

4.1 Running example for �CkNN query . 57

4.2 Overview of keyword-based label index. 62

4.3 Dominance interval . 68

4.4 Potential neighbour . 73

4.5 Effect of dataset cardinality . 79

4.6 Effect of query length . 79

4.7 Effect of k . 80

4.8 Effect of speed . 81

4.9 Effect of keyword frequency . 81

4.10 Effect of m . 82

4.11 Effect of multiple keywords . 83

5.1 Running example of G . 91

xvii

xviii List of Figures

5.2 2-hop label index of G . 92

5.3 Matching distances of CDP . 96

5.4 Overview of all-pair binary tree . 101

5.5 Overview of pivot reverse binary tree . 106

5.6 Effect of the keyword hash code length h . 113

5.7 Effect of the dataset cardinality . 114

5.8 Effect of the number of clues . 115

5.9 Effect of the average frequency of keywords . 116

5.10 Effect of the average expected distance . 117

List of Tables

3.1 Summary of notations . 31

3.2 Category of PoIs . 45

3.3 Statistics of dataset . 49

3.4 Parameter settings . 49

4.1 Summary of notations in �CkNN . 59

4.2 Statistics of dataset . 76

4.3 Parameter settings . 78

5.1 Summary of notations in CRS . 89

5.2 Statistics of dataset . 111

5.3 Parameter settings . 111

5.4 Performance of proposed algorithms and index structures 112

5.5 Evaluation of index updating . 115

xix

xx List of Tables

Chapter 1

Introduction

In recent years, mobile devices such as smartphones and tablets are gradually predominating the

transformation of the web from desktop-based age to mobility-based age, resulting in a large-scale

collection of movement data. The increasing development of GPS-based technologies enables to pro-

vide accurate geo-location and time information to a GPS receiver equipped in most mobile devices.

Another important development on geo-positioning technologies is the construction of the commu-

nication infrastructures, such as 3G, 4G and WiFi, used by some mobile devices. By sending the

radio signals, the real-time location of the device is reported to the base stations or cell towers. This

type of technology can be applied in both indoor and outdoor environment but suffers the problem of

less accuracy in positioning than GPS does. With such proliferation of geo-positioning technologies,

accurate user positioning is becoming more and more available. Since space is one of the most im-

portant aspects of all real-world phenomena, its nature can be exploited by any application that tries

to model entities in the real world, especially the movements of human beings.

With the developments outlined above, the data collected from mobile devices offers an unprece-

dented amount of information that can be used to help us understand the behavior of moving objects,

which hastens the emergence of research on spatial (temporal) database in the past decades. Effective

and efficient technologies to manage such spatial data are in high demand and can be found in a great

number of important applications, such as trip planning, transportation management, geographical

information systems, moving object tracking, sensor networks, environment monitoring, just to name

a few.

1

2 Introduction

Recent years have also witnessed the proliferation of location-based services, there is a clear trend

that an increasing amount of spatial data associated with the textual information is available in many

applications. Such objects contain information on both spatial and textual dimensions are called the

geo-textual objects. To provide better user experience, the location-based services maintain such geo-

textual objects to answer user queries w.r.t. user-specified location. For example, a person wants to

find a restaurant within 10 minutes walking distance. With the foundation of research achievements

on spatial database, such queries, known as spatial keyword queries, which find the top-k objects of

interest in terms of both spatial proximity and textual relevance to the query, have been studied under

a variety of problem settings.

1.1 Background

1.1.1 Geo-textual Data

The web objects have an associated geo-location and a textual description are called the geo-textual

data. For example, the location information as well as concise textual descriptions of some businesses

(e.g., restaurants, hotels) can be easily found in online local search services (e.g., yellow pages).

Another example is the GPS navigation system, where a PoI (Point-of-Interest) is a specific point

location that someone may find useful or interesting, and is usually annotated with textual information

(e.g., descriptions and users’ reviews). By marking a PoI as destination on the map, users are able to

plan a trip with suggestions. Moreover, in many social network services (e.g., Facebook, Flickr), a

huge number of photographs are accumulated everyday that are geo-tagged by users. These uploaded

photographs are usually associated with multiple text labels. This leads to the fact that massive

amounts of objects become available on the web. Such geo-textual objects include restaurants, petrol

stations, shopping malls, parking slots, universities, hotels, entertainment services, public transport,

etc. Formally, a geo-textual object is in the form of o = (l,Φ), where l is the location of o (represented

by a point or shape such as a rectangle) and Φ is the textual description on o (represented by a set of

keywords).

The source of geo-textual data can be mainly classified into two categories. First, they could be

obtained from location-based services. Such objects are called the static geo-textual objects since

1.1 Background 3

most of them do not update quickly. For example, in DianPing, many PoIs are being associated with

users’ descriptions and reviews. Second, they can also be extracted from geo-tagged web contents.

These objects are called the streaming geo-textual objects since they are accumulated everyday by

geo-tagging the user generated contents. For example, the geo-tagged photos in Flickr and the geo-

located tweets in Twitter. It is worth to note that these location-based services allow people to check-

in at the location of PoI. As a result, the traditional trajectory databases are redefined and enriched

by attaching activity or semantic meanings. Such check-in sequences of geo-textual objects that

contain the information about the semantic meanings of user behaviour (e.g., activity or place name)

at particular places are called activity trajectories, which also find various applications in location-

based services.

Figure 1.1: Example of Spatial Keyword Queries

1.1.2 Spatial Keyword Queries

The availability of a substantial amount of geo-textual objects leads to that a considerable fraction

of web queries on search engines have local intent and target on these objects. The prototype spatial

keyword query takes a location and a set of keywords as arguments and returns objects that are spa-

tially and textually relevant to these arguments. It is easy to see the location in query represents the

local intent, and the keywords describe user’s attentive. For example in Figure 1.1, the user wants to

4 Introduction

find a cafe shop near to his home. First, he inputs the location of his home and types in the keyword

“cafe”, then the service just returns all the nearby cafe shops to him as reference and reports the “Just

Bubble” as the closest one.

Due to the importance of geographical space to our daily lives, spatial keyword queries are receiv-

ing increasing interest in the research community where a range of techniques have been proposed

for efficient query processing. Four types of spatial keyword queries, classified based on their way of

specifying the spatial and textual predicates, are receiving particular attention, namely the Boolean

kNN query, the top-k kNN query, the Boolean range query and the top-k range query [23, 125].

• Boolean kNN query: It aims to retrieve the k objects nearest to the query location (represented

by a point) and each object’s text description contains all the query keywords.

• Top-k kNN query: It proposes to retrieve the k objects with the highest ranking scores, mea-

sured by a weighted combination of their distances to the query location and the textual simi-

larity between their textual descriptions and query keywords.

• Boolean range query: It aims to retrieve all objects whose textual description contains all the

query keywords and whose location is within the query region.

• Top-k range query: It proposes to retrieve the k objects whose location is within the query

region and has the highest textual relevance to the query keywords.

In spite of the remarkable progress on spatial keyword queries, unsolved problems, such as the

queries with a target of more diversified data types (e.g., activity trajectories), underlying spaces (e.g.,

road network) and query semantics, still remain and are open to study.

1.2 Problem Statement

With the rapid development of GPS-enabled smart mobile devices and location-based services, there

is a clear trend that objects are increasingly being geo-tagged. To provide better user experience, these

services maintain location-related information to answer user queries w.r.t. user-specified location. In

addition to the spatial characteristics, a user may also have a specific requirement on the description

1.2 Problem Statement 5

of the object such as “restaurant”, “hotel”, “petrol station”, etc. For example, a person wants to find a

restaurant within 10 minutes walking distance. Such queries, known as spatial keyword queries, have

been extensively studied in recent years [30, 59, 64, 80, 83, 121, 125, 131]. Typically, given a set of

geo-textual objects, a spatial keyword query takes a location and a set of keywords as arguments and

returns top-k objects that are spatially and textually relevant to these arguments. In this thesis, a set

of new query predicates has been defined with a target of more diversified data types (e.g., activity

trajectories), underlying spaces (e.g., road network) and query semantics, by which users can acquire

their interested results more easily and effectively.

As activity trajectory contains the information about user historical behaviors, searching them by

keywords is able to provide the users with reasonable suggestions on trip planning. Therefore, in

the first work, I study the keyword-oriented query processing on activity trajectories. As follows, if

a user is moving on a route suggested by trip planning applications, it is necessary to support the

spatial keyword queries in a continuous manner. Thus I investigate the keyword-aware continuous

kNN query processing on road networks in the second work. Finally, I explore the clue-based route

search problem as a supplement for the trip planning application, which allows the users to provide

clues for searching the intended route.

1.2.1 Keyword-oriented Queries on Activity Trajectories

In many location-based social network applications, increasing volumes of geo-textual objects are be-

coming available on the web that represent Point-of-Interest (PoIs). These applications allow people

to check-in at these PoIs, each having a spatial location and a semantic description. As a result, the

traditional trajectory databases are redefined and enriched by attaching activity or semantic meanings.

In this thesis, the term activity trajectory is used to represent this check-in sequence of geo-textual

objects that contain the information about the semantic meanings of user behaviour (e.g., activity or

place name) at particular places. However, most existing work mainly focuses on querying the PoIs,

only a few work considers trajectory data. To this end, I study the problem of searching activity tra-

jectories only by keywords, which is very useful in many location-based services such as intelligent

tourist guide and trip planning. This work proposes to support efficient processing keyword-oriented

queries on activity trajectory, wherein given a set of query keywords, the output is the top-k trajectory

6 Introduction

segments with “closely matched” keywords and short travel distances.

1.2.2 Keyword-aware Continuous kNN Queries on Road Networks

With the rapid development of GPS-enabled smart mobile devices and location-based services, there

is a clear trend that objects are increasingly being geo-tagged. Many real-world applications have

the requirements to support the continuous k nearest neighbour (CkNN) queries, or also known as

moving k nearest neighbour queries. Most of the existing work adopts the idea of “safe region”

where all the inside points share the same kNN results, thus reducing the query processing cost in

terms of both computation and communication. In this thesis, I study the keyword-aware continuous

k nearest neighbour (�CkNN) on road networks, which computes the kNN results that contain the

query keywords and maintains the results in a continuous manner. For high frequency keywords, a

window sliding approach is adopted to build a dominance interval with low costs. For low frequency

keywords, a path-based dominance updating approach is proposed to resolve the dominance region

on road network, which guarantees the validity of the current�kNN results and significantly reduces

the computation and communication costs.

1.2.3 Efficient Clue-based Route Search on Road Networks

With the development of location-based services, keyword queries are also combined with travel

planning in commercial applications such as GPS navigation systems or online map services. The

existing solutions (e.g., [16, 63, 93]) for trip planning or route search are dealing with the scenarios

when a user wants to visit a sequence of PoIs, each of which contains a user specified keyword. In

this thesis, I investigate the problem of clue-based route search (CRS), which allows a user to provide

clues on textual and spatial context within the route. Formally, a CRS query is defined over a road

network G, and the input to the query consists of a source vertex vq and a sequence of clues C = {µi},

where each clue µi contains a query keyword wi and a user expected network distance di. The query

returns a path P in G starting at vq, such that P passes through vertices (PoIs) that contain all the

query keywords and comply the same keyword order as in C. In the meantime, it has the minimum

matching distance, which is defined as the degree of satisfaction of the user to P. To find an optimal

route such that it covers a set of query keywords in a given specific order, and the matching distance

1.3 Challenges and Contributions 7

is minimized, several efficient algorithms and index structures are proposed to speed up the search

process.

1.3 Challenges and Contributions

Different with traditional queries on spatial databases, processing spatial keyword queries on large

scale geo-textual data can be more challenging due to the following reasons:

• In most work (e.g., [30, 33]), the spatial keyword search requires the users to specify an exact

location in their queries such that the returned geo-textual objects are close to these locations.

However, we observe that in many circumstances a user does not always have a preferred loca-

tion in advance. This is usually the case when a tourist plans a trip to a city and has not decided

where to live. Without a query location, the search area cannot be localized such that processing

the query can be even more challenging. The only known proposals (e.g., [42,118]) that do not

take query location into consideration are called m closest queries, which aim to find m closest

objects that match the query keywords and their distance diameter is minimized. Therefore,

more such queries are still open to study.

• Many real-world applications have the requirements to support the continuous queries, but ex-

isting techniques (e.g., [59,131]) for the static spatial keyword query are not directly applicable

for continuous spatial keyword query. Although some existing works adopt safe region tech-

nique to reduce the query processing cost [62, 74], they fall short either in the region construc-

tion overhead or validation overhead. Therefore, on-going efforts are required to meliorate the

user experience by improving the continuous spatial keyword query processing efficiency.

• The distance metric for evaluating the goodness of geo-textual objects on spatial dimension

also differs across existing studies. Many existing proposals assume geo-textual objects locate

in Euclidean space, which might be inappropriate especially in urban areas where the move-

ments of users are constrained by the road network. However, computing the network distance

between objects in scalable networks is a complicated problem, as well as finding the k nearest

neighbors. Therefore, novel indexing and querying solutions for spatial keyword queries on

road networks should be invented to keep the computation cost tractable.

8 Introduction

In the following, I will briefly describe our contributions in addressing the above challenges.

1.3.1 Keyword-oriented Queries on Activity Trajectories

In this thesis, I study the problem of searching activity trajectories by keywords. Given a set of query

keywords, the keyword-oriented query for activity trajectory (KOAT) returns k trajectories that contain

the most relevant keywords to the query and yield the least travel effort in the meantime. The main

difference between KOAT and conventional spatial keyword query is that no query location exists in

KOAT, which means the search area cannot be localized. To capture the travel effort in the context of

query keywords, a novel score function, called spatio-textual ranking function, is first defined. Then

a hybrid index structure called GiKi is developed to organize the trajectories hierarchically, which

enables pruning the search space by spatial and textual similarity simultaneously. Finally an efficient

search algorithm and fast evaluation of the value of spatio-textual ranking function are proposed. The

results of our empirical studies based on real check-in datasets demonstrate that our proposed indices

and algorithms can achieve good scalability.

This research [121] was published in IEEE International Conference on Data Engineering (ICDE)

2015.

1.3.2 Keyword-aware Continuous kNN Queries on Road Networks

In this thesis, I study the problem of keyword-aware continuous k nearest neighbour (�CkNN) search

on road networks, which computes the k nearest vertices that contain the query keywords issued by

a moving object and maintains the results continuously as the object is moving on the road network.

This work proposes a framework, called a Labelling AppRoach for Continuous kNN query (LARC),

on road networks to cope with �CkNN query efficiently. First, a keyword-based pivot tree index is

built to improve the efficiency of boolean spatial keyword queries by avoiding massive network traver-

sals and sequential probe of keywords. To reduce the communication cost, the concepts of dominance

interval and region are developed on road network, which share the similar intuition with safe region

for processing continuous queries in Euclidean space but are more complicated with a dedicated de-

sign. The empirical studies of our experiments have verified the superiority of our proposed solution

in all aspects of index size, communication cost and computation time.

1.4 Thesis Outline 9

This research [123] was published in IEEE International Conference on Data Engineering (ICDE)

2016.

1.3.3 Efficient Clue-based Route Search on Road Networks

In this thesis, I investigate the problem of clue-based route search (CRS), which allows a user to

provide clues on keywords and spatial relationships. First, a greedy algorithm and a dynamic pro-

gramming algorithm are proposed as baselines. To improve efficiency, a branch-and-bound algorithm

is developed that prunes unnecessary vertices in query processing. In order to quickly locate candi-

date, an AB-tree is proposed that stores both the distance and keyword information in tree structure.

To further reduce the index size, a PB-tree is constructed by utilizing the virtue of 2-hop label in-

dex to pinpoint the candidate. Extensive experiments are conducted and verify the superiority of our

algorithms and index structures.

1.4 Thesis Outline

The rest of this thesis is organized as follows: In Chapter 2 I review the related work. Chapter 3

introduces the keyword-oriented queries on activity trajectories. I discuss the keyword-aware contin-

uous k nearest neighbor queries on road network in Chapter 4. In Chapter 5 I describe the problem of

processing clue-based route search on road networks. Finally, I conclude this thesis in Chapter 6.

10 Introduction

Chapter 2

Literature Review

In this chapter, we introduce an overview of some important types of queries, including spatial queries

and spatial keyword queries, which are related to this thesis with various settings. First of all, we

provide the related work on spatial queries in Section 2.1, since the techniques of spatial database

are the basis of spatial keyword queries. More specifically, we review the literature on kNN queries,

trajectory query processing and shortest path and distance queries. In Section 2.2, we provide a brief

description of the existing techniques for various spatial keyword queries, where we review the related

work on top-k spatial keyword queries, continuous spatial keyword queries and travel route search.

2.1 Spatial Queries

In this section, we introduce several classical spatial queries, including kNN queries, trajectory simi-

larity search and shortest path and distance queries.

2.1.1 Nearest Neighbour Queries

Queries on Euclidean Space

In recent years, a number of work has been proposed for efficient processing k nearest neighbor

queries on Euclidean space. Given a set of objects and a query point, this query finds the k nearest

objects to this given point in space. Most of the methods adopt a multi-dimensional index structures,

such as R-tree and its variants [27, 46, 84].

11

12 Literature Review

N. Roussopoulos et al. [84] present an efficient branch-and-bound R-tree traversal algorithm to

find the nearest neighbor object to a query point, and then generalize it to finding the k nearest neigh-

bors. In this work, two important metrics for an optimistic and a pessimistic search ordering strategy

as well as for pruning are discussed. The optimistic metric, which is called minDist, is defined as the

minimum possible distance between the query point and its NN. On the other hand, the pessimistic

metric, called minmaxDist, is defined as the furthest possible distance where the NN of the query

point can reside. The heuristics used in the algorithm are based on orderings of the minDist and

minmaxDist metrics, and a depth first traversal is adopted to find the NN to a query point in an R-tree.

K. Cheung et al. [27] propose an improved nearest neighbor search algorithm on the R-tree and

its variants. The improvement lies in the removal of two heuristics that use the metrics minDist and

minmaxDist, since the calculation of minmaxDist is computationally expensive and has a complexity

of O(d). Moreover, it turns out that these two metrics do not actually increase the pruning power, so

the calculation of minmaxDist is indeed not necessary. Instead, an improved algorithm that does not

make use of minmaxDist is proposed, which is shown to be at least as powerful as previous one in the

pruning capability.

G. Hjaltason et al. [46] propose a best first search paradigm to process the nearest neighbor query.

Different with depth first traversal, the next MBR or subtree to be expanded is always the one with

smallest minDist to the query among all those to be visited. Therefore, a priority queue is kept to

maintain the entries of MBRs to be expanded with their minDist as the sorting key. Initially, the

root is pushed into the priority queue. At each step, the top element in this priority queue is popped

for processing, and its child MBRs or objects are either pushed into this priority queue, or taken as

candidates. This search process terminates when the distance of the top element in priority queue is

greater than current k-th candidate, or the queue is empty. This algorithm is shown to be efficient

since it only visits necessary MBRs. However, this method suffers from the buffer thrashing if the

heap becomes larger than available memory.

Queries on Road Networks

Nearest neighbor queries have received significant attention in spatial database community in the

past decade. Recently, research focus is also extended to a road network scenario by taking the

network distance as distance metric. Normally, a road network is modeled as a graph G = (V, E),

where a vertex v ∈ V denotes a road intersection, an edge e ∈ E denotes the road segment between

2.1 Spatial Queries 13

two intersections, and the weight of each edge is the network distance. Given a query node and a road

network, the k nearest neighbor query on road network finds k nodes that are closest to the query node

in terms of network distance [26, 47, 51, 58, 76, 92, 94, 109].

Shahabi et al. [92] propose graph embedding techniques to deal with nearest neighbor queries.

In this work, a road network is transformed into a high-dimensional Euclidean space such that the

techniques used in Euclidean space can be well applied. They show that the distance in the embedding

space is a good approximation of the actual distance.

Papadias et al. [76] propose an architecture that integrates network and Euclidean information,

capturing pragmatic constraints. Based on this architecture, they develop a Euclidean restriction and

a network expansion framework to efficiently prune the search space by taking advantage of location

and connectivity.

Jensen et al. [51] propose a general spatial-temporal framework for NN queries in a road network

which is represented by a graph. In this framework, some algorithms similar to Dijkstra’s algorithm

are used in order to perform online computation of network distance from a query node to an object.

Kolahdouzan et al. [58] propose VN3 to partition the network into cells by the Network Voronoi

Diagram by pre-computation. They index these cells by an R-tree in the Euclidean space, thus the

problem of finding first NN is reduced to a point location problem. For kNN queries, they also pre-

compute the distances between border points of adjacent cells.

Yiu et al. [109] study the problem of aggregate nearest neighbor queries, which returns the object

that minimizes an aggregate distance function with respect to a set of query points. They consider

alternative aggregate functions and techniques that utilize Euclidean distance bounds, spatial access

methods, and/or network distance materialization structures.

Hu et al. [47] propose an approach that indexes the network topology based on a novel network

reduction technique. It simplifies the network by replacing the graph topology with a set of intercon-

nected tree-based structures, therefore a new NN algorithm is developed on these tree-based structures

following a predetermined tree path to avoid costly network expansion.

Chen et al. [26] address the problem of monitoring the k nearest neighbors to a dynamically

changing path in road networks. Given a destination where a user is going to, this query returns the

kNN with respect to the shortest path connecting the destination and the users current location, and

thus provides a list of nearest candidates for reference by considering the whole coming journey.

14 Literature Review

In addition, nearest neighbor search on high dimensional space has also been extensively studied.

Jagadish et al. [50, 110] present an efficient method, called iDistance, for K-nearest neighbour search

in a high dimensional space, which partitions the data and selects a reference point for each partition.

The data points in each partition are transformed into a single dimensional value based on their sim-

ilarity with respect to the reference point. By applying iDistance, the kNN search is performed by

using one-dimension range search.

2.1.2 Trajectory Query Processing

Trajectory Storage and Indexing

The most popular and classical data structure for spatial data is R-tree [43]. However, directly

applying R-tree on spatial dimension and temporal dimension for trajectory data is not good enough.

Therefore, many optimizations are proposed to make the R-tree based structures support the trajectory

data. TB-tree [78] uses a hybrid tree structure to store and index both spatial and temporal informa-

tion, but is not adequate to process long trajectories, which can make the bounding rectangles very

large. TPR-tree [95] and TPR*-tree [99] invoke the predication model to predict the future positions

of moving objects. On the other hand, partitioning trajectories into segments become a new way to

improve the query performance. Rasetic et al. [81] derive an analytical cost model to control the

splitting process for a trajectory into segments based on given query. SETI [19] stores trajectory

segments in a 3D R-tree for their spatial information. Meanwhile, SETI indexes the temporal infor-

mation by using one dimensional time lines to increase the search performance. PIST [13] partitions

the sample points rather than partitioning the trajectories. Similarly, the TrajStore [32] propose a

new adaptive storage system that indexes the trajectory data based on quad-tree index and clustering

methods. These algorithms or systems are designed based for disk based systems, which means I/O

cost between hard disk to memory is the main concern. However, there is no I/O cost in in-memory

based systems. Thus these algorithms and systems are not feasible for in-memory systems.

Trajectory Similarity Search

Given a query trajectory and a trajectory database, the trajectory similarity search returns trajec-

tories with smallest distances to the query trajectory. The distance between the query trajectory and

target trajectories is measured by a distance function [4, 24, 25, 36, 100, 108].

2.1 Spatial Queries 15

Discrete Fourier Transform (DFT) [4] is the pioneering work of this area, which transforms tra-

jectories to multi-dimensional points, and then computes their Euclidean distances in feature space.

Faloutsos et al. [36] extend DFT to support subsequence matching. However, these methods require

the trajectories to have the exact same length.

Dynamic Time Warping (DTW) [108] is another well-known algorithm for finding similar trajec-

tory patterns between two trajectories. It removes the restriction of DFT by allowing time-shifting

in the comparison of trajectories. DTW uses a recursive method to search all possible point combi-

nations between two trajectories for the one with minimal distance, and can be easily converted to

dynamic programming.

Longest Common Subsequence (LCSS) [100] is a robust similarity measure for processing low

quality trajectory. To detect matching points, a threshold is applied, and if the threshold is greater

than the distance between two points, these two points are considered to be a match. The intuition of

LCSS is that it allows some unmatched sample points to be matched under some flexibilities.

Chen et al. [24] propose the ERP distance, which utilizes L1-norm as distance measure. Therefore,

efficient pruning can be well deployed by using the metric properties, which is a significant advantage

over DTW and LCSS. Chen et al. [25] propose another edit distance based similarity measure EDR,

which is similar to LCSS in using a threshold to determine if two points are matched when considering

penalties to gaps.

Despite the research on trajectory similarity measure, some applications based on trajectory sim-

ilarity have also been proposed [122, 128, 130].

Zheng et al. [130] aim to mine interesting locations and classical travel sequences by using the user

generated GPS trajectories. They regard an individual’s visit to a location as a link from the individual

to the location, and weight these links in terms of users’ travel experiences in various regions. A

HITS-based model is proposed to infer a user’s travel experience and the interest of a location, and

then they detect the classical travel sequences in a specified region using location interests and user’s

travel experience.

Zheng et al. [128] represent the uncertainty of the objects moving along road networks as time-

dependent probability distribution functions. Given a set of uncertain trajectories, they construct

an index called uncertan trajectory hierarchy to organise the trajectories. Based on this index, they

propose efficient algorithms for processing spatio-temporal range queries.

16 Literature Review

Yuan et al. [112, 113] propose a smart driving direction system to leverage the intelligence of

experienced drivers. This system employs GPS-equipped taxis as mobile sensors to probe the traffic

rhythm of a city and taxi drivers intelligence in choosing driving directions in the physical world.

They propose a time-dependent landmark graph to model the dynamic traffic pattern as well as the

intelligence of experienced drivers so as to provide a user with the practically fastest route to a given

destination at a given departure time. Then, a Variance-Entropy-Based Clustering approach is devised

to estimate the distribution of travel time between two landmarks in different time slots. Based on this

graph, they design a two-stage routing algorithm to compute the practically fastest and customized

route for end users.

Zheng et al. [122] propose to model the users’ trajectories in public transportation systems. The

goal is to estimate the similarity between users’ travel patterns according to their travel smart card

data. The core of this proposal is that they define a travel spatial-temporal similarity function to

measure the spatial range and temporal similarity between users. In addition, they also propose a

hybrid index structure, which integrates inverted files and cluster-based partitioning, to allow for

efficient retrieval of the top-K most similar users.

Travel spatial pattern similarity could be analogically viewed as a problem of weighted set-based

string similarity. Such related research has been conducted in [8,20,44,45,96,105], Marios et al. [44]

concentrate on weighted similarity functions like TF/IDF, and introduce variants that are well suited

for set similarity selections in a relational database context.

Besides, travel temporal pattern similarity could also be treated as problem of measuring distance

between distributions. [67,77,85,86] investigate the properties of a metric between two distributions,

the Earth Movers Distance (EMD), which is based on the minimal cost that must be paid to transform

one distribution into the other. EMD is more robust than histogram matching techniques, in that it

can operate on variable-length representations of the distributions that avoid quantization and other

binning problems typical of histograms. When used to compare distributions with the same overall

mass, the EMD is a true metric.

2.1 Spatial Queries 17

2.1.3 Shortest Path and Distance Queries

The shortest path and distance query is a significant problem that finds applications in various com-

mercial navigation products and map services. Given a graph G, the input of the query are a source s

and a destination t, the output is the shortest path between s and t. [3, 9–11, 34, 38, 39, 70, 82, 87, 88,

90, 101, 103, 104, 120, 133]

The classic solution for this problem is the Dijkstra’s algorithm [34]. For a given source node

in the graph, the algorithm finds the shortest path between that node and every other node. It can

also be used for finding the shortest paths from a single node to a single destination node by stopping

the algorithm once the shortest path to the destination node has been determined. Given two vertices

in graph, the bidirectional Dijkstra’s algorithm [79] proceeds two instances of Dijkstra’s algorithm

simultaneously. Each instance traverses the vertices in graph in ascending order of the distance to

these two query nodes, and maintains a minimum spanning tree for every visited vertex. These two

traversal terminate when they meet at a vertex in the middle, then the corresponding shortest path and

network distance are reported.

Bast et al. [10,11] introduce a concept of transit nodes, which is used as a means for preprocessing

a road network, with each node given coordinates and each edge given a travel time or length, in order

that the shortest path queries can be answered fast. It first imposes a grid on the road networks, and

then precomputes the shortest paths from within each grid cell to a set of vertices that are consid-

ered important for the cell. With the pre-computed distances, it can efficiently compute the distance

between any two vertices in road networks.

CH [38] is an indexing technique for graph that imposes a total order on the nodes in graph

according to their relative importance. A hierarchy is constructed by iteratively contracting the least

important node that CH replaces the shortest paths by shortcuts. Then CH pre-computes the distances

between various nodes based on the total order. CH then utilizes the pre-computed distances to

accelerate shortest path and distance queries by applying a bidirectional dikjstra’s algorithm.

Samet et al. [87, 89] propose a framework called Spatially Induced Linkage Cognizance (SILC)

that uses path coherence between the shortest paths and the spatial locations of nodes in the network,

thus resulting in an encoding that is compact in representation and fast in path and distance retrievals.

SILC first precomputes the allpair shortest paths and then stores them in a concise form in order that

18 Literature Review

the query can be answered efficiently.

Sankaranarayanan et al. [90] propose a technique called Path-Coherent Pairs Decomposition (PCPD).

PCPD shares the similar intuition with SILC that precomputes and stores all shortest paths among the

nodes in the graph. PCPD introduce three approximate oracles for spatial networks that are able to

answer distance queries in an approximate manner.

To the best of our knowledge, one of the most notable recent developments is the emergence of

practical 2-hop labeling methods [1, 2, 5, 6, 54] for DO on large networks. It constructs labels for

vertices such that a distance query for any vertex pair u and v can be answered by only looking up the

common labels of u and v.

Abraham et al. [1] propose a hub-based labeling algorithm by using the contraction hierarchies

algorithm [38] for preprocessing. They introduce two label compression techniques, a distance oracle

to accelerate long-range (and random) queries, and the index-free variant of the algorithm.

PLL [6] proposes an efficient method for exact shortest path and distance queries based on distance

labeling to vertices. The algorithm conducts breadth-first search (BFS) from all the vertices with

pruning strategies. Though the algorithm is simple, the pruning surprisingly reduce the search space

and the labels, resulting in fast preprocessing time, small index size and fast query time.

HopDB [54] proposes a novel 2-hop labeling indexing method for P2P distance querying on un-

weighted directed graphs, and have developed I/O efficient algorithms for index construction when

the given graph and the index cannot fit in main memory. With scalable indexing complexities, this

method performs well on different types of scale-free networks and can handle graphs many times

larger than existing methods.

Akiba et al. [5] propose a new framework called highway-based labelings and an algorithm named

pruned highway labeling for preprocessing. It exploits the highway structure in road networks, de-

composes a graph into shortest paths and stores distances from each vertex to the shortest paths in

each label. In addition, it computes small labels for highway-based labelings.

2.2 Spatial Keyword Queries

Searching geo-textual objects with query location and keywords has gained increasing attention re-

cently due to the popularity of location-based services. A prototypical spatial keyword query takes a

2.2 Spatial Keyword Queries 19

set of keywords and a location as input and finds geo-textual objects that are spatially and textually

relevant. In literature, a wide range of work has already been proposed that study different aspects of

spatial keyword search [15,17,18,23,30,33,37,42,61,64,116,118,119]. In this section, we introduce

three types of spatial keyword queries: top-k spatial keyword queries, continuous spatial keyword

queries and travel route search.

2.2.1 Top-k Spatial Keyword Queries

Top-k query problem is an enduring research point [35, 49, 68, 97]. Ilyas et al. [49] describe and

classify top-k processing techniques in relational databases. The NRA algorithm [35] [68] tries to

compute a “range” of possible scores for each object since the lack of random access prevents com-

puting an exact score for each seen object. By allowing random access to the underlying data sources

it triggers the need for cost models to optimize the number of random and sorted accesses. On top of

techniques for top-k queries, we introduce top-k spatial keyword queries on Euclidean space and road

networks.

Queries on Euclidean Space

In Euclidean space, IR2-tree [33] integrates signature files and R-tree to answer boolean keyword

queries. In IR2-tree, a signature is added to each node of this tree to represent the textual content of all

spatial objects in the subtree. An efficient incremental algorithm is presented to answer top-k spatial

keyword queries using the IR2-Tree by accessing a minimal portion of the tree nodes.

IR-tree [30] is an R-tree augmented with inverted files that supports the ranking of objects based on

a score function of spatial distance and text relevancy. It proposes several hybrid indexing approaches

and encompasses algorithms that utilize the proposed indexes for computing the top-k query, and it is

capable of taking into account both text relevancy and location proximity to prune the search space at

query time.

Cao et al. [17] proposes a location-aware top-k prestige-based text retrieval (LkPT) query, to

retrieve the top-k spatial web objects ranked according to both prestige-based text relevance (PR) and

location proximity. They develop two baseline algorithms and propose two new algorithms to process

the LkPT query efficiently.

Chen et al. [23] provide an all-round survey of 12 state-of-art geo-textual indices and proposes

20 Literature Review

a benchmark that enables the comparison of the spatial keyword query performance. They consider

the support for three fundamental kinds of geo-textual queries: Boolean kNN query, top-k kNN query

and boolean range query.

Zhang et al. [118, 119] proposes the m closet keyword query (mCK query) which aims to find

the closest objects that match the query keywords and their distance diameter is minimized. They

introduce a new index called the bR∗-tree, which is an extension of the R∗-tree. Based on bR∗-tree,

they exploit a priori-based search strategies to effectively reduce the search space. They also propose

two monotone constraints, namely the distance mutex and keyword mutex, as a priori properties to

facilitate effective pruning. Recently, Guo et al. [42] first prove that mCK is NP-hard. Then they

propose approximation algorithms to solve the mCK query with a ratio of (2
√

3
+ ε).

Cao et al. [18] propose a collective spatial keyword query, in which a different semantics is taken

such that the group of objects in the result covers the query keywords and has the lowest cost. They

study two particular instances of the problem, both of which are NP-complete. They develop ap-

proximation algorithms with provable approximation bounds and exact algorithms to solve the two

problems.

Li et al. [64] study the problem of direction-aware spatial keyword search, which aims at finding

the k nearest neighbors to the query that contain all input keywords and satisfy the direction constraint.

They devise novel direction-aware indexing structures to prune unnecessary directions. They further

develop effective pruning techniques and search algorithms to efficiently answer a direction-aware

query. As users may dynamically change their search directions, they propose to incrementally answer

the queries.

Zheng et al. [124] study the problem of activity trajectory similarity query (ATSO). It returns k

trajectories that cover the query activities and yield the shortest minimum match distance from given a

sequence of query points. In this query, each point contains several activities such as sports, shopping

etc. They developed a hybrid grid index structure, called GAT, to organise the trajectory segments and

activities hierarchically. By using GAT, the pruning speed can be increased significantly, which means

both I/O and CPU remain low. Finally, the authors extend their method to support ordersensitive

ATSO queries.

Zheng et al. [127] propose a top-k spatial keyword query for activity trajectories, with the objective

to find a set of trajectories that are not only close geographically but also meet the requirements of

2.2 Spatial Keyword Queries 21

the query semantically. They provide a novel similarity function, hybird indexing structure, efficient

search algorithm and further optimizations to answer the query efficiently.

Queries on Road Networks

ROAD [59, 60] is proposed for spatial object search on road networks. It is extensible to diverse

object types and efficient for processing various location-dependent spatial queries, as it maintains

objects separately from an underlying network and adopts an effective search space pruning technique.

Based on network traversal and object lookup, ROAD organizes the road network as a hierarchy of

subgraphs, and connects them by adding shortcuts to accelerate network traversals and provide quick

object lookups. To manage those shortcuts and object abstracts, two cooperating indices, namely,

Route Overlay and Association Directory are devised. By using network expansion, the subgraphs

without intended object are pruned out.

Rocha et al. [83] introduce top-k spatial keyword queries on road networks. Given a query location

and a set of query keywords, a top-k spatial keyword query on road networks returns the k best spatio-

textual objects ranked in terms of both textual similarity to the query keywords and shortest path to

the query location. They present a basic approach to process the queries by combining state-of-the-art

techniques. Then, they present an enhanced approach that indexes the edges of the road network, and

permits identifying and retrieving the objects relevant to the query efficiently. Finally, they propose

an overlay approach that groups objects in regions, taking in account the textual similarity among

the objects, and permits computing an upper-bound score for all objects in the region. Consequently,

regions whose the upper-bound score is smaller or equal the score of the k-th object already found

can be pruned, improving the performance.

G-tree [131, 132] adopts a graph partitioning approach to form a height-balanced and scalable

index namely G-tree. Within each subgraph, a distance matrix is kept, and for any two subgraphs,

the distances between all borders of them are stored as well. Based on these distances, it efficiently

computes the distance between query vertex and target vertices or tree nodes. The basis for this

framework is an assembly-based method to calculate the shortest-path distances between two vertices.

Based on the assembly-based method, efficient search algorithms to answer k nearest neighbor queries

and keyword-based k nearest neighbor queries are developed.

Zhang et al. [117] study the problem of diversified spatial keyword search on road networks

22 Literature Review

which considers both the relevance and the spatial diversity of the results. They propose an effi-

cient signature-based inverted indexing technique to facilitate the spatial keyword query processing

on road networks. Then they further develop an efficient diversified spatial keyword search algorithm

by taking advantage of spatial keyword pruning and diversity pruning techniques.

Luo et al. [69] develop a distributed solution to answering spatial keyword queries on road net-

works. They propose an operation for answering spatial keyword queries and reduce the problem

of answering a query into computing a function of such operations. They propose a new distributed

index that enables each machine to independently evaluate the operation on its network fragment in a

distributed environment.

Jiang et al. [53] adopt 2-hop label for handling the distance query for kNN problem on large

networks. For low frequent keywords, they propose a forward search component by utilizing the

inverted lists. For high frequent keywords, the propose a forward backward search component by

constructing a 2-hop label backward index and a keyword lookup tree index. Finally, they adopt a

hybrid approach to combine the forward search and forward backward search together.

2.2.2 Continuous Spatial Keyword Queries

There are quite a number of studies on CkNN/MkNN queries. YPK-CNN [111], CPM [71] and

GMA [72] study the problem of finding nearest moving objects (e.g., taxies) to a location and focus

on dealing with frequent updates of moving objects.

YPK-CNN [111] propose two efficient and scalable algorithms using grid indices, one for index-

ing objects and the other for queries. For each approach, a cost model is developed, and a detailed

analysis along with the respective applicability are presented.

CPM [71] investigates the problem of monitoring continuous NN queries over moving objects.

The goal of the query processor is to constantly return the results of all queries, as location updates

by from both the objects and the queries. It proposes an efficient algorithm based on a conceptual

partitioning of the space around each query in order to restrict the result maintenance and nearest

neighbor computation to objects that lie in the vicinity of the query. The core idea is to retrieve the

first-time results of incoming queries, and the new results of existing queries that change location. It

produces and stores book-keeping information to facilitate fast update handling.

2.2 Spatial Keyword Queries 23

GMA [72] studies k-NN monitoring on road networks, where the network distance between a

query and an object is determined by the length of the shortest path connecting them. It proposes two

methods that can handle arbitrary object and query moving patterns, as well as fluctuations of edge

weights. The first one maintains the query results by processing only updates that may invalidate the

current nearest neighbor sets. The second method follows the shared execution paradigm to reduce

the processing time. In particular, it groups together the queries that fall in the path between two

consecutive intersections in the network, and produces their results by monitoring the nearest neighbor

sets of these intersections.

CkNN [98] finds the kNN for every single point on a predefined linear trajectory. This is achieved

by identifying all influence points on the trajectory. It first deal with continuous nearest neighbor

then propose query processing methods using R-trees as the underlying data structure. However, it is

limited that the query trajectory must be known at query time.

UNICONS [28] deals with nearest neighbor queries as well as continuous NN queries in the con-

text of moving objects databases. It precomputes and stores mNN results for each vertex in road

network, and incorporates the use of precomputed NN lists into Dijkstras algorithm for nearest neigh-

bor queries. For CkNN query, UNICONS computes the valid intervals of the query path. However,

if k is large the massive network traversals still can not be avoid to obtain kNN results. Moreover,

UNICONS is poor for handling sparse objects due to frequent recomputation of valid intervals.

Existing work [48, 62, 74, 102] adopts the concept of safe region which maintains a kNN set and

an associated “safe region” where the query object can move freely without invalidating this kNN set.

The query processor only needs to process a kNN query when the query object moves out of the safe

region. Thus, both the computation and communication cost between the query object and the query

processor are reduced.

Different with previous safe-region-based techniques, V∗-Diagram [74] exploits the knowledge of

both the query location and data objects. First it uses R-tree to obtain k + x NN results. With the

auxiliary x results, it constructs the safe region by narrowing down the known region. By combining

with a finxed-rank region, it finally generates an integrated safe region.

MkSK [102] studies the problem that considers both spatial locations and keywords and maintains

a safe zone that guarantee the validity for CkNN query. It develops two solutions for computing a safe

region. The first is an early stop algorithm. The other is an advanced algorithm that prunes subtrees

24 Literature Review

of objects that do not contribute to the safe region and applies two optimizations to further reduce the

search space and communication cost. However, MkSK is only limited to Euclidean space and cannot

be well deployed.

Instead of computing a safe region, INS [62] uses a small set of influential neighbour objects,

which shares the similar functionality with safe region. As long as the current kNN results are closer

to the query object than the influential neighbour objects, the current kNN results stay valid and no

recomputation is required. Thus the high cost of safe region recomputation is avoid. They also prove

that the region defined by the safe guarding objects is the largest possible (optimal) safe region. This

means the recomputation frequency of this method is minimized.

2.2.3 Travel Route Search

The travel route search problem has been substantially studied for decades [16, 22, 55, 56, 63, 65, 93,

107,114,115]. Traveling Salesman Problem (TSP) [29] is the most classic problem in route planning.

TSP aims to find the round trip that has the minimum cost from a source point to a set of targets and

finally returns to the source point.

Li et al. [63] study the problem of Trip Planning Query (TPQ) in spatial databases, where each

object is associated with a location and a category. With a starting point S , a destination E and a

set of categories C, TPQ retrieves the best trip that starts at S passes through at least one point from

each category, and ends at E. The difficulty of this query lies in the existence of multiple choices per

category. TPQ can be considered as a generalization of Travelling Salesman Problem (TSP), thus two

approximation algorithms are proposed.

M Sharifzadeh et al. [93] study the problem of optimal sequenced route (OSR), which aims to

find a route of minimum length starting from a source point and passing through a number of typed

locations in a specific sequence imposed on the types of the locations. The OSR problem is first

transformed into a shortest path problem on a large planer graph, which turns out that the classic

algorithm such as Dijkstra’s algorithm is impractical for most real-world scenarios. They propose a

light threshold-based iterative algorithm LORD, which utilizes various thresholds to prune the loca-

tions that cannot belong to the optimal route. They also propose an extension algorithm R-LORD,

which uses R-tree to examine the threshold values more efficiently.

2.2 Spatial Keyword Queries 25

H. Chen et al. [22] study the problem of multi-rule partial sequence route (MRPSR), which pro-

vides a unified framework that subsumes the well-known trip planning query (TPQ) [63] and the

optimal sequenced route (OSR) [93] query and aims to find an optimal route with minimum distance

under some partial category order rules defined in the query. They first prove that MRPSR is NP-hard

and then propose three heuristic algorithms to search for near-optimal solutions for the MRPSR query.

Kanza et al. [56] study route-search queries by suggesting three semantics for such queries and

deals with the problem of efficiently answering queries under the different semantics. The shortest-

route semantic requires the answer to be the shortest pre-answer, the most-profitable-route semantic

asks that the answer is the pre-answer that has the highest total score among the pre-answers whose

length dost not exceed a given length, and the most-reliable-route demands that the answer is the

pre-answer with the highest minimal score among the pre-answers whose length dose not exceed a

given length. They propose a greedy algorithm to find a route whose length is smaller than a specified

threshold while the total text relevance of this route is maximized.

Kanza et al. [55] study the problem of finding a route that visits at least one satisfying entity of

each type in an interactive approach. In each step, a candidate is given to user to provide a feedback

specifying whether the entity satisfies her. They present heuristic algorithms for interactive route

search for two cases, depending on whether the constraints define a complete order or a partial one.

The main challenge of this work is to use the feedback in order to find a route that is shorter and has

a higher degree of success, compared to routes that are computed in non-interactive approaches.

Yao et al. [107] study the problem of multi-approximate-keyword routing (MAKR) query, which

complements the standard shortest path search with multiple keywords and an approximate string

similarity function. For each keyword, the matching point is supposed to have an edit distance smaller

than a given threshold. They first prove MAKR is NP-hard and then propose an exact algorithm and

three approximate algorithms to answer the query efficiently.

Cao et al. [16] define the problem of keyword-aware optimal route query, which is to find an

optimal route such that it covers a set of user-specified keywords, a specific budget constraint is

satisfied, and the objective score of the route is optimized. The problem of answering KOR queries

is proved to be NP-hard. They first propose an approximation algorithm OSScaling with provable

approximation bounds. Based on this algorithm, another more efficient approximation algorithm

BucketBound is also proposed. Finally, they design a greedy approximation algorithm.

26 Literature Review

Li et al. [65] propose two different solutions, namely backward search and forward search, to deal

with the general optimal route query without a total order. Given a set of spatial objects, each of

which is associated with categorical information, the optimal route query finds the shortest path that

starts from the query point, and covers a user-specified set of categories. The user may also specify

partial order constraints between different categories.

Zhang et al. [115] propose the problem of personalized trip recommendation, which aims to find

the optimal trip that maximizes users’ experiences for a given time budget constraint and also takes

the uncertain traveling time into consideration.

Zeng et al. [114] study the problem of optimal route search for keyword coverage, which takes into

account the weighted user preferences in route search, and also presents a keyword coverage problem,

which finds an optimal route from a source location to a target location such that the keyword coverage

is optimized and that the budget score satisfies a specified constraint.

Chapter 3

Keyword-oriented Queries on Activity

Trajectories

Driven by the advances in location positioning techniques and the popularity of location sharing ser-

vices, semantic enriched trajectory data, which is called activity trajectory, have become unprecedent-

edly available. In this chapter, we study the problem of searching activity trajectories by keywords.

Given a set of query keywords, a keyword-oriented query for activity trajectory (KOAT) returns k

trajectories that contain the most relevant keywords to the query and yield the least travel effort in the

meantime. The main difference between this work and conventional spatial keyword queries is that

there is no query location in KOAT, which means the search area cannot be localized. To capture the

travel effort in the context of query keywords, a novel spatio-textual ranking function, is first defined.

Then we develop a hybrid index structure called GiKi to organize the trajectories hierarchically, which

enables pruning the search space by spatial and textual similarity simultaneously. Finally an efficient

search algorithm and fast evaluation are proposed. In addition, we extend the proposed techniques of

KOAT to support range-based query and order sensitive query, which can be applied for more practi-

cal applications. The results of our empirical studies based on real check-in datasets demonstrate that

our proposed index and algorithms can achieve good scalability.

This chapter is organized as follows. We give an introduction in Section 3.1 and define the nec-

essary concepts and formulate the query in Section 3.2. Section 3.3 presents the baseline methods.

Proposed index structure and solution for KOAT are discussed in Section 3.4 and Section 3.5. Section

27

28 Keyword-oriented Queries on Activity Trajectories

3.6 describes the enhanced algorithm. Section 3.7 reports the experimental observations. Finally, we

conclude this chapter in Section 3.8.

3.1 Introduction

Mobility devices such as smartphones and tablets now are gradually predominating the transformation

of the web from desktop-based age to mobility-based age, resulting in large-scale collection of move-

ment data. Such data recording the motion history of moving objects, known as trajectories, play an

essential role in a variety of well-established application areas (e.g., tracking, urban planning, traffic

management, geo social networks). Representative work includes designing effective trajectory in-

dexing structures [14, 78], trajectory query processing [25, 100], uncertainty management [126, 128],

and mining knowledge/patterns from trajectories [52, 129]. In the meantime, increasing volumes of

geo-textual objects are becoming available on the web that represent Point-of-Interest (PoIs). Appli-

cations (e.g., Facebook1, Foursqure2 and Flickr3) allow people to check-in at these PoIs, each having

a spatial location and a semantic description. By virtue of semantic labelling, the traditional trajectory

databases are redefined and enriched by attaching activity or semantic meanings. In this work, we use

the term activity trajectory to represent this check-in sequence of geo-textual objects that contain the

information about the semantic meanings of user behaviour (e.g., activity or place name) at particular

places.

Cong et al. [17, 18, 30] have extensively studied spatial keyword queries with different problem

settings. However, these work are based on geo-textual objects, rather than trajectory database. Only

a few proposals on activity trajectory have been published that aim to return relevant geo-textual

objects in response to a query’s activity interests and geographical preference [31, 124]. Zheng et

al. [124] study the activity trajectory similarity query (ATSQ) that accounts for covering the query

activities and yielding the shortest minimum match distance. A major limitation of the ATSQ is

that it only supports exact keyword search condition. However, in many real application scenarios,

approximate keyword search is more desirable since users may not know well enough about the data

1https://www.facebook.com
2https://foursquare.com
3https://www.flickr.com

3.1 Introduction 29

to type accurate query keywords. Another limitation of previous work is that they require users to

specify one or more locations in their queries so that the returned PoIs or trajectories are close to

these locations. However, we observe that in many circumstances a user does not have a preferred

location in advance. This is usually the case when a tourist plans a trip to a city and has not decided

where to live. Searching for the travel histories based on the desired activities will help her to choose

the suitable location.

p1,1

p1,2 (p2,2)

p2,3

p3,1 p1,5

p1,4 (p3,2)

p1,3 (p2,5)
p2,1

p2,6 p3,3

p2,4

Object Associated Keywords

p1,1 Restaurant, Club, Shop

p1,2 (p2,2) Cafe

p1,3 (p2,5) Park

p1,4 (p3,2) Theater, Pub

p1,5 Market, Station

p2,1 Restaurant, Gym

p2,3 School, Pizza, Spa

p2,4 Bakery, Hotel, Mall

p2,6 Theatre, Bar

… …

Tr1

Tr2

Tr3

Figure 3.1: Running example for KOAT query

To this end, we study the problem of searching activity trajectories with keywords, which is very

useful in many location-based services such as intelligent tourist guide and trip planning. Consider

the example shown in Figure 3.1. A tourist Q plans to visit q1 : Restaurant for dinner and then

q2 : Theatre to watch a movie. She would like to check the travelling histories of other people that

are relevant to her intended activities for reference, since she is new to this city. Exact keyword

match would only return trajectory Tr2 from p2,1 to p2,6 as result, but ideally the places with keyword

Theater should also be considered. If we adopt some string similarity functions (e.g., edit distance)

that allows for approximate keyword match, then both trajectory Tr1 from p1,1 to p1,4 and Tr2 from

p2,1 to p2,6 may be considered. Moreover, Tr1 from p1,1 to p1,4 is an even better choice since it

obviously requires less travel effort.

Towards this direction, our previous work [121] aims to support efficient process of keyword-

oriented search on activity trajectory database, wherein given a set of query keywords, the output is the

top-k trajectory segments with “closely matched” keywords and short travel distances. Specifically,

we propose a novel score function for activity trajectory by incorporating both keyword similarity

30 Keyword-oriented Queries on Activity Trajectories

and travel distance into the distance measure. However, answering this new query turns out to be

a challenging problem since just making use of either location or keyword information for search

space pruning will result in bad query performance. In addition, evaluating this query calls for an

exploration of huge numbers combinations of geo-textual objects within each trajectory. Therefore,

we propose a novel hybrid index structure, called GiKi, to develop a tighter lower bound of spatio-

textual ranking function for all “unseen” trajectories in the database, and also propose an efficient

algorithm to compute the scores of candidates. In addition, we propose a trajectory segmentation

method to partition trajectories into segments, and then propose an enhanced search algorithm based

on it. Besides, though this query offers some flexibility, sometimes the user may be more interested

in the trajectories which locate in a specific region or whose activity order is defined at query time.

To sum up, we make the following major contributions in this chapter.

• We introduce a spatio-textual ranking function to take both the travel effort and textual proxim-

ity into consideration. In addition, we propose a novel index structure called GiKi to organize

the trajectories in a hierarchical manner. On top of that, a best-first search strategy is developed

to prune a large number of disqualifying trajectories by keyword similarity and travel distance

minimization simultaneously.

• We also propose a trajectory segmentation method to partition trajectories into segments by

considering spatial, temporal and semantic features. Based on this, an enhanced search algo-

rithm based on trajectory segmentation is developed to answer the query more efficiently.

• We propose a range-based query and an order-sensitive query on activity trajectories, which are

extended from KOAT, to support more practical applications.

• We conduct extensive experimental study based on real check-in datasets. The experimental

results show the scalability of our proposed solution.

3.2 Problem Statement

In this section, we formally define the keyword-oriented query for activity trajectories (KOAT). Table

3.1 summarizes the major notations used in this chapter.

3.2 Problem Statement 31

Table 3.1: Summary of notations

Notation Definition

Q A set of query keywords

Tr A semantic trajectory

p A geo-textual object with l, t and Φ

Tr[s, e] A sub-trajectory of Tr starts from s to e

Qkm(Tr) A keyword mapping from Q to Tr

Qmkm(Tr) Minimum keyword mapping from Q to Tr

Dtd(Q,Tr) Textual distance between Q and Tr

Dtr(Tr) Travel distance of Tr

Dmd(Q,Tr[s, e]) Matching distance between Q and Tr[s, e]

Rst(Q,Tr) Spatio-textual ranking function

Definition 3.1 (Activity Trajectory). An activity trajectory Tr is defined as a sequence of geo-textual

objects, i.e. Tr = {p1, p2, . . . , p|Tr|}, where each object pi = (l, t,Φ) contains a location pi.l, a times-

tamp pi.t and a set of keywords Φ(pi) = {w j} denoting the semantic/textual description associated

with the location. A sub-trajectory Tr[s, e] ⊆ Tr is a segment of Tr from ps to pe.

In order to estimate the relevance between the query and ideal trajectories, we proceed to consider

ones with high textual similarity and less travel distances. First, we introduce a concept of keyword

matching that maps query keywords to objects within a trajectory.

Definition 3.2 (Keyword Matching). Given a set of query keywords Q = {q1, q2, . . . , q|Q|}, and a tra-

jectory Tr or a sub-trajectory Tr[s, e]. A keyword matching from Q to Tr is a set of objects Qkm(Tr),

where the contained keywords may have high textual similarity with Q. In addition, the keyword

matching with highest textual similarity w.r.t. Q is defined as the minimum keyword matching, i.e.,

Qmkm(Tr). In other words, Qmkm(Tr) contains the keywords that are most similar to query keywords

among all keywords in Tr.

We adopt the edit distance metric to measure the textual relevance. Formally, we define textual

distance as the sum of minimum normalized edit distances between each qi ∈ Q and keywords

w j ∈ Qmkm(Tr).Φ.

32 Keyword-oriented Queries on Activity Trajectories

Dtd(Q,Tr) =
1
|Q|

∑
qi,w j

min{
de(qi,w j)

max{|qi|, |w j|}
} (3.1)

We define travel distance as the length of the trajectory or sub-trajectory. In addition, we adopt

Sigmoid function to normalize it, since the value of Sigmoid function changes more quickly when the

variable is small, which matches the intuition that users’ satisfactory is usually more sensitive when

the travel distance is short. Further, we use ϕ as distance adjusting parameter, which can be easily

computed by the maximum length of trajectories in database:

Dtr(Tr) =
2

1 + e−ϕ·len(Tr) − 1 (3.2)

It is worth noting that users only concern about the sub-trajectories from which they could get ref-

erence, thus we adopt a concept of matching distance to incorporate the textual relevance and travel

distance together. Formally, given Q and Tr[s, e], the matching distance, denoted as Dmd(Q,Tr[s, e]),

is defined as follows:

Dmd(Q,Tr[s, e]) = α · Dtd(Q,Tr[s, e]) + (1 − α) · Dtr(Tr[s, e]) (3.3)

where α is a user-specified parameter and used to adjust the relative importance of the textual

relevance and travel distance.

Definition 3.3 (Spatio-textual Ranking Function). Given Q and Tr, the spatio-textual ranking func-

tion is defined as the minimum matching distance for all Tr[s, e] ⊆ T:

Rst(Q,Tr) = min
Tr[s,e]⊆Tr

{Dmd(Q,Tr[s, e])} (3.4)

Definition 3.4 (Keyword-oriented Query of Activity Trajectory). Given an activity trajectory database

T , a set of query keywords Q = {q1, q2, . . . , q|Q|}, and k. A keyword-oriented query of activity trajec-

tory (KOAT) returns k distinct trajectories that have the minimum score of spatio-textual ranking

function. Intuitively, the KOAT will return the parts of some activity trajectories that contain most

similar keywords w.r.t. the query and yield shortest travel distance.

3.3 Existing Approaches 33

3.3 Existing Approaches

In this section, we propose two baseline algorithms that explore the possibility of extending existing

techniques to solve KOAT.

3.3.1 Probe based Algorithm

To compute edit distance between two strings s1 and s2, the Wagner-Fischer algorithm [73] is an exact

but costly operation, while n-gram [40] is one of the most popular techniques that is able to quickly

estimate edit distance. For a string s, its n-grams are produced by sliding a window of length n over

the characters of s. For example, p1,4 ∈ Tr1 contains the keyword “Pub”, the 3-gram of “Pub” is

{##P, #Pu, Pub, ub$, b$$}. The principle of n-gram similarity between two strings is that the more

n-grams they share, the more similar they are expected to be. The probe based algorithm (PBA) is the

brute-force approach that traverses each trajectory Tr in order to find the sub-trajectory Tr[s, e] that

Dmd(Q,Tr[s, e]) is minimized. At the first step, we retrieve all the trajectories Tr ∈ T whose objects

share at least one common 3-gram with each query keyword qi ∈ Q and treat them as candidates.

Given Tr and a query keyword qi, we proceed to compute the minimum edit distance between each

object p ∈ Tr and qi, and store them in an array. For each candidate Tr, we utilize two probes pbs and

pbe pointing to two objects that construct a sub-trajectory Tr[pbs, pbe]. By moving the position of

two probes, we compute the matching distance Dmd(Q,Tr[pbs, pbe]), thus obtain the value of spatio-

textual score function Rst(Q,Tr). It is easy to see, for each Tr, the space cost is O(|Q| · |Tr|) and the

time cost is O(|Tr|2). Therefore, we know PBA is impractical except for trajectories with short length.

3.3.2 Inverted List based Algorithm

The inverted list based algorithm (ILA) utilizes the inverted list as the index structure to prune the

search space. For each keyword w, let the set of n-grams contained in w be Gw. Analogously, for

object p, we have Gp = ∪w∈p.ΦGw and for trajectory Tr, GTr = ∪p∈TrGp. Therefore, we use inverted

lists for the grams of all trajectories to answer KOAT. For each gram σ, we have a posting list lσ

containing the IDs of trajectories whose grams contain σ. Given Q, we need to scan the inverted lists

in order to obtain the trajectories which share common grams with Q as candidates. We first compute

34 Keyword-oriented Queries on Activity Trajectories

Gqi for each keyword qi. It is straightforward that we merge the TID lists lσ js (σ j ∈ Gqi) by Heap

Algorithm [91] to get a candidate list for each qi. In each list, trajectories are sorted in descending

order by |Gqi ∩GTr|. Therefore, trajectories have no common grams with Q are pruned.

Lemma 3.1. [40] For string s1 and s2 of length |s1| and |s2|, if de(s1, s2) = τ, then |Gs1 ∩ Gs2 | ≥

max(|s1|, |s2|) − 1 − (τ − 1) ∗ n. Through transformation, we obtain

τ ≥
1
n
· (max(|s1|, |s2|) − 1 − |Gs1 ∩Gs2 |) + 1

≥
1
n

(|s1| − 1 − |Gs1 ∩Gs2 |) + 1
(3.5)

Therefore, for each Tr, the lower bound of textual distance w.r.t. qi is computed by

Dtd({qi},Tr)L =
|qi| − |Gqi ∩GTr| + n − 1

n ·max(|qi|,maxLen)
. (3.6)

where maxLen is the maximum length of keywords contained by Tr. Therefore, we are easy to have

Dtd(Q,Tr)L =
∑

qi∈Q Dtd({qi},Tr)L. As we know, the best case is that the travel distance equals to 0,

i.e., all qis are matching to the same object of trajectory Tr. Therefore, Rst(Q,Tr)L = α · Dtd(Q,Tr)L.

We sequentially examine trajectories in order of their lower bounds and compare with the k-th best

result. This process terminates when the lower bound of next candidate exceeds k-th result. By this

means, this baseline is expected to examine fewer trajectories than PBA and achieve better efficiency.

3.4 Hybrid Index Structure

In this section, we propose a novel index structure, namely Grid-Keyword index (GiKi), for trajecto-

ries by incorporating both spatial and textual information to enable pruning search space, as shown in

Figure 3.2. Specifically, we construct a d-Grid by dividing the entire space into quad grids by building

1-Grid, . . . , (d − 1)-Grid, d-Grid, which forms a hierarchy, as shown in Figure 3.2(a). In particular,

GiKi consists of two components: 1) Activity Grid-Tree index (AG-Tree); 2) Keyword-Reference

index (K-Ref).

3.4.1 Activity Grid Tree Index

Based on the grid division, we build AG-Tree to index trajectories together with their keywords.

As shown in Figure 3.2(b), where leaf nodes correspond to the geo-spatial objects attached with

3.4 Hybrid Index Structure 35

𝑝2
1(𝑝2

2)

5

6

7

8

1

9

3

4 2

10

11

12

13

14

15

16

17

18

19

20

p1,1

p1,2 (p2,2)

p1,3 (p2,5)

p1,4 (p3,2)

p2,3

p2,4

p3,3

p1,5 p3,1

p2,6

p2,1

(a) Grid partition of space

0

2 3 1 4

9 10 16 15 14 13 12 11

p1,1 p1,2 (p2,2) p1,3 (p2,5) p1,4 (p3,2) p3,3 p1,5

2

p1,1

(2, sg2, (9,10,11,12))

(sp1,1, Tr1)

(b) AG-Tree index

Figure 3.2: Grid keyword index overview

keywords, and non-leaf nodes are MBRs bounding these objects. For non-leaf node g, which is

actually an MBR, contains three elements (GID, sg, {g′ ∈ g.sub}):

1. Grid ID. It denotes the ID of grid node g;

2. Keyword signature. We use all n-grams of objects that contained in g to compute the keyword

signature sg on the purpose of textual distance computation, and the computation process will

be detailed later;

3. Sub entries. A sequence of pointers pointing to sub grids or objects g′ ∈ g.sub.

For leaf node, p ∈ Tr contains two elements (sp,TID), where sp is the keyword signature of keywords

in p.Φ, and TID denotes the ID of Tr ∈ T .

Keyword signature generation. In order to obtain the keyword signature, a straightforward solution

is to compute the n-grams of keywords and store them in the index. However, this approach requires

storing all grams in the tree structure, which is too space consuming. In order to reduce space cost

and improve computation efficiency, we adopt MinHash [106] method to generate keyword signature

for each node. Basically, MinHash is initially used to detect duplicate web pages for searching. To

implement the MinHash scheme and estimate the set resemblance, some unbiased estimators are pro-

posed to estimate the size of a set by repeatedly assigning random ranks to the universe, and keeping

36 Keyword-oriented Queries on Activity Trajectories

the minimal rank of a set. The minimum values from the permuted ranks of a set kept for each per-

mutation are called the signature and can be used to estimate the set resemblance. Formally, consider

a set of random permutations F = {π1, π2, . . . , π|F|} and a universe of items U. For any set A ⊆ U,

let min{πi(A)} denote min{πi(x)|x ∈ A}, which is the minimum random rank assigned by permutation

πi. For any subset A ⊆ U, any x ∈ A and all πi ∈ F, F is called min-wise independent permutations

if it satisfies that Pr(min{πi(A)} = πi(x)) = 1
|A| . To estimate the set similarity γ between set A and B

(A, B ⊆ U), the signature of A is constructed as sA = [min{π1(A)}, . . . ,min{π|F|(A)}] which is similar

to B. Therefore, γ can be approximated by Jaccard Similarity [40], i.e., γ(sA, sB) ≈ |sA∩sB|

|sA∪sB|
. In KOAT,

we use all the n-grams generated from keywords in T to construct U. Then we compute the keyword

signature for all leaf nodes and non-leaf nodes in AG-Tree, i.e., sg = [min{π1(Gg)}, . . . ,min{π|F|(Gg)}],

where Gg is the n-grams of g.

3.4.2 Keyword Reference Index

As we know, exactly computing edit distance during query processing is infeasible in terms of com-

putation time. Therefore, we offline construct K-Ref to index edit distance within each trajectory. For

each Tr ∈ T , we choose a set of reference keywords R(Tr) = {wr} to index the edit distance between

keywords contained in Tr and reference keywords in R(Tr). Given Tr, our objective is to partition the

keywords into N clusters and select an reference keyword wrn for each cluster, such that the mathe-

matical expectation of edit distance within each cluster is minimized [122]. Needless to say, it is obvi-

ously the K-means problem with a different optimization objective. Therefore, each object pi in Tr is

indexed by a B+-Tree with an index key y(pi), which is computed based on the edit distance between

keyword w j
i and its corresponding reference keyword wrn , i.e., y(pi) = de(wrn ,w

j
i) + n · c (0 ≤ n < N),

where c = max{de(·)} + 1. In addition, for each cluster, a lower bound distance LB(wrn) and an upper

bound distance UB(wrn) are also kept.

3.5 Keyword-oriented Query Processing

In this section, we introduce a dynamic programming algorithm DPA for KOAT. First, we retrieve a

set of candidate trajectories, which contain some similar keywords w.r.t. query keywords by utilizing

3.5 Keyword-oriented Query Processing 37

AG-Tree. Then, we take advantage of K-Ref to compute the lower bound for each candidate trajectory.

Finally, we validate the trajectories by computing spatial-textual ranking value. During this process,

we keep track of k-th smallest value of Rst(Q,Tr)k found so far and a lower bound Rst(Q,Tr)L for all

“unseen” trajectories. Once we have Rst(Q,Tr)k < Rst(Q,Tr)L, the algorithm can terminate safely.

Otherwise we will incrementally fetch more candidates and repeat the above process again. The basic

structure of our proposed search algorithm is introduced by Algorithm 1.

Algorithm 1: Outline for KOAT
Input: Trajectory database T , query Q

Output: top-k result set RS

1 while true do

2 CS ← ∅;

3 CS ← retrieve at least λ candidate;

4 Rst(Q,Tr)L ← update the lower bound;

5 for each Tr ∈ CS do

6 if Tr is a valid candidate then

7 Compute Rst(Q,Tr) and put Tr into RS ;

8 Update Rst(Q,Tr)k and Rst(Q,Tr)L;

9 if Rst(Q,Tr)k < Rst(Q,Tr)L then

10 break;

11 Keep the top-k results in RS ;

12 return RS ;

3.5.1 Candidate Retrieval

A candidate is a trajectory that is possible and seemingly promising to become a result for the query.

Since we intend to find the trajectories with “closely matched” keywords w.r.t. query, which means

the similarity between the signatures generated by Q and Tr should be as greater as possible, we first

propose to find the grids with higher similarity to query. In order to obtain the candidate set CS , we

adopt the best-first paradigm to search the AG-Tree and process the query keywords one by one. It

38 Keyword-oriented Queries on Activity Trajectories

Algorithm 2: Candidate Retrieval
Input: Trajectory database T , query Q and AG-Tree constructed from T

Output: CS

1 CS ← ∅; g← root of AG-Tree;

2 for each qi in Q do

3 Insert g into PQ; Generate sqi ;

4 while PQ , ∅ do

5 Dequeue PQ;

6 if γ(sqi , sg) > 0 and g.S ubGrids , 0 then

7 Enqueue all g ∈ g.S ubGrids into PQ;

8 if γ(sqi , sg) > 0 and g.S ubGrids = 0 then

9 for p ∈ g.S ubPoints do

10 Compute γ(sqi , sp);

11 if γ(sqi , sp) > 0 then

12 Update γ(sqi , sTr)max;

13 Check entries Tr in CS w.r.t. all qi ∈ Q;

14 Compute
∑

qi∈Q γ(sqi , sTr);

15 Retrieve at least λ candidates;

16 return CS ;

is worth to notice that they are processed in ascending order of the frequency of their n-grams, i.e.,

keywords with infrequent n-grams are processed first, since they are more likely to prune trajectories,

and we thus obtain less candidates to deal with.

For non-leaf node g, we maintain a priority queue PQ with entries in the form of (γ(sg, sqi),GID, qi),

where γ(sg, sqi) is the signature similarity between g and qi, and is used as the key to sort the entries in

PQ. The process starts to enqueue the root node of AG-Tree to PQ, then we dequeue the top entry of

PQ and compute γ(sg′ , sqi) for all its child grids or objects g′, p ∈ g.sub. If γ(sg′ , sqi) > 0, we enqueue

the entry of g′ or p into PQ, otherwise g′ is pruned. For leaf node p, we retrieve the information of

trajectories that p ∈ Tr and push them into CS . Note that, for each candidate Tr, the entry is in form

of (γ(sqi , sTr)max,TID, qi), where γ(sqi , sTr)max is the maximum value of signature similarity among all

3.5 Keyword-oriented Query Processing 39

p ∈ Tr w.r.t. qi and updated during the process of tree traversal for each candidate Tr. This process

is repeated until there is no grids left in PQ. For other keywords q j after processing qi, if there is

no entry existing for Tr w.r.t q j, Tr will be pruned from CS . Finally, the candidates are sorted in

descending order of
∑

qi∈Q γ(sqi , sTr), and we retrieve at least λ candidates for further validation. The

candidate retrieval algorithm is shown in Algorithm 2.

In the process of candidate retrieval, memory and computation time are the two major factors

determining the cost. Sequentially checking all Tr ∈ T to obtain γ(sTr, sqi) requires a large volume of

memory to store signatures of Tr, and the computation time is unimaginable high as well. However,

making use of AG-Tree obviously reduces the need of memory volume. Moreover, the proper chosen

d of AG-Tree is supposed to achieve a better efficiency because coarse grain grid incurs more com-

putation inside grids while fine grain grid induces more grids to consider. Analogously, a reasonable

number of permutation, i.e., |F|, is more likely to improve the accuracy of estimation, thus reduces the

size of CS at the sacrifice of memory for signature storage.

3.5.2 Lower Bound Computation

Another important task during the process of top-k trajectory retrieval is to maintain a lower bound

for all Tr ∈ CS . From the insight of Equation 3.4, we have the following lemma:

Lemma 3.2. The lower bound of spatio-textual ranking value between Q and Tr, i.e., Rst(Q,Tr)L, is

the minimum lower bound of matching distance between Q and Tr[s, e] ⊆ Tr, i.e., Dmd(Q,Tr[s, e])L,

Rst(Q,Tr)L = min{Dmd(Q,Tr[s, e])L}. (3.7)

Proof. As we know, Dmd(Q,Tr[s, e])L is the lower bound for Tr[s, e], thus min{Dmd(Q,Tr[s, e])L} is

the lower bound for all Tr[s, e] ⊆ Tr. Therefore, Equation 3.7 is proven. �

From lemma 3.2, for each candidate trajectory Tr, we need to find the ideal keyword match that

constructs a sub-trajectory Tr[s, e] whose Dmd(Q,Tr[s, e])L is minimum among all possible keyword

matches. As we know, the matching distance consists of textual and travel distances, so the match-

ing distance between Q and minimum keyword matching Qmkm(Tr) is not necessarily the minimum

matching distance among all possible keyword matches, because we are still possible to find key-

word matches with smaller matching distances than Qmkm(Tr). Nevertheless, in order to compute

40 Keyword-oriented Queries on Activity Trajectories

Rst(Q,Tr)L, we initially determine Qmkm(Tr), and incrementally update keyword matching Qkm(Tr)

and corresponding matching distance until its minimum value is reached. Let pi be the matched ob-

ject w.r.t. qi, we then introduce how to determine and update keyword match. Since the edit distance

obeys triangle inequality, we have

de(qi,w) ≥ |de(wr j ,w) − de(wr j , qi)|. (3.8)

which computes de(qi,w)L by measuring the difference between de(wr j ,w) and de(wr j , qi). In other

words, we need to find pi whose contained keywords have smallest edit distance w.r.t. qi. Therefore,

we make use of the edit distance between Q and R(Tr) to locate pi by accessing K-Ref as shown in

Algorithm 3. To determine pi, we first compute de(qi,wr j) between qi and each reference keyword

wr j ∈ R(Tr). Then for each keyword cluster w.r.t. wr j , we are easy to determine pi by using the

preserved LB(wr j) and UB(wr j). If the value of de(qi,wr j) falls in between LB(wr j) and UB(wr j), we

apply a binary search on K-Ref to find the closest object pi in terms of edit distance. Otherwise, pi is

the bounding object. After processing all wr js, the minimum de(qi,w)L as well as pi are obtained.

Let Tr[s, e]mkm be the sub-trajectory built by the minimum keyword matching Qmkm(Tr), it is

obvious that the textual distance between Q and Tr[s, e]mkm is a lower bound for Rst(Q,Tr) as

mentioned in baseline ILA. However, it is still too loose to be effective in practice. In addition,

we cannot guarantee that Dmd(Q,Tr[s, e]mkm)L is a lower bound for Rst(Q,Tr), since it is possible

that there exists another sub-trajectory Tr[s, e] ⊆ Tr yields a tighter lower bound satisfying that

Dmd(Q,Tr[s, e])L < Dmd(Q,Tr[s, e]mkm)L.

Lemma 3.3. Given Tr[s, e] ⊆ Tr, if Dmd(Q,Tr[s, e]) < Dmd(Q,Tr[s, e]mkm), there must be that

len(Tr[s, e]) < len(Tr[s, e]mkm).

Proof. We know Tr[s, e]mkm is built by minimum keyword matching Qmkm(Tr). If Tr[s, e] has a

longer length than Tr[s, e]mkm, Dmd(Q,Tr[s, e]) cannot be smaller than Dmd(Q,Tr[s, e]mkm). �

Based on the elaboration above, we propose a dynamic programming algorithm (DPA) to com-

pute the lower bound as shown in Algorithm 4. We define the DP state as (v) which represents the

lower bound Rst(Q,Tr)L at state v. For the initial state (1), we determine Tr[s, e]mkm by Algorithm

3 and compute the initial Dmd(Q,Tr[s, e]mkm)L. Let Tr[sc, ec] be the sub-trajectory that holds current

lower bound for state (v). For the state transition function (v), we propose to update Tr[sc, ec] by

3.5 Keyword-oriented Query Processing 41

Algorithm 3: Determining pi

Input: qi, K-Ref of Tr

Output: pi, de(qi, pi)L

1 Initial de(qi, pi)L ← 0;

2 for each wr j in R(Tr) do

3 Compute de(qi,wr j);

4 if de(qi,wr j) falls in between bounding range then

5 Search K-Ref to obtain pi;

6 de(qi, pi)L ← |de(qi,wr j) − de(pi,wr j)|;

7 else

8 pi is the bounding object;

9 de(qi, pi)L ← |de(qi,wr j) − UB(wr j)|;

10 or de(qi, pi)L ← |de(qi,wr j) − LB(wr j)|;

11 pi ← argminpi
{de(qi, pi)L};

12 de(qi, pi)L ← min{de(qi, pi)L};

13 return pi, de(qi, pi)L;

replacing a current object pi. Intuitively, we aim to choose a new pi that yields minimum marginal

gain. Therefore, Dtd(Q,Tr[sc, ec])L will be relaxed but still smaller than all the rest possible key-

word matches. Note that, from Lemma 3.3, we know only sub-trajectories with smaller length than

Tr[sc, ec] are considered during the state transition process. Thus, we have the following state transi-

tion function:

(v) = min

(v − 1)

Dmd(Q,Tr[sc, ec])L

(3.9)

Let 4Dtd be the minimum marginal gain of updating Tr[sc, ec], this process terminates when 4Dtd >

1−α
α
·Dtr(Tr[sc, ec])L since in this case there dost not exist a sub-trajectory Tr[s, e] whose Dmd(Q,Tr[s, e])L

is smaller than current lower bound. The DPA algorithm shows how to compute lower bound distance

of trajectory Tr, and the value of termination state (v) is Rst(Q,Tr)L.

42 Keyword-oriented Queries on Activity Trajectories

Algorithm 4: Computing Lower Bound
Input: Q, K-Ref of Tr

Output: Rst(Q,Tr)L

1 for each qi ∈ Q do

2 Determine pi;

3 Determine Tr[s, e]mkm formed by all pis;

4 Compute Dtd(Q,Tr[sc, ec])L, Dtr(Tr[sc, ec]) and Dmd(Q,Tr[sc, ec])L;

5 while true do

6 Determine new Tr[sc, ec];

7 Compute 4Dmd(Q,Tr[sc, ec]);

8 if 4Dmd(Q,Tr[sc, ec]) > 1−α
α · Dtr(Tr[sc, ec]) or all Tr[s, e]s have been processed then

9 break;

10 else

11 Update Tr[sc, ec];

12 Compute Dmd(Q,Tr[sc, ec])L;

13 Rst(Q,Tr)L ← Dmd(Q,Tr[sc, ec])L;

14 return Rst(Q,Tr)L;

3.5.3 Candidate Validation

After computing lower bound, we proceed to validate candidates and compute Rst(Q,Tr) for candi-

dates. Generally, if the lower bound of candidate trajectory Tr next to process is less than current

k-th best value in result set RS , then trajectory Tr needs to validate. Otherwise, the search process

terminates and k results are returned.

As mentioned in Algorithm 4, the updated lower bounds Dmd(Q,Tr[s, e])L between Q and possible

sub-trajectories Tr[s, e] have been computed in the intermediate states. A heap Hst is kept to store

these lower bounds in ascending order, then the exact matching distances Dmd(Q,Tr[s, e]) between

Tr[s, e] and Q are computed in the same heuristic. It is worth to notice that the computation of

Rst(Q,Tr) is actually the top-1 query in terms of matching distance, therefore the top-1 result is

returned as exact Rst(Q,Tr).

3.6 Enhanced Query Processing 43

𝑝1,1 2,3,5,4,13,14,11,0,3,3

… …

𝑝1,4 5,18,2,11,3,7,8,0,92,5

… …

𝑞1 2,13,5,21,11,38,36,14,73,57

𝑞2 5,16,2,19,10,9,8,0,129,1

Query keywords signatures

Trajectory objects signatures

CS:(0.38, 𝑇𝑟1, 𝑞1), (0.29, 𝑇𝑟1, 𝑞2)

𝑇𝑟1[1,4]

Q={Restaurant, Theatre}

p1,1

p1,2

p1,5

p1,4

p1,3

Figure 3.3: Query processing of KOAT.

Example 3.1. For the query processing on Tr1, objects with similar keyword signature w.r.t. query

are obtained in the candidate retrieval phase. For Tr1, we have two entries corresponds to q1

and q2 respectively. For lower bound computation, p1,1 and p1,4 are determined by accessing K-

Ref. Therefore, Tr1[sc, ec] = Tr1[1, 4], and Dtd(Q,Tr1[1, 4])L = 0,Dtr(Tr1[1, 4]) = 0.499 and

Dmd(Q,Tr1[1, 4])L = 0.250. In the process of updating Tr1[sc, ec], it is easy to see that the next

possible sub-trajectory Tr1[4, 5] is disqualified and Tr1[1, 4] bounds Tr1. Finally, the exact value of

spatio-temporal ranking function, i.e., Rst(Q,Tr1) = 0.426, is computed in candidate validation.

3.6 Enhanced Query Processing

In this section, we propose an enhanced search algorithm for KOAT query based on trajectory seg-

mentation. Generally, the activity trajectories usually suffer a data sparsity problem due to users

irregular check-in behaviours, and a trajectory always includes several trip experiences. However,

users only concern about the trajectory segments from which they could get references. In addition,

considering such a scenario that the length of Tr[s, e]mkm, which is built by Qmkm(Q,Tr) in the initial

state, is unaccepted long, the computation can still be very costly due to redundant amount of keyword

matches. Hence, for the goal of improving search efficiency, we propose to partition the trajectory

into segments and keep them as compact as possible and in some sense of homogeneous, and also

introduce the enhanced algorithm based on such segmentation.

44 Keyword-oriented Queries on Activity Trajectories

3.6.1 Trajectory Segmentation

Given Tr, the trajectory segmentation aims to partition Tr into κ sub-trajectories and obtain TS (κ =

|TS|) such that

1. Each sub-trajectory Tr[su, eu] ∈ TS is made up of contiguous objects, i.e., Tr[su, eu] = {psu , . . . , peu};

2.
⋃

Tr[su,eu]∈TS Tr[su, eu] = Tr, 1 ≤ u ≤ κ;

3.
⋂

Tr[su,eu]∈TS Tr[su, eu] = ∅, 1 ≤ u ≤ κ.

Clearly, a brute-force approach to segment a trajectory is to simply keep the size of each segment be

M, e.g., M = 3. Thus, |Tr|/M segments are generated for each trajectory Tr. However, this method

is poorly effective since it neglects the inner relation between objects within each trajectory. Based

on this intuition, we propose a trajectory segmentation algorithm by leveraging spatial, temporal and

semantic features together.

Spatial Feature. Spatial twist is a special property of individual travel pattern, thus generating a large

number of roundabout trajectories. However, as travel distance is a major factor considered in KOAT,

roundabout trajectories may lead to needless computing. As shown in Figure 3.1, if both p1,2(p2,2)

and p1,3(p2,5) contain the query keywords, Tr2[2, 5] is obviously needless to process and not the best

choice due to longer travel distance than Tr1[2, 3]. Therefore to keep spatial homogeneous, we define

roundabout distance to measure the degree of twists and turnings within a trajectory.

Definition 3.5. (Trajectory Roundabout Distance) Given Tr, suppose the projection points of p2, · · · ,

p|Tr|−1 onto the straight line p1 → p|Tr| are p⊥2 , · · · , p⊥
|Tr|−1, respectively. And d(pi, p⊥i) is the euclidean

distance between pi and p⊥i , for 1 < i < |Tr|. The spatial feature value, i.e., roundabout distance

frd(Tr) is defined as follows:

frd(Tr) =
∑

1<i<|Tr|

d(pi, p⊥i) (3.10)

Temporal Feature. Generally, the timestamps in a trajectory could be very sparse, whereas they

could be more dense within a single trip contained by the trajectory. On the purpose of extracting

such single trips from trajectory, we propose to segment a trajectory by taking temporal feature into

consideration. Hence, we define time variance of a trajectory to obtain dense time distributions to

keep temporal homogeneous within a trajectory.

3.6 Enhanced Query Processing 45

Definition 3.6. (Trajectory Time Variance) Given Tr = {p1, . . . , p|Tr|} and pi.t is the timestamp of pi.

The mean time is t̄ = p1.t +
∑

1<i≤|Tr| pi.t−p1.t
|Tr|−1 . The temporal feature value, i.e., time variance is defined as

follows:

ftv(Tr) =
1
|Tr|

∑
1≤i≤|Tr|

(pi.t − t̄)2 (3.11)

Semantic Feature. In activity trajectory database, PoI is a specific point location that someone may

find useful or interesting. According to users different travel purposes, PoIs can be roughly classified

into 10 categories as shown in Table 3.2. With the similar observation from temporal feature, different

trips in a single trajectory can suffer a problem of PoI category duplication, which increases the

redundant computation of keyword distance. Therefore to keep the categories of PoI contained in

sub-trajectory as diverse as possible, we define the information entropy of a trajectory as follows:

Table 3.2: Category of PoIs

Category Typical Keywords

1 Home Apartment, house

2 Work Government, office, building

3 Education School, training center

4 Food Restaurant

5 Entertainment Museum, theater, club

6 Outdoor Park, sports field

7 Shopping Shop, mall, outlet

8 Transportation Airport, railway, bus station

9 Health care Hospital, medical center, pharmacy

10 Others Other keywords

Definition 3.7. (Trajectory Information Entropy) Given a trajectory Tr = {p1, . . . , p|Tr|}, with pi.Φ =

{w1
i , . . . ,w

|pi.Φ|
i }. For each w j

i , C(w j
i) is the corresponding category w j

i belongs to. Thus, the semantic

feature value, i.e., information entropy is defined by

fie(Tr) = −
∑
∀i, j

p(w j
i) log p(w j

i) (3.12)

where p(w j
i) is the proportion of a category C(w j

i) in the PoI collection.

46 Keyword-oriented Queries on Activity Trajectories

Objective Function. To partition the trajectory Tr into sub-trajectories Tr[su, eu] ∈ TS, we first

define the weight average feature value of Tr based on its segmentation TS w.r.t. each feature δ ∈

{rd, tv, ie}, denoted as WAδ(TS,Tr):

WAδ(TS,Tr) =
∑

Tr[su,eu]∈TS

|Tr[su, eu]|
|Tr|

fδ(Tr[su, eu]) (3.13)

As we know, different segmentations would result in different degrees of decrease in feature val-

ues. The decrease in feature value of Tr resulted by segmentation TS is defined as:

4Dδ(TS,Tr) =
fδ(Tr) −WAδ(TS,Tr)

fδ(Tr)
(3.14)

In addition, each feature has a different requirement on segmentation granularity, which indicates

how fine-grained the trajectory is partitioned and described. With aforementioned three features, we

propose a combination score function, 4D(TS,Tr), to take all these three features into account, which

is defined as follows:

4D(TS,Tr) =
∑
δ

λδ · 4Dδ(TS,Tr) (3.15)

where
∑
λδ = 1 and λδ is chosen by the weight of feature importance, which could have an effect on

the search performance. It is worth to notice that λδ = 0 means the feature δ is not considered.

As mentioned before, the goal of trajectory segmentation is to keep the trajectory as compact as

possible and in some sense of homogeneousness. Therefore, we aim to find an “optimal” segmen-

tation such that number of segments κ = |TS| is minimum, and for all segments Tr[su, eu] ∈ TS,

the maximum decrease of feature value of its binary segmentation is less than threshold θ, i.e.,

max{4D(TSTr[su,eu],Tr[su, eu])} < θ with |TSTr[su,eu]| = 2. Therefore, the objective function is:

Minimize κ

Subject to max{4D(TSTr[su,eu],Tr[su, eu])} < θ

∀Tr[su, eu] ∈ TS, |TSTr[su,eu]| = 2

(3.16)

Greedy Trajectory Segmentation. For trajectory segmentation, we propose a greedy algorithm to

partition the trajectory in a binary fashion. In each iteration, Tr is partitioned as TS = {Tr[1, i],Tr[i+

1, |Tr|]}. We first compute 4D(TS,Tr) for each object pi in Tr, and the algorithm “greedily” chooses

the current best split object pi with max{4D(TS,Tr)}, thus Tr is partitioned into Tr[1, i] and Tr[i +

1, |Tr|]. Then we come into next iteration and repeat the computation. It’s worth to notice that this

process terminates when max{4D(TSTr[su,eu],Tr[su, eu])} is less than the threshold θ.

3.6 Enhanced Query Processing 47

3.6.2 Search with Segmented Trajectories

Based on trajectory segmentation, we propose an enhanced algorithm to process KOAT query more

efficiently, and we only highlight some important steps and changes of our method for simplification.

In AG-Tree, we modify the entry of leaf node p in form of (sp,SID,TID), where SID is ID of

sub-trajectory Tr[su, eu], and the structure of non-leaf node remains the same. In K-Ref, we apply the

reference keywords selection on each sub-trajectory Tr[su, eu], thus we obtain |TS| reference keyword

sets. Similarly, each object p ∈ T [su, eu] is indexed in a B+-Tree. In addition, the lower bound

LB(wTr[su,eu]
rn) and upper bound UB(wTr[su,eu]

rn) for each reference keyword are given as well.

Candidate retrieval. Since the format of entries kept in AG-Tree is changed, each candidate entry

in CS is kept in the form of (γ(sqi , sTr[su,eu]),SID,TID, qi). The procedure of candidate retrieval is the

same as the previous algorithm.

Computing lower bound. Computing lower bound is the most critical procedure in this algorithm.

Once the candidate set CS is obtained, we will be faced with one of these two situations: 1) Inner

sub-trajectory computing; 2) Cross sub-trajectory computing. Next we will introduce how these

two situations are solved and how to combine them to compute the lower bound for each candidate

trajectory.

1) Inner sub-trajectory computing. For sub-trajectory Tr[su, eu] ∈ TSTr(1 ≤ u ≤ κ), the lower

bound needs to be computed by inner sub-trajectory approach, if and only if Tr[su, eu] is a “complete”

candidate, which means the entries stored in CS related to Tr[su, eu] must be corresponding to all

query keywords. It is worth to notice that the goal of trajectory segmentation is to extract single

travel experience from multiple ones, and hopefully we only need to consider such “complete” sub-

trajectories as query candidates.

In the inner sub-trajectory computing, Tr[su, eu] is considered as an independent trajectory. As

Tr[su, eu] has a comparable smaller size than Tr, the number of states (v) in DPA algorithm would

obviously decreas and achieve much better efficiency in computing Rst(Q,Tr[su, eu])L. For all “com-

plete” Tr[su, eu] ∈ TSTr, we keep a lower bound IN(Q,Tr) = min{Rst(Q,Tr[su, eu])L}.

2) Cross sub-trajectory computing. If there are more than one sub-trajectories contained in CS

for a single candidate, we need to consider the cross sub-trajectory computing. Determining the value

of spatio-temporal textual ranking function among sub-trajectories is complicated due to the variances

48 Keyword-oriented Queries on Activity Trajectories

of both textual distances and lengths of cross sub-trajectories, hence we create a “virtual” object

pTr[su,eu] regarding all the keywords in Tr[su, eu] as its keywords for each sub-trajectory Tr[su, eu].

By adopting the virtual object, we follow the same direction of DPA algorithm to choose inter-

mediate state Tr[sc, ec], where the difference is that the objects now contained in Tr[sc, ec] are virtual

objects representing sub-trajectories w.r.t. Q.

For each state (v), we aim to compute the lower bound of matching distance for current Tr[sc, ec].

For lower bound of travel distance, len(Tr[sc, ec])L is computed by euclidean distance between the

closest objects locating in the furthest sub-trajectories, which are represented by virtual objects pis

determining Tr[sc, ec]. On the other hand, Dtd(Q,Tr[sc, ec])L is the sum of lower bound edit distances

between virtual objects pi and qi ∈ Q. As mentioned before, we index all the keywords in sub-

trajectories based on their edit distances to each reference keyword wTr[su,eu]
rn . Therefore, we can easily

obtain Dtd(Q,Tr[sc, ec])L by accessing K-Ref. When DPA algorithm terminates, we keep a cross

sub-trajectory lower bound CR(Q,Tr) = (v) = Dmd(Q,Tr[sc, ec])L. Finally, we have Rst(Q,Tr)L =

min{IN(Q,Tr),CR(Q,Tr)}.

3.7 Experiments

In this section, we conduct extensive experiments on real datasets to study the performance of pro-

posed index structures and algorithms.

3.7.1 Experimental Settings

Algorithms evaluated. We study the performance of two baseline algorithms probe based algorithm

(PBA), inverted list based algorithm (ILA), and our dynamics programming algorithm (DPA) for query

processing, enhanced trajectory segmentation optimization algorithm (TSA). All these algorithms

were implemented in Java on Window 7 and run on an Intel(R) CPU i7-4770 @3.4GHz and 16G

RAM.

Data and queries. We use a real activity trajectory dataset by crawling the online check-in records

of Foursquare within the areas of Los Angeles (LA) and New York City (NYC) [124]. Each check-in

record of Foursquare contains the user ID, venue with geo-location (PoI), time of check-in, and tips

3.7 Experiments 49

written in English. The detailed statistics of dataset are given in Table 3.3.

Table 3.3: Statistics of dataset
LA NYC

#trajecotry 31,557 49,027

#POIs 3,164,124 2,056,785

#query objects per trajectory 51.83 38.27

#keywords per object 2.84 2.23

3.7.2 Efficiency Measurement

For efficiency measurement, we will first compare time costs of these four algorithms under different

constraints, such as the number of results k, the number of query keywords |Q|, the cardinality of

dataset |D|. Then we will study the effect of partition granularity of GiKi on proposed algorithm DPA

and enhanced algorithm TSA, which compare the time cost and memory cost. Finally, we will study

the effect of trajectory segmentation TSA algorithm resulted by different weights of features, which

compare the time costs and pruning rates. By default, we build a d-Grid with d = 8 for activity

trajectory dataset, which means the entire space is partitioned into 28 × 28 grids. The default values

for other parameters are summarized in Table 3.4.

Table 3.4: Parameter settings

#results k 10

#query keywords |Q| 3

#α 0.7

#d 8

#λδ {0.4, 0.3, 0.3}

Effect of k. In the first set of experiments, we study the effect of the intended number of results

k by plotting the average time costs of PBA, ILA, DPA and TSA on both LA and NYC datasets.

As shown in Figure 3.4, our proposed indexing approach, GiKi, significantly outperforms inverted

indexing method on both datasets. In particular, PBA is the algorithm without any index structure,

and ILA uses inverted list to retrieve candidates, which is faster than PBA. For DPA and TSA utilizing

50 Keyword-oriented Queries on Activity Trajectories

GiKi, it is 2-3 times faster than PBA and ILA. Since ILA finds all the trajectory candidates and then

compute the smallest value of spatio-textual utility function by applying method of PBA, the running

time remains constant for all the values of k. The other two proposed methods incur higher cost as k

increases, since k-th smallest keyword travel distance becomes greater and more candidates need to

be retrieved and refined.

 0

 5

 10

 15

 20

 25

 30

 35

5 10 15 20 25

T
im

e
 c

o
s
t
p
e
r

ro
u
n
d
 (

s
e
c
o
n
d
s
)

#k

PBA ILA DPA TSA

(a) LA

 0

 5

 10

 15

 20

 25

 30

 35

5 10 15 20 25
T

im
e
 c

o
s
t
p
e
r

ro
u
n
d
 (

s
e
c
o
n
d
s
)

#k

PBA ILA DPA TSA

(b) NYC

Figure 3.4: Effect of k for KOAT query

Effect of |Q|. Next we study the query performance when the number of query keywords |Q| varies.

The results are presented in Figure 3.5. Again, our proposed algorithms has superior performance

than all baseline algorithms. All these four methods incur more time cost with the increase of query

keywords, this tendency becomes extremely obvious when |Q| becomes 4. This is because computing

edit distance is a costly operation, the more keywords we get, the more time it takes. In addition,

more query keywords lead to more different objects combinations, which can result in an exponential

increase in execution time. It is worth to notice that DPA does not show a greater increase in perfor-

mance than ILA, since even if we prune more candidates, the computation of edit distance still requires

a lot of time. However, by applying TSA, trajectories are partitioned into small pieces, which highly

reduces the operation time of computing both edit distance and travel distance within sub-trajectories

or between sub-trajectories.

Effect of |D|. Then we investigate the query performance w.r.t. the cardinality of datasets on both LA

and NYC. The results are shown in Figure 3.6. Without surprise, in such scalability experiments, we

can see that the time costs of all four methods increase linearly w.r.t. the size of datasets, i.e., 0.5M,

1M, 2M and 4M, this is because the algorithms are faster when the datasets are small. Moreover, we

3.7 Experiments 51

 0

 50

 100

 150

 200

 250

2 3 4 5 6

T
im

e
 c

o
s
t
p
e
r

ro
u
n
d
 (

s
e
c
o
n
d
s
)

#|Q|

PBA ILA DPA TSA

(a) LA

 0

 20

 40

 60

 80

 100

 120

 140

 160

2 3 4 5 6

T
im

e
 c

o
s
t
p
e
r

ro
u
n
d
 (

s
e
c
o
n
d
s
)

#|Q|

PBA ILA DPA TSA

(b) NYC

Figure 3.5: Effect of |Q| for KOAT query

also can see that the computation times are high when the size of the datasets are 2M and 4M, this is

because they get more candidates to process even if they have index structures to prune trajectories.

In addition, it is worth to notice that our proposed methods, i.e., DPA and TSA, scale much better than

baseline methods on both LA and NYC datasets since our algorithms and optimization highly reduce

the number of candidate trajectories need to be considered.

 0

 20

 40

 60

 80

 100

 120

0.5M 1M 2M 4M

T
im

e
 c

o
s
t
p
e
r

ro
u
n
d
 (

s
e
c
o
n
d
s
)

#|D|

PBA ILA DPA TSA

(a) LA

 0

 20

 40

 60

 80

 100

 120

0.5M 1M 2M 4M

T
im

e
 c

o
s
t
p
e
r

ro
u
n
d
 (

s
e
c
o
n
d
s
)

#|D|

PBA ILA DPA TSA

(b) NYC

Figure 3.6: Effect of |D| for KOAT query

Effect of d. We now proceed to examine the effect of the partition granularity of AG-Tree. Recall that

by default we partition the entire space into 256× 256 grids (d = 8). In this set of experiments, we set

the number of partitions to 32 × 32(d = 5), 64 × 64(d = 6), 128 × 128(d = 7) and 256 × 256(d = 8)

and record the running time and memory cost of DPA and TSA on both LA and NYC datasets, since

only these two proposed methods use AG-Tree for indexing. The results are shown in Figure 3.7.

52 Keyword-oriented Queries on Activity Trajectories

Generally, better performance will be achieved for both DPA and TSA by using GiKi index with finer

granularity since tighter lower bound keyword travel distance can be derived with smaller sized grids.

As mentioned before, coarse grain grid incurs more computation inside grid and more storage cost,

just as the experiment results show that the time cost decrease and memory cost increase with the

enlarging of d. But we also can see that, these decreasing and increasing patterns are slow down

when we enlarge d from 7 to 8. This is because larger value of d incurs more grids need to consider

from up to down in AG-Tree. Besides, the memory costs of DPA and TSA are very close, since

the two methods use the same index structure and TSA only utilizes a little extra memory to store

sub-trajectory information.

 0

 5

 10

 15

 20

 25

 30

5 6 7 8

T
im

e
 c

o
s
t
p
e
r

ro
u
n
d
 (

s
e
c
o
n
d
s
)

#d

DPA TSA

(a) LA

 0

 5

 10

 15

 20

 25

 30

 35

5 6 7 8

T
im

e
 c

o
s
t
p
e
r

ro
u
n
d
 (

s
e
c
o
n
d
s
)

#d

DPA TSA

(b) NYC

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

5 6 7 8

M
e
m

o
ry

 c
o
s
t
(M

B
)

#d

DPA TSA

(c) LA

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

5 6 7 8

M
e
m

o
ry

 c
o
s
t
(M

B
)

#d

DPA TSA

(d) NYC

Figure 3.7: Effect of d for KOAT query

Effect of λ. We study the effect of trajectory segmentation on query performance by applying TSA,

which is resulted by different weights of feature importance. As we know, different segmentation

3.7 Experiments 53

ways may lead to total different computation time, and the weights of different feature value directly

affect the segmentation results. In this experiment, we study the best weight, i.e., λrd, λtv and λie, that

achieves highest efficiency of query processing. Figure 3.8 shows the experiment results, we first

tune the value of λrd and keep the rest λtv = λie. We can see that when the value of λrd is 0.4, the

corresponding time costs achieve a high performance. If we continue to enlarge the value of λrd, the

time cost increases. Therefore, we choose λrd = 0.4 in both the datasets of LA and NYC. After tuning

λrd, we continue to tune the value of λtv. In LA dataset, we can see that when we set λtv = 0.3, i.e.,

λtv = λie = 0.3, the time cost is minimized. In NYC dataset, it is easy to see that when λtv = 0.4 the

time cost achieves the best performance, and λie = 0.2. This because when we compute the value of

spatio-temporal ranking function, the spatial feature is mainly concerned, which means spatial feature

plays a more important role in distance computing.

 0

 2

 4

 6

 8

 10

 12

 14

0 0.2 0.4 0.6 0.8 1.0

T
im

e
 c

o
s
t
p
e
r

ro
u
n
d
 (

s
e
c
o
n
d
s
)

#tuning feature weight RD

RD

(a) LA

 0

 2

 4

 6

 8

 10

 12

 14

0 0.1 0.2 0.3 0.4 0.5 0.6

T
im

e
 c

o
s
t
p
e
r

ro
u
n
d
 (

s
e
c
o
n
d
s
)

#tuning feature weight TV

TV

(b) LA

 0

 2

 4

 6

 8

 10

 12

 14

0 0.2 0.4 0.6 0.8 1.0

T
im

e
 c

o
s
t
p
e
r

ro
u
n
d
 (

s
e
c
o
n
d
s
)

#tuning feature weight RD

RD

(c) NYC

 0

 2

 4

 6

 8

 10

 12

0 0.1 0.2 0.3 0.4 0.5 0.6

T
im

e
 c

o
s
t
p
e
r

ro
u
n
d
 (

s
e
c
o
n
d
s
)

#tuning feature weight TV

TV

(d) NYC

Figure 3.8: Effect of λ for KOAT query

54 Keyword-oriented Queries on Activity Trajectories

3.8 Summary

This chapter studies the problem of searching activity trajectory database given multiple query key-

words without location. The major differences between this work and exiting works are that we do not

have a query location at query time and we support approximate search condition on keywords. To

support efficient query processing, we develop a novel index structure, called GiKi that includes two

components, i.e., AG-Tree and K-Ref, to index the activity trajectory database. Based on such index

structure, we propose efficient algorithm to compute the minimum value of spatio-temporal ranking

function. In the query processing, we follow the pruning and refinement paradigm to answer the

query by a process of candidate retrieval, lower bound computation and candidate validation. Specif-

ically, we propose a dynamic programming algorithm to compute the lower bound for each candidate

trajectory. In addition, we propose a trajectory segmentation algorithm to partition trajectories by

leveraging multiple features. Then we propose an enhanced search algorithm with such segmentation

method to answer the KOAT query more efficiently. Extensive experimental results demonstrate that

the proposed methods outperform baseline algorithms significantly and achieve good scalability.

Chapter 4

Keyword-aware Continuous kNN Queries on

Road Networks

It is nowadays quite common for road networks to have textual contents on the vertices, which de-

scribe auxiliary information (e.g., business, traffic, etc.) associated with the vertex. In such road

networks, which are modelled as weighted undirected graphs, each vertex is associated with one or

more keywords, and each edge is assigned with a weight, which can be its physical length or travel-

ling time. In this chapter, we study the problem of keyword-aware continuous k nearest neighbour

(�CkNN) search on road networks, which computes the k nearest vertices that contain the query key-

words issued by a moving object and maintains the results continuously as the object is moving on

the road network. Reducing the query processing costs in terms of computation and communication

has attracted considerable attention in the database community with interesting techniques proposed.

This work proposes a framework, called a Labelling AppRoach for Continuous kNN query (LARC),

on road networks to cope with �CkNN query efficiently. First we build a pivot-based reverse label

index and a keyword-based pivot tree index to improve the efficiency of keyword-aware k nearest

neighbour (�kNN) search by avoiding massive network traversals and sequential probe of keywords.

To reduce the frequency of unnecessary result updates, we develop the concepts of dominance interval

and region on road network, which share the similar intuition with safe region for processing contin-

uous queries in Euclidean space but are more complicated and thus require more dedicated design.

For high frequency keywords, we resolve the dominance interval when the query results changed. In

55

56 Keyword-aware Continuous kNN Queries on Road Networks

addition, a path-based dominance updating approach is proposed to compute the dominance region

efficiently when the query keywords are of low frequency. We conduct extensive experiments by com-

paring our algorithms with the state-of-the-art methods on real data sets. The empirical observations

have verified the superiority of our proposed solution in all aspects of index size, communication cost

and computation time.

This chapter is organized as follows. We give an introduction in Section 4.1 and describe the

problem statement in Section 4.2. Section 4.3 presents the framework of our solution, i.e., LARC and

analyses the algorithms in detail. In Section 4.4, we introduce an enhanced algorithm LARC++ to

construct the dominance region. Our empirical observations are explained in Section 4.5. Section 4.6

concludes this chapter.

4.1 Introduction

With the rapid development of GPS-enabled smart mobile devices and location-based services, there

is a clear trend that objects are increasingly being geo-tagged. To provide better user experience, these

services maintain location-related information to answer user queries w.r.t. user-specified location.

In addition to the spatial characteristics, a user may also have specific requirement on the description

of the object such as “restaurant”, “hotel”, “petrol station”, etc. For example, a person wants to find

a restaurant within 10 minutes walking distance. Such queries, known as spatial keyword queries,

which find the top-k objects of interest in terms of both spatial proximity and textual relevance to

the query, have been extensively studied in recent years [30, 59, 64, 80, 83, 121, 125, 131]. All these

studies have focused on static query objects whose locations are fixed throughout the query lifetime.

However, many real-world applications have the requirements to support the continuous k nearest

neighbour (CkNN) queries, or also known as moving k nearest neighbour queries. For instance a

Uber service provider looking for potential passengers is driving on the road, the k nearest potential

passengers that have requested taxis should be reported to him through the application continuously.

The CkNN query can also be used to report the k nearest petrol stations continuously while a car is

running low of fuel.

Existing techniques for the static kNN query are not directly applicable for the CkNN query.

Therefore, on-going efforts have been made to meliorate the user experience by improving the CkNN

4.1 Introduction 57

2

3

6

7 1 5

4

9 8 10

2

3

5

2

3 4

3 1 1
1

3
1 2

3

{a, b}

{b, e}

{a, b, d}
{a, f}

{a, e}

{a, c} {a, c}

{b, d}

{c, d}

{b, c}

Figure 4.1: Running example for �CkNN query

query processing efficiency [48, 62, 72, 74, 102]. Most of these works adopt the idea of “safe region”

where all the inside points share the same kNN results, thus reducing the query processing cost in

terms of both computation and communication. However, they assume objects are moving in free

space, which might be inappropriate especially in urban areas where the movements of objects are

constrained by the road network. Consider the example in Fig. 4.1, the current location of the query

object is at v6 and the query keyword is “b”, thus v3 that contains “b” would be the 1NN result in terms

of Euclidean distance. However, v5 is actually what we want instead of v3 in terms of the network

distance. Meanwhile, [41, 66, 102] study the problem of continuous top-k spatial keyword query

on road networks by incorporating the spatial proximity and textual relevance to form a similarity

function. However, this kind of similarity functions, which simply combine two unrelated dimensions

together, usually cannot satisfy user’s search intention well. As seen in more and more commercial

location-based services, a more intuitive and practical query formulation for spatial keyword search

is to find the objects that simply contain the query keywords. Motivated by these requirements and

oversights of existing works, we study the keyword-aware continuous k nearest neighbour (�CkNN)

on road networks, which computes the kNN results that contain the query keywords and maintains

the results in a continuous manner.

In order to process the �CkNN query efficiently, we need to overcome several challenges. The

first challenge is concerned with computing the network distances between vertices, as well as find-

ing the keyword-aware k nearest neighbour (�kNN) results efficiently. Unlike the Euclidean space,

processing distance queries in scalable networks is a complicated problem. Given such a query and a

58 Keyword-aware Continuous kNN Queries on Road Networks

network, an obvious solution is to apply Dijkstra’s search [34] from the query location to hit the target

vertices or find the kNN results that contain the keyword. However, this method becomes inefficient

when dealing with large-scale road networks due to massive traversals. Inspired by the 2-hop label

index, which answers distance queries with small response time [1, 2, 6], we reorganize the structure

of label index and build pivot-based reverse label index to fit our�kNN search problem. For the key-

word checking, we utilize a probabilistic data structure, i.e., the bloom filter [21], to skip sequential

probe of all keywords. By combining this with the label index, we construct keyword-based pivot

tree, by which means both the distance query and �kNN query can be efficiently processed.

The second challenge is related to deriving a dominance interval or region as large as possible.

Although some existing works adopt safe region technique to reduce the query processing cost [62,

74], they fall short either in the region construction overhead or validation overhead. In addition, the

safe region in Euclidean space is just surrounded by several bisect lines, and for each object pair,

there exists only one bisect line. Nevertheless, in a road network, the dominance region is determined

by bisect points, and each object pair may have several bisect points since they may be connected

by multiple paths, which makes the construction of dominance region even more complex and time

consuming. Moreover, the area of the dominance region is highly dependent on the frequency of the

query keyword. Therefore, for high frequency keywords, we adopt a window sliding approach to

build a dominance interval with low costs. For low frequency keywords, we propose a path-based

dominance updating approach to resolve the dominance region on road network, which guarantees the

validity of the current �kNN results and significantly reduces the computation and communication

costs.

The major contributions of this chapter can be summarized as follows:

• By utilizing the labelling approach, we construct keyword-based label index that consists of

pivot-based reverse label and keyword-based pivot tree. With such an index structure, we im-

prove the �kNN query efficiency by skipping the massive network traversals and sequential

probe of keywords. For �CkNN query, we propose a LARC algorithm to resolve the domi-

nance intervals by a window sliding approach for the moving object when dealing with high

frequency keywords.

• For low frequency keywords, we also develop a LARC++ algorithm that employs a path-based

4.2 Problem Statement 59

dominance updating approach to construct an effective dominance region with low costs. This

way, the frequency of communication between server and client is thoroughly reduced. In

addition, a hybrid algorithm LARC-C that combines LARC and LARC++ is introduced to cope

with all cases of keyword frequency.

• Our experimental evaluation demonstrates the effectiveness and efficiency of our framework for

processing the�CkNN queries on real-world datasets. We show the superiority of our methods

in answering �CkNN queries efficiently, when compared with the state-of-the-art methods.

4.2 Problem Statement

This section formally defines the �kNN and �CkNN queries. Table 4.1 summarizes the major nota-

tions.

Table 4.1: Summary of notations in �CkNN

Notation Definition

G = (V, E) Road network with vertex V and edge E

P(u, . . . , v) A path from u to v

Φ(v) The keywords associated with v

dG(u, v) Network distance between u and v in G

p(u, v, ds) A point p on edge (u, v) with ds to u

L(v) 2-hop label of v

PR(o) Pivot-based reserve label of vertex o

KP(o) Keyword-based pivot tree of vertex o

DI(R) The dominance interval of R

DR(R) The dominance region of R

We model a road network as a weighted undirected graph G = (V, E), where V is the set of vertices

and E is the set of edges. Each edge (u, v) ∈ E has a positive weight, i.e., physical length or travelling

time, denoted as l(u, v). Each vertex v ∈ V contains a set of keywords, denoted as Φ(v). Note that

the algorithms proposed in this chapter can be easily extended to the case that keywords locate on

edges. Given a path between vertices u and v, denoted as P(u, . . . , v), the length is the total weight of

60 Keyword-aware Continuous kNN Queries on Road Networks

all edges along the path. For any two vertices u and v, the distance between u and v on G, denoted as

dG(u, v), is the length of the shortest path SP(u, v) between u and v.

Definition 4.1 (Keyword-aware kNN). The Keyword-aware k Nearest Neighbour (�kNN) query is

defined as follows: Given a road network G, the query Q includes a query location lq, a query keyword

wq, and a positive integer k, i.e., Q = (lq,wq, k). Note that lq can be either a vertex vq or a point p

on edge (u, v), denoted as pq(u, v, ds), where ds is the distance along (u, v) between pq and u. The

query result consists of k vertices, denoted as R = {v1, v2, . . . , vk} ⊆ V, that are nearest to lq among

all vertices in V in terms of network distance, and each of which contains the query keyword wq, i.e.,

∀v ∈ R,wq ∈ Φ(v).

Definition 4.2 (Keyword-aware CkNN). Given a road network G, and a moving query Q = (lq,wq, k),

a Keyword-aware Continuous k Nearest Neighbour (�CkNN) query keeps returning the�kNN results

for every new location lq of Q.

Example 4.1. As shown in Fig. 4.1, a �C1NN query Q with keyword “d” is moving from v1 to v5.

The result of Q reported at v1 is {v3} and then changes to {v6} at p(v1, v5, 0.5). No update is needed

elsewhere since the result does not change.

4.3 Algorithm LARC

In this section, we introduce our labelling approach for�CkNN query (LARC). Different from on-line

search algorithms on graphs, e.g., Dijkstra, A∗ algorithms, etc, our method preprocesses the network

G to construct an index structure and organizes the vertices with distance and keyword information

to enhance the �kNN search efficiency. With the help of such index, we can skip a large portion of

disqualifying vertices, that either are far away from the query location or do not contain the query

keyword, by looking up the information stored in the index entries. Similar to existing works on

CkNN, we adopt the concept of dominance interval on road network to cope with �CkNN query. As

long as the moving object stays on the dominance interval, the �kNN results maintain valid and no

recomputation is required, thus both the computation and communication costs are reduced.

4.3 Algorithm LARC 61

4.3.1 Keyword-based Label Index

Inspired by recent development in shortest path computation and distance query over large graphs,

we make use of the 2-hop labelling technique [1] [2] [6] [54] as the base to construct our index for

�CkNN query processing.

2-hop Label Index. The 2-hop label, also known as 2-hop cover, constructs labels for vertices such

that a distance query for any vertex pair u and v can be answered by only looking up the common

labels of u and v. For each vertex v, we precompute a label, denoted as L(v), which is a set of label

entries and each label entry is a pair (o, ηv,o), where o ∈ V and ηv,o = dG(v, o) is the distance between

v and o. We say that o is a pivot in label entry if (o, ηv,o) ∈ L(v). Given two vertices u and v, we can

find a common pivot o that (o, ηu,o) ∈ L(u) and (o, ηv,o) ∈ L(v):

dG(u, v) = min{ηu,o + ηv,o} (4.1)

We say that the pair (u, v) is covered by o and the distance query dG(u, v) is answered by o with small-

est ηu,o+ηv,o. As shown in Fig. 5.2, L(v5) = {(v5, 0), (v9, 3), (v7, 5)} and L(v10) = {(v10, 0), (v7, 3), (v9, 2)},

then we have dG(v5, v10) = 3 + 2 = 5.

2-hop label has been extensively studied in existing works, which can correctly answer the dis-

tance query between any two vertices in a graph, whilst keeping the size of the generated label index

as small as possible. The problem of reducing label size is orthogonal to our work. We can fully

utilize the state-of-the-art results to build a smaller index in our method.

Keyword-based Pivot Index. As 2-hop label possesses the nature to process distance queries with

fast response time, we modify the structure of original 2-hop label to construct a pivot-based reverse

index, i.e., PR index, for �kNN query processing. In 2-hop label, the distance between any vertex

pair (u, v) can be computed correctly through their common pivot o, in other words, each vertex u

can reach any other vertex v in graph through a pivot o. Therefore, we store all the label entries

(o, ηv,o) ∈
⋃

v∈V L(v) regarding vertex o as pivot into the PR label of vertex o, i.e., (v, ηv,o) ∈ PR(o).

In PR(o), we assume that all the label entries (v, ηv,o) are sorted in non-decreasing order of distance.

Generally, given vertex u, we first find its pivot o with smaller distance in L(u), then we continue to

search PR(o) for target vertices v containing wq incrementally until we obtain k results. As shown in

Fig. 4.2(b), given a �1NN query Q = (v5, “a”, 1), we first search PR(v5) since (v5, 0) ∈ L(v5). In

sequential probe of PR(v5), we have “a”< Φ(v5) and “a”∈ Φ(v1). Thus v1 is reported as result.

62 Keyword-aware Continuous kNN Queries on Road Networks

5

9

7

5

10

10

(a) 2-hop label

5
0

5

5

1

2

6

3

2

… …

… …

(b) PR index

[0..0]

(0)

[1..1]

(1)

[2..2]

(2)

[3..3]

(3)

[4..4]

(4)

[0..1]

(5)

[2..3]

(6)

[4..4]

(7)

[0..3]

(8)

[4..4]

(9)

[0..4]

(10)

(5,0) (1,1) (2,2) (6,3) (3,4)

(c) KP index

EP(v1,…,v7)

a: v2,v4

b: v3

c: v2,v4

d: v3

……

(d) EP index

Figure 4.2: Overview of keyword-based label index.

However, we may still suffer a problem of inefficiency due to the keyword sparsity. Assume that

the query keyword wq is of low frequency, and only shows up in a few vertices, then we have to

sequentially check the PR labels of many nearby pivots w.r.t. lq until we reach vertices that contain

wq, which may incur significant traversal overheads. As we know, skipping some vertices that do

not contain wq allows for faster search. [53] proposes a forest index, which is a set of tree structures,

to deal with kNN query on large graphs. As road networks are almost planar, the average number

of entries in PR(o), i.e., |PR(V)|
|V | , is usually small due to the limited number of vertices and edges.

Therefore, we propose a keyword-based pivot index, i.e., KP index, to improve the search efficiency.

For each pivot o, we take PR(o) as input and simply construct a binary tree KP(o). Specifically, we

preserve each label entry (v, ηv,o) of PR(o) as leaf node of KP(o). For each non-leaf node of KP(o),

we denote the index range of leaf nodes that it covers as [x . . . y] and store the keyword information of

all its sub-nodes so that the vertices containing wq can be retrieved efficiently, as shown in Fig. 4.2(c).

4.3 Algorithm LARC 63

For each keyword w, we utilize a hash function H(w) to generate a binary code for keyword

inspection. Hence, the hash code of a vertex or non-leaf node H(X) is the superimposition of H(w)

it covers, which is generated by the bitwise operation ∨. A non-zero value of H(w) ∧ H(X) indicates

that X may contain w. However, the general hash function is unable to control the false positive rate.

By contrast, while risking some space, the bloom filter [21] has a strong false positive controlling

advantage for membership checking. Therefore, we adopt the bloom filter to compress the keywords

instead of a general hash function in the KP index.

Enclosed Path Index. Before introducing the EP index, we first give a formal definition of the

enclosed path,

Definition 4.3 (Enclosed Path). We define a vertex whose degree is equal or greater than 3 as an

intersection vertex. An enclosed path, denoted as EP(s, . . . , e), is a path that only the starting and

ending vertices are intersection ones among all vertices it passes. Formally, P(s, . . . , e) is enclosed if

and only if s.deg >= 3, e.deg >= 3 and o.deg < 3,∀o ∈ P \ {s, e}.

For each EP(s, . . . , e), we construct a keyword posting list for each keyword w contained by

o ∈ EP \ {s, e}, which is a list of the vertices that contain w, as shown in Fig. 4.2(d). Given EP and

query keyword wq, the vertices in middle of EP that contain w can be quickly retrieved.

4.3.2 �kNN Query Processing

With the index construction, given a query Q = {lq,wq, k}, we introduce the procedure of query

processing for �kNN. At the beginning, we compute H(wq) for keyword matching. In order to

retrieve the �kNN results, two steps are considered. First, we need to update the candidate pivots o

whose KP(o) may contain target vertices, i.e., function UpdatePivots. Then, we incrementally search

these KP(o) to obtain the target vertices, i.e., function FindNext. For simplicity, we only present the

case that lq is a vertex vq ∈ V , which can be easily extended to the general cases that lp locates on

edges.

Updating Candidate Pivots. In function UpdatePivots, we retain a priority queue PQp to restore the

candidate pivots o whose KP(o) may contain target vertices. For each oi ∈ PQp, we keep track of

a candidate vertex ui in KP(oi) that ui contains wq and dG(vq, ui) = ηvq,oi + ηoi,ui is only greater than

dG(vq, v f) where v f is the furthest NN result in R obtained so far. Then we determine the minimum

64 Keyword-aware Continuous kNN Queries on Road Networks

Algorithm 5: Keyword-aware kNN
Input: Q = (lq,wq, k)

Output: �kNN results, i.e., R = {v1, v2, . . . , vk}

1 Candidate pivot queue PQq;

2 while R.size < k do

3 if PQq.size = 0 then

4 Find the first pivot o with H(w) ∧ H(root) , 0;

5 (v, d) = FindNext(w, x,KP(o));

6 U pdatePivots();

7 Find the 1NN result (v, d);

8 R.push(v, d);

9 else

10 for pivot o in PQq do

11 Obtain the (v, d) with minimum dmin;

12 FindNext(w, x,KP(omin));

13 U pdatePivots();

14 R.push(v, d);

15 return R;

distance min{dG(vq, ui)} on the top of PQq, and push more pivots o′ into PQq. Note that only o′ with

ηvq,o′ < min{dG(vq, ui)} are considered, since only the vertices in such KP(o′) are possibly to become

results. After the updating, we pop ui with min{dG(vq, ui)} on the top of current PQq into R, and

continue to keep track of next u′i in KP(oi) that contains wq by function FindNext. This process is

repeated until we obtain k results.

Searching KP Index. We denote the j-th leaf node in KP(o) that contains wq as (u j, d j). In order to

obtain the next leaf node u j in KP(o) later than u j−1 that also contains wq, we use function FindNext

to search KP(o) in a depth-first manner. The FindNext function takes wq and the index of u j−1 in

PR(o), say x j−1, as input. The search starts from the root node, and for each iteration, we compute

H(wq) ∧ H(σ) where σ is the tree node covering [xσ . . . yσ]. If H(wq) ∧ H(σ) , 0 and yσ > x j−1, we

continue to search the sub-nodes of σ. If σ is a leaf node, we examine whether wq ∈ Φ(σ). Otherwise,

4.3 Algorithm LARC 65

we backtrack its parent node. This process stops when we find the first vertex u j with index x j > x j−1

that contains wq.

Example 4.2. Given a�1NN query Q = (v5, “a”, 1), we first search KP(v5) since (v5, 0) ∈ L(v5). Then

we compute H(“a”) ∧ H(σ10) , 0, and H(“a”) ∧ H(σ8) , 0. Finally, we have H(“a”) ∧ H(σ1) , 0

and “a” ∈ Φ(v1). Note that in this example, no pivot is updated. Thus v1 is reported as result.

Handling Multiple Keywords. For keyword-aware query, we extend the single keyword search

condition into multiple keywords. We consider the keyword-aware query in AND semantic, which

aims to find the vertices that contain all these query keywords. Given the �CkNN query Q =

(lq,Φq, k), for the keyword containment checking, we have H(Φq) = ∨wq∈Φq H(w). For the candi-

date pivot o, we use H(Φq) to search KP(o). The rest search procedure is just the same as single

keyword case. Note that, the number of vertices that contain all the query keywords may be much

smaller than the single keyword case, therefore there would be more false positives happening when

searching the KP tree index.

Algorithm Analysis. We assume that the keywords are evenly distributed in road network. By

using the bloom filter, the hash code of keyword w, i.e., H(w), is a bit array of m bits. Given τ hash

functions, each of which maps a keyword to one of the m array positions and set it to 1. Assume

that the false positive probability is P f . The average number of leaf nodes in KP(o) is |L(V)|
|V | , and the

average number of keywords that a vertex contains is f req(V)
|V | , so the average number of keywords in

KP(o) is nw =
L(V)· f req(V)

|V |2 . From [21], we know given nw and m, the value of τ that minimizes P f is

τ = m
nw
· ln 2 = m·|V |2·ln 2

L(V)· f req(V) .

We define two cost functions f (h) and g(h) that f (h) is the cost of searching KP(o) that KP(o)

contains the query keyword w, and g(h) is the cost of that KP(o) does not contain w. We denote Ph

as the probability that a tree node in KP(o) with height h covers at least one query keyword w, and

P as the probability that a vertex contain w. Thus, Ph = 1 − (1 − P)2h
. For f (h), we know that the

left subtree is searched with g(h − 1) if and only if the left subtree does not contain w and the left

subnode is a false positive. Therefore, the probability we search the left subtree with the cost g(h− 1)

is Pg = (1 − Ph−1) · P f ; Otherwise, we search by cost f (h − 1). For g(h), if the subnodes are false

positives, we continue to examine the subtrees. For h = 0, we apply a binary search to check the

66 Keyword-aware Continuous kNN Queries on Road Networks

containment of w in leaf node, i.e., f (0) = g(0) = ln f req(V)
|V | . Hence, we have

f (h) = 1 + Pg · g(h − 1) + (1 − Pg) · f (h − 1)

g(h) = 1 + 2P f · g(h − 1)
(4.2)

As mentioned before, the P f is usually small since the bloom filter is able to control the false

positives well. Therefore, the Equation 4.2 can be simplified as g(h) = O((2P f)h ln f req(V)
|V |) and f (h) =

O(h + ln f req(V)
|V |). The cost of FindNext is O(ln |L(V)|

|V | + ln f req(V)
|V |). Thus, the worst case of UpdatePivots

is that we access each pivot o ∈ L(vq) for k times. Therefore, the time complexity of Algorithm 5 is

O(k · |L(V)|
|V | · ln

|L(V)|· f req(V)
|V |2).

4.3.3 Dominance Interval for �CkNN

The intuition to process �CkNN query is that we find an interval on road network, as long as the

moving object stays on such an interval, the �kNN results maintain valid and no recomputation is

required. In this section, we call such interval as dominance interval w.r.t. its corresponding �kNN

results R, i.e.,DI(R).

Definition 4.4 (Dominance Interval). Given a vertex v, a point p is dominated by v, i.e., v ≺ p, if

and only if v is one of the�kNN results w.r.t. p. The dominance intervalDI(R) is a path where every

point p locates onDI is dominated by v ∈ R, i.e., R ≺ DI(R).

Therefore, the major task of�CkNN is to determine such dominance intervals as long as possible

in order that the communication cost between server and client ends, as well as the computation cost,

are thoroughly reduced.

Lemma 4.1. Given EP(s, . . . , e), let REP be the �kNN query results of all points on EP, then we

have,

REP = Rs ∪ Re ∪o∈EP\{s,e} Ro (4.3)

Proof. The proof is straightforward so we omit it here. �

Given a moving query Q = (lq,wq, k), we first identify the EPq that lq locates on. Based on Lemma

4.1, we compute the �kNN results for both the vertices s and e of EPq by Algorithm 5, denoted as

4.3 Algorithm LARC 67

Rs and Re, and also obtain all the vertices on EPq that contain wq by accessing the EP index of EPq,

denoted as Rm. Finally, we proceed to divide EPq into dominance intervals by a window sliding

approach. Normally, we will be faced with one of the three possible situations: (1) Rs = Re; (2)

Rs ∩ Re = φ; (3) Rs ∩ Re , φ.

Case 1. Rs = Re. From Lemma 4.1, it is obvious to see that Rm ⊆ Rs(Re), which means all points

on EPq share the same dominance intervalDI(R) = EPq, and R = Rs = Re.

Case 2. Rs ∩ Re = φ. We denote the set R−s = Rs \ Rs ∩ Rm and R−e = Re \ Re ∩ Rm, and construct

a result arrayA = {v1, . . . , v|AEPq |
} by concatenating R−s , Rm and R−e . As no duplicate instances exist in

A, we have |A| = |R−s | + |Rm| + |R−e |. Note that vi ∈ R−s is sorted in descending order of dG(vi, s) while

v j ∈ R−e is sorted in ascending order of dG(v j, e). Then we employ a sliding windowW with size k to

form the �kNN results by covering continuous vertices inA from v1 to v|A|

Lemma 4.2. The adjacent dominance intervalsDI(Ri) andDI(Ri+1) are dominated by Ri = {vi, . . . , vi+k−1}

and Ri+1 = {vi+1, . . . , vi+k}, respectively, vi ∈ A. The bisect point pi between DI(Ri) and DI(Ri+1) is

determined by the median point of vi and vi+k on EPq.

Proof. Mapping all the NN results intoA deduces this problem to an order-k voronoi diagram on one

dimension. Thus, each dominance interval DI(Ri) is dominated by k continuous results in current

W, i.e., Ri = W. When the moving object moves into DI(Ri+1) from DI(Ri), W pushes vi+k and

pops vi. Therefore, the bisect point pi is the point on EPq where dG(pi, vi) = dG(pi, vi+k). �

From Lemma 4.2 we know the number of dominance intervals is n = |A| − k + 1, and

DI(Ri) =

P(s, . . . , pi), i = 1

P(pi−1, . . . , pi), 1 < i < n

P(pi−1, . . . , e), i = n

(4.4)

Case 3. Rs ∩Re , φ. We need to deliberate the cases v ∈ Rs ∩Re. If v locates on EPq, i.e., v ∈ Rm,

we only insert one instance of v intoA. Further, if s locates on SP(v, e) or e locates on SP(s, v), i.e.,

dG(v, e) = dG(v, s) + dG(s, e) or dG(v, s) = dG(v, e) + dG(s, e), we also keep one instance of v in R−s or

R−e . For other cases, we retain two duplicate instances of v inA that one in R−s while the other in R−e .

Given current sliding window W with k instances from A, i.e., W = {vi, . . . , vi+k−1}, if there

exists two instances vx = vy, vx, vy ∈ W or vx ∈ W is same with vi+k, we extend the sliding window

W to include one more instance butW still contains k distinct vertices.

68 Keyword-aware Continuous kNN Queries on Road Networks

3 4

5

4.5

2 3.5

4

s e
v3

v1

v4

v5 v2

v1 v2 v3 v2 v4 v5

R1

R2

R3

Figure 4.3: Dominance interval

Lemma 4.3. Given sliding window W = {vi, . . . , vvi+k} that has been extended to k + 1 instances.

If vi is the duplicate instance, the bisect point pi between DI(Ri) and DI(Ri+1) is the median point

between vi+1 and vi+k+1 on EPq.

Proof. If vi is duplicated, and vi+1 = vi. Thus, the next sliding windowW pops both vi and vi+1 and

pushes vi+k+1. So the number of vertices inW is still kept k, and the bisect point pi is determined by

vi+1 and vi+k+1. If vi is duplicated, and vi+1 , vi. Thus, the next sliding windowW pops both vi and

vi+1 and pushes vi+k+1 as well. Note that vx ∈ {vi+2, . . . , vv+k}, vx = vi is still covered by W, so the

number of vertices inW is still kept k. Therefore, pi is determined by vi+1 and vi+k+1. �

For example in Fig. 4.3, Rs = {v1, v2, v3}, Re = {v2, v4, v5} andA = {v1, v2, v3, v2, v4, v5}. Obviously,

R1 contains two duplicate instances of v2, and p1 = p(s, e, 2) is the bisect point between v1 and v4 on

P(s, . . . , e). Thus, the dominance interval DI1 = P(s, . . . , p(s, e, 2)). Consequently, R2 = {v2, v3, v4}.

Note that v2 is the duplicate instance, thus p2 = p(s, e, 3.5) is determined by v3 and v5 from Lemma

4.3. Therefore,DI2 = P(p(s, e, 2), . . . , p(s, e, 3.5)).

Following to the resolution of dominance intervals, on condition of that the moving object Q stays

in DI(Ri), Ri is reported as �kNN results and no communication takes place. Once Q moves out

of EPq, a new round of dominance interval computation is issued. The pseudocode can be found in

Algorithm 6.

Example 4.3. As shown in the running example Fig. 4.1, given �CkNN query Q = (v2, “a”, 3).

4.4 Algorithm LARC++ 69

First we find the enclosed path that v2 locates on, i.e., EP(v1, . . . , v7). Then we compute Rv1 =

{v1, v2, v9}, Rv7 = {v7, v4, v2} and Rm = {v2, v4}. Thus we have A = {v9, v1, v2, v4, v7}. The re-

solved dominance intervals are DI(R1) = P(v1, . . . , p(v1, v2, 0.5)) w.r.t. R1 = {v9, v1, v2}, DI(R2) =

P(p(v1, v2, 0.5), . . . , v3) w.r.t. R2 = {v1, v2, v4} andDI(R3) = P(v3, . . . , v7) w.r.t. R3 = {v2, v4, v7}.

Algorithm Analysis. Algorithm 6 involves two phases of computation, the first phase is the

�kNN query processing and the other is dominance interval resolution.

Theorem 4.1. The expected time complexity of Algorithm 6 is O(k · |L(V)|
|V | · ln

|L(V)|· f req(V)
|V |2 + ln |W | + n).

The expected communication cost is O(|E|∑
e∈E le

).

Proof. First, we issue two�kNN queries for s and e which takes O(k · |L(V)|
|V | · ln

|L(V)|· f req(V)
|V |2). To obtain

the vertices on EPq that contain wq, we apply a binary search to locate the keyword posting list for wq

which takes O(ln |W |) for the worst case. For the dominance interval resolution, we compute n bisect

points which takes O(n). Therefore, the time complexity of Algorithm 6 is O(k · |L(V)|
|V | · ln

|L(V)|· f req(V)
|V |2 +

ln |W | + n). The average length of dominance interval is O(
∑

e∈E le
|E|). As the communication cost is

inversely proportional to the average length of dominance interval, thus we have the expected cost

O(|E|∑
e∈E le

). �

4.4 Algorithm LARC++

Intuitively, the dominance intervals of frequent keywords are usually short so that LARC is able to

handle the frequent cases well. As a contrast, infrequent keywords always hold a relative large region

without the need of recomputation of �kNN results. Accordingly, simply applying LARC on these

cases may incur unnecessary communication and computation costs due to the limited length of dom-

inance interval. Therefore, we introduce an enhanced algorithm LARC++ to cope with infrequent

cases in this section. Unlike the Euclidean space that the objects are randomly distributed without

correlation, in road networks the objects are connected and organized by edges and paths between

them due to the network properties. Thus, the LARC++ adopts a path-based dominance updating

approach to discover the paths that construct the dominance region by exploiting the properties of

paths that connect objects in road networks.

70 Keyword-aware Continuous kNN Queries on Road Networks

Algorithm 6: Keyword-aware continuous kNN
Input: Q = (lq,wq, k)

Output: R = {v1, v2, . . . , vk}

1 Obtain EPq and Rm;

2 Compute two �kNN queries and obtain Rs and Re;

3 if Rs = Re then

4 DI = EPq;

5 else

6 Generate a result arrayA;

7 if Rs ∩ Re , φ then

8 We have n = |A| − k + 1 dominance intervals;

9 Compute the {DI} and {Ri};

10 else

11 Compute the {DI} and {Ri} by Lemma 4.3;

12 while Q is on EPq do

13 Find the dominance intervalDI(Ri) that Q locates on;

14 return Ri;

4.4.1 Path-based Dominance Updating

Analogous to existing works on CkNN, we adopt the concept of dominance region where no recom-

putation is demanded on all inside paths, and aim to find such a region as large as possible with low

cost.

Concepts and Notations. First, we give a formal definition of dominance region as follows,

Definition 4.5 (Dominance Region). The dominance region DR w.r.t. vertex v, i.e., v ≺ DRk(v),

is a region where every inside point p is dominated by v. Likewise, given current �kNN results

R = {v1, v2, . . . , vk}, the dominance region w.r.t. R, i.e., R ≺ DRk(R), is a region where every inside

point p is dominated by R. Thus, we have:

DR
k(R) =

⋂
v∈R

DR
k(v) (4.5)

4.4 Algorithm LARC++ 71

From Definition 4.5, we need to find the DRk(v) where v is always one of the �kNN results.

However, it is unlikely to compute such a region directly since the �kNN results that contain v may

have many different combinations, which makes this problem inapplicable. Fortunately, inspired by

the construction of oder-k Voronoi Diagram in Euclidean space, we only need to compute DR1(v)

where v is the �1NN result, which is similar to the concept of order-1 Voronoi Diagram.

Lemma 4.4. Given G = (V, E), the current �kNN results R = {v1, . . . , vn}. The dominance region

w.r.t. R is computed as,

DR
k(R) =

⋂
v∈R

DR
1
(V\R

⋃
v)(v) (4.6)

Note thatDR1
(V\R

⋃
v)(v) is the dominance region w.r.t. v that constructed in the sub-network V \R

⋃
v.

Proof. From [75] in Euclidean space, we know that the order-k Voronoi Diagram w.r.t. R is the

intersection of all the order-1 Voronoi Diagrams w.r.t. v ∈ R that constructed by ignoring the rest

results in R. Analogously, DR1
(V\R

⋃
v)(v) is same as the concept of order-1 Voronoi Diagram while

the bisectors are defined by network distance. Obviously, all the points p ∈ DR1
(V\R

⋃
v)(v) are closer

to v than u′ ∈ V \ R in terms of network distance. Therefore, DRk(R) is the intersections of all

DR
1
V\R
⋃

v(v). �

In order to resolve the boundary of dominance region, we are obliged to find a set of vertices

u ∈ V \ R containing wq, which are influential in determining whether the current �kNN result R is

valid. Therefore, we introduce the concept of potential neighbour as follows,

Definition 4.6 (Potential Neighbour). Given current �kNN results R = {v1, v2, . . . , vk}, and a query

keyword wq. We assume that u ∈ V \R contains wq. The vertex u is a potential neighbour w.r.t. vi, i.e.,

u ∈ PN(vi), if and only if there does not exist a vertex o on SP(u, vi) that also contains wq.

After obtaining the potential neighbour PN(R), we are able to resolve the dominance status of

the vertices between PN(R) and R. Without loss of generality, we define such vertices inbetween as

enrolled vertex as follows,

Definition 4.7 (Enrolled Vertex). Given current �kNN results R = {v1, v2, . . . , vk}, and a potential

neighbour u ∈ PN(R). An intersection vertex e is enrolled, e ∈ EN(v), if and only if e is on the path

between vi ∈ R and u, and dG(vi, e) < maxu∈PN(R) dG(vi, u).

72 Keyword-aware Continuous kNN Queries on Road Networks

Dominance Region Construction. When a �CkNN query is issued, i.e., Q = (lq,wq, k), we

compute an initial �kNN set R w.r.t. the start point lq by Algorithm 5. For each v ∈ R, we first

determine the potential neighbours PN(v), and in this process, we obtain a set of enrolled vertices in

order that we can further validate the dominance status of the paths they locate on. After these paths

are resolved, we merge them to form the finalDRk(R).

It is worth to notice that the step of determiningPN(R) is critical since it to some extent defines the

strength of DRk(R). In other words, the more vertices are enrolled in the step, we are more possible

to obtain a larger DRk(R). However, it is really time consuming and unnecessary to discover all the

potential neighbours for each v ∈ R. Instead we only need to find the nearest potential neighbour

u ∈ PN(v) and u < R for each v as tradeoff.

Assume that we obtain a set of enrolled vertices EN(R), each e ∈ EN(R) is sorted by their dis-

tances to v ∈ R, in the form of (v, dG(e, v)). Next, we proceed to resolve the dominance status of these

enrolled vertices and by which potential neighbour or result vertex they are dominated. Straightfor-

wardly, we can compute the �1NN for all enrolled vertices by Algorithm 5. Thus the dominance of

each e ∈ EN(R) is easily determined. However, it is quite unoptimized that some �1NN results of

e ∈ EN(R) are repeatedly computed due to the observation that many enrolled vertices are actually

dominated by the same potential neighbour or result vertex. Hence, we propose a path-based dom-

inance updating method, i.e., PathDom (See Algorithm 7), to resolve the dominance of e ∈ EN(R)

based on such an observation that if e is dominated by v, then all the other vertices e′ on the path

P(v, . . . , e) are also dominated by v. In other words, we only need to find the furthest enrolled vertex

e dominated by v.

We start the dominance status validation process from the enrolled vertex e ∈ EN(R) with the

maximum value of dG(e, v), in the sense that more vertices are supposed to be included by a longer

path P(v, . . . , e). Then Algorithm 5 is applied from e to hit v, in this process, some intermediate

enrolled vertices e′ ∈ EN(v) are traversed with distance dG(e, e′). If v ∈ R is the first vertex con-

taining wq reached in this process, SP(e, . . . , v) is inserted into DR. Otherwise, if we hit another

vertex u that also contains query keyword wq before we hit v, then we have u ∈ PN(v). For all the

intermediate vertices e′, if dG(v, e′) + dG(e, e′) = dG(v, e), then e′ is on the shortest path SP(v, . . . , e),

which is regarded as a candidate path for DR. For these e′ ∈ SP(v, . . . , e), we store two entries, i.e.,

{(v, dG(e′, v)), (u, d(e′, u))} where d(e′, u) = dG(e, e′)+dG(e, u), and remove these e′ from EN(R). Note

4.4 Algorithm LARC++ 73

v

u1

e

u2

p1

p2

(a) Updating condition 1

v

e

e’

u

(b) Updating condition 2

Figure 4.4: Potential neighbour

that d(e′, u) may not be the minimum distance between e′ and u and requires further updating.

Then we repeat this process and start from e ∈ EN(R) with the maximum value of dG(e, v) in the

rest EN(R). Here we introduce two updating conditions.

Path Updating Condition 1. Consider such a situation, if e hits a potential neighbour u′, and en-

counters an intermediate enrolled vertex e′ that is contained by a candidate path SP(eo, . . . , v) and has

two entries {(v, dG(e′, v)), (u, d(e′, u))} w.r.t. v and u. Thus, we split the candidate path SP(eo, . . . , v)

into two candidate paths SP(eo, . . . , e′) and SP(e′, . . . , v) for further validation, and keep a new can-

didate path SP(e, . . . , e′). Then we compare the two distances d(e′, u) and d(e′, u′).

Lemma 4.5. Given two potential neighbour u1, u2 ∈ PN(v) w.r.t. v, the paths P(v, . . . , e, . . . , u1) and

P(v, . . . , e, . . . , u2) share a common path P(v, . . . , e). As shown in Fig. 4.4(a), if dG(e, u1) < dG(e, u2)

and dG(e, u1) < dG(e, v), thus u1 governs u2 w.r.t. the path P(v, . . . , e), denoted as u1 x u2 on

P(v, . . . , e), which means the dominance status of e′ ∈ SP(e, . . . v) is only determined by v or u1.

Proof. If u1 x u2 on P(v, . . . , e), we know that dG(e, u1) < dG(e, u2) and dG(e, u1) < dG(e, v). For

the dominance region between v and u1, the bisect point p1 locates on P(v, . . . , e) since dG(v, p1) =

(dG(v, e) + dG(e, u1))/2 < dG(v, e). For u2, the distance between bisect point p2 and v, i.e., dG(v, p2) =

(dG(v, e) + dG(e, u2))/2 > dG(v, p1), therefore we know that p1 is closer to v than p2. �

From Lemma 4.5, we know that if d(e′, u′) < d(e′, u), then we update the entries into {(v, dG(e′, v)),

(u′, d(e′, u′))} since it might be that u′ x u on the path P(v, . . . , e′). Note that, we also update the

entries of all the enrolled vertices on candidate path SP(e′, . . . , v).

Path Updating Condition 2. Consider another situation, if e hits a potential neighbour u, and

74 Keyword-aware Continuous kNN Queries on Road Networks

encounters an intermediate enrolled vertex e′ that already has two entries {(v, dG(e′, v)), (u, d(e′, u))}

w.r.t. v and u, as shown in Fig. 4.4(b). If dG(e, e′) + dG(e, u) < d(e′, u), we know that the path

P(e′, . . . , e, . . . , u) is a shorter path than that in the previous iterations. Similarly, we update d(e′, u)

with dG(e, e′) + dG(e, u) for all e′ on the path P(v, . . . , e′). In addition, if this enrolled vertex e

hits a potential neighbour u, and the first intermediate vertex e′ that it encounters has two entries

{(v, dG(e′, v)), (u, d(e′, u))} w.r.t. v and u. If dG(e, e′) + dG(e, u) > d(e′, u), we know that the path

P(e′, . . . , u) has already been visited by a shorter path in the previous iterations, thus we do not up-

date the entries of vertices on the path P(v, . . . , e′). This process terminates when EN(R) = ∅.

Lemma 4.6. When EN(R) = ∅, for each enrolled vertex e, in the entries {(v, dG(e, v)), (u, d(e, u))},

d(e, u) is the minimum distance dG(e, u).

Proof. According to our algorithm, all the possible paths between e and u have been traversed, and

there must exist a path that is the shortest one. Therefore,we have d(e, u) = dG(e, u). �

Finally, the dominance status of each vertex e on candidate paths can be easily determined by

comparing dG(e, v) and dG(e, u), as well as the dominance intervals on these candidate paths. Then

we insert all the dominance intervals intoDR.

Example 4.4. As shown in the running example Fig. 4.1, given �C1NN query Q = (v1, “d”, 1), we

first search for the �1NN result of v1, i.e., v3. Then we continue to resolve the dominance region

DR({v3}). As the �1NN result is v6, thus the enrolled vertex set EN({v6}) = {v5, v1, v7}. Then we use

v5 to hit target vertices, and obtain dG(v5, v6) = 3. Note that v1 is traversed in this process, thus v1

has two entries {(v3, 3), (v6, 4)}. Next we use v7 to hit targets, and obtain {(v3, 3), (v6, 3)}. Therefore,

the dominance regionDR({v6}) = {P(p(v1, v5, 0.5), . . . , v3),P(v7, . . . , v3)}.

4.4.2 Combination of LARC and LARC++

Generally, if the query keywords are densely distributed on road network, LARC is able to resolve the

short dominance intervals efficiently. By contrast, if the query keywords are sparse in road network,

LARC++ is capable of determining the large dominance regions well. However, if we use LARC to

deal with low frequency keywords or LARC++ to cope with high frequency keywords, either redun-

dant communication cost or computation cost will be incurred. As LARC and LARC++ are sensitive to

4.4 Algorithm LARC++ 75

Algorithm 7: PathDom()
Input: v, e ∈ EN(v)

Output: For each e we have (v, dG(e, v)), (u, dG(e, u))

1 while EN(v) , ∅ do

2 e = EN(v).top;

3 if e hits u ∈ PN(v) before v then

4 for e′ on P(v, . . . , e) do

5 if The entry of e′ is ∅ then

6 d(e′, u) = dG(e, e′) + dG(e, u);

7 Store (v, dG(e′, v)), (u, d(e′, u));

8 else if The entry of e′ contains u′ and d(e′, u′) < d(e′, u) then

9 Update into {(v, dG(e′, v)), (u′, d(e′, u′))};

10 else if The entry of e′ contains u and dG(e, e′) + dG(e, u) < d(e′, u) then

11 Update d(e′, u) = dG(e, e′) + dG(e, u);

12 else if The entry of e′ contains u and dG(e, e′) + dG(e, u) > d(e′, u) then

13 Continue;

14 return all entries;

different keyword frequencies, we combine these two algorithms to develop a new algorithm LARC-C

that when the query keywords are of high frequency, we use LARC; when the query keywords are of

low frequency, then LARC++ is utilized.

The key point in this combination algorithm is that we designate a threshold that half of the

keyword occurrences are handled by LARC and the other half by LARC++. Motivated by [53], we

assume that the keywords of road network are of Zipf’s distribution [134]. In the experimental dataset,

we use the keyword id kid to denote the its rank of frequency. We know that in Zipf’s distribution,

f req(w) ∝ 1
kid . For G = (V, E), we have |W | keywords and | f req(W)| keyword occurrences. As we

know, the sum of occurrences of top n frequent keywords is proportional to the Harmonic number

n, i.e., Hn =
∑n

kid=1
1

kid = ln n. Therefore, we have H|W | = ln |W | and
H
|W |1/2

H|W |
= ln |W |1/2

ln |W | = 1/2, which

means the top |W |1/2 keywords cover half the keyword occurrences. Therefore, in our real dataset of

76 Keyword-aware Continuous kNN Queries on Road Networks

Beijing, we have |W |1/2 = 298 that we use LARC for top 298 keywords and use LARC++ for the rest

keywords.

4.5 Experiments

In this section, we conduct extensive experiments on real road network datasets to study the perfor-

mance of the proposed index structures and algorithms.

4.5.1 Experimental Settings

All these algorithms were implemented in GNU C++ on Linux and run on an Intel(R) CPU i7-

4770@3.4GHz and 16G RAM.

Datasets. We use two real datasets, the road network datasets of Beijing and New York City from

the 9th DIMACS Implementation Challenge1. Each dataset contains an undirected weighted graph

that represents a part of the road network. Each edge in a graph represents the distance between two

endpoints of the edge. We obtain the keywords of vertices from the OpenStreetMap2. As shown

in Table 4.2, for D1 in Beijing, we have 168,535 vertices and 196,307 edges. We also have 88,910

distinct keywords contained by vertices with the total occurrence 1,445,824. For D2 in New York, we

have more vertices and edges than D1 in road network with almost twice the size of D1, the set of

keywords contained are larger than D1 as well. For each experiment, we generate 50�CkNN queries,

each of which is a sequence of locations in the form of (u, v, ds). The query location can be either a

vertex or a point locates on an edge.

Table 4.2: Statistics of dataset
Beijing New York

#|V | 168,535 264,346

#|E| 196,307 733,846

#|W | 88,910 102,450

#|Φ(V)| 1,445,824 3,086,166

1http://www.dis.uniroma1.it/challenge9/download.shtml
2https://www.openstreetmap.org

4.5 Experiments 77

Algorithms Evaluated. We introduce two baseline algorithms, Dijk-BF and V∗-RN, for compar-

ison. The first baseline algorithm is the brute-force approach (Dijk-BF), which computes the kNN

results for every location reported by the moving object. If the object locates at vertex vq, Dijkstra-

algorithm is applied that expands from the query location and traverse the other vertices in the best-

first way until reaching k vertices with the query keyword wq. Additionally, if the object locates on

edge (u, v), i.e., lq = p(u, v, ds), both the two ends u and v are regarded as the source of Dijkstra search

with the initial distances ds and l(u, v)−ds, respectively. The second baseline algorithm is V∗-RN that

extended from V∗-Diagram [74] since V∗-Diagram is designed for the Euclidean space only. Gen-

erally, V∗-RN keeps a safe region to reduce the communication cost. At the first step of retrieving

(k + δ)NN results, all the paths accessed by Dijkstra search are saved as the known region. To identify

the safe region boundary of each path in the known region, we compute the network distances for both

two endpoints of these paths, and finally obtain the safe region. For our algorithms proposed in this

chapter, we have exact algorithm LARC in Section 4.3, LARC++ in Section 4.4 and the combination

algorithm LARC-C. For the construction of label index, we adopt Pruned Landmark Labelling [6] and

Hub-based Labelling [1] to generate the 2-hop label. For these four algorithms, we evaluate the CPU

computation cost, and the communication cost between server and client. In the experiments, we vary

the size of datasets, the length of the query objects, the number of results k, the speed of query object

and the frequency of query keyword, to study the effects of these parameters.

Parameters. To evaluate the algorithms under various settings, we vary the value of some param-

eters. For the speed of object, we vary the report distance from 20 to 100 meters. For the number

of the results, we vary the k from 5 to 50. For the length of query object, we vary the length from

200 to 1000. For the query keyword frequency, we vary the frequency from 100 to 104. We default

choose the speed of object as 40, the k as 10, the length as 400, and the keyword frequency as 103.

The parameters are summarized in Table 4.3.

4.5.2 Experimental Results

Among all the algorithms discussed in this chapter, we perform a comparative experimental study

on Dijk-BF, V∗-RN, LARC, LARC++ and LARC-C. The next experiments compare these algorithms

using different experimental parameters and study their effects on the performance. Most experiments

78 Keyword-aware Continuous kNN Queries on Road Networks

Table 4.3: Parameter settings

Parameters Values

Speed of object 20, 40, 60, 80, 100

k number of results 5, 10, 15, 20, 50

Length of query 200, 400, 600, 800, 1000

Keyword frequency 100, 101, 102, 103, 104

presented in this subsection are using D1 dataset from Beijing.

Effect of dataset cardinality. In this set of experiments, we vary the datasets to study the effect of

data cardinality for Beijing and New York. For the performance study, we compare the CPU time and

communication cost of these three algorithms by varying the size of these two datasets. For Beijing

dataset, we vary the size of vertices from 40K to 160K. For New York dataset, we vary and the size

of vertices from 100K to 250K. As shown in Fig. 4.5, the CPU time of our proposed algorithm

LARC-C outperforms these two baseline algorithms Dijk-BF and V∗-RN, and the CPU time of each

algorithm keeps relative stable with varying the size of datasets. In addition, the communication cost

of Dijk-BF is constant since it communicates every time when the query location updates. For V∗-

RN and LARC-C, the communication costs are thoroughly reduced, and LARC-C incurs even less

communication cost than V∗-RN. This confirms the superiority of our proposed algorithm.

Effect of query length. In this set of experiments, we use the query lengths of 200, 400, 600, 800,

1000 to study its effect on these three algorithms. The query length is the number of locations the

moving object reported. Intuitively, as the number of locations increases, both the computation and

communication costs increase. As shown in Figure 4.6, for the computation cost, Dijk-BF and V∗-

RN increase faster than LARC-C, since both of them evolve the nearest neighbour search by Dijkstra

algorithm and keyword checking for every encountered vertex. For LARC-C, the increasing trend of

computation cost is slow because they only need to search KP tree to obtain�kNN results and in the

meantime construct a dominance region to avoid recomputation of kNN. For the communication cost,

as Dijk-BF does not construct the safe region, the communication cost is linear to the query length.

For V∗-RN, LARC-C, both of them adopt the concept of safe region or dominance region. As a result,

we can see that the communication costs are highly reduced, and our proposed algorithm LARC-C is

slightly better than V∗-RN.

4.5 Experiments 79

 0

 50

 100

 150

 200

 250

 300

 350

40K 80K 120K 160K

C
P

U
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
)

#Beijing Dataset

Dijk-BF V*-RN LARC-C

 0

 100

 200

 300

 400

 500

 600

100K 150K 200K 250K

C
P

U
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
)

#New York Dataset

Dijk-BF V*-RN LARC-C

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

40K 80K 120K 160K

C
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

#Beijing Dataset

Dijk-BF V*-RN LARC-C

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

100K 150K 200K 250K

C
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

#New York Dataset

Dijk-BF V*-RN LARC-C

Figure 4.5: Effect of dataset cardinality

 0

 100

 200

 300

 400

 500

 600

 700

 800

200 400 600 800 1000

C
P

U
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
)

#Length of query

Dijk-BF V*-RN LARC-C

 0

 200

 400

 600

 800

 1000

 1200

200 400 600 800 1000

C
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

#Length of query

Dijk-BF V*-RN LARC-C

Figure 4.6: Effect of query length

Effect of k. In this set of experiments, we vary the value of k by 5, 10, 15, 20 and 50 to study

the effect on these three algorithms. As shown in Figure 4.7, we can see that our proposed algorithm

80 Keyword-aware Continuous kNN Queries on Road Networks

 0

 200

 400

 600

 800

 1000

 1200

 1400

5 10 15 20 50

C
P

U
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
)

#k

Dijk-BF V*-RN LARC-C

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

5 10 15 20 50

C
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

#k

Dijk-BF V*-RN LARC-C

Figure 4.7: Effect of k

LARC-C well outperforms the baseline algorithms Dijk-BF and V∗-RN on both computation and com-

munication costs. As we know that when we enlarge k, more vertices are included for consideration

of keyword checking. When the value of k is small, say 5, we can see that the computation costs

of these algorithms are close. However, the computation costs of Dijk-BF and V∗-RN are increasing

much faster than LARC-C due to the massive network traversals with enlarging k. For the commu-

nication cost, Dijk-BF gains a constant value since it reports the �kNN results for every location. If

the query length does not change, the communication cost is kept the same. For V∗-RN, LARC-C,

we have a similar observation to previous set of experiments that our proposed algorithm LARC-C is

slightly better than V∗-RN. Note that, even the communication cost of V∗-RN is low, the computation

overhead is incurred in the construction of safe region. This explains that V∗-RN has a low commu-

nication cost but still has a high computation cost. As a result, this confirms the superiority of our

proposed algorithm.

Effect of query object speed. In this set of experiments, we vary the speed of query object by 20,

40, 60, 80, 100 to study the effect on these three algorithms. The speed of query object is determined

by the distance between two reported locations of query objects. Therefore, we vary this distance to

simulate the speed of moving object. As shown in Figure 4.8, we can see the similar pattern that our

proposed algorithm LARC-C well outperforms the baseline algorithms Dijk-BF and V∗-RN on both

computation and communication costs. For the computation cost, Dijk-BF has a steady trend because

the speed of query object does not have an obvious effect on it. For V∗-RN, LARC-C, if the distance

is small, the query object is more possible to stay in the safe region or dominance region, thus we do

4.5 Experiments 81

 0

 50

 100

 150

 200

 250

 300

 350

20 40 60 80 100

C
P

U
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
)

#Speed of object

Dijk-BF V*-RN LARC-C

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

20 40 60 80 100

C
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

#Speed of object

Dijk-BF V*-RN LARC-C

Figure 4.8: Effect of speed

 0

 200

 400

 600

 800

 1000

 1200

1 10 100 1000 10000

C
P

U
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
)

#Keyword frequency

Dijk-BF
V*-RN

LARC-C
LARC

LARC++

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 10 100 1000 10000

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t

#Keyword frequency

Dijk-BF
V*-RN

LARC-C
LARC

LARC++

Figure 4.9: Effect of keyword frequency

not have more recomputation for �kNN and region construction. If the distance is large, the query

object is more possible to move out of the safe region or dominance region, thus the recomputation of

�kNN and region reconstruction are incurred more often. Therefore, the computation costs increase

in all these three algorithms when the distance is enlarged. For the communication cost, Dijk-BF

keeps the same cost, and our proposed algorithm LARC-C are slightly better than V∗-RN.

Effect of keyword frequency. In this set of experiments, we vary the query keyword frequency

by 100, 101, 102, 103, 104 to study the effect on these five algorithms. For each keyword frequency,

we compute an average value by selecting some keywords with close frequencies to it. As we can

see in Figure 4.9, when the keyword frequency is low, Dijk-BF and V∗-RN have a bad computation

performance, since they have to traverse large portion of the road network to obtain �kNN results,

82 Keyword-aware Continuous kNN Queries on Road Networks

 0

 1

 2

 3

 4

 5

 6

 7

500 1000 1500 2000 2500
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

In
d

e
x
 s

iz
e

 (
G

B
)

F
a
ls

e
 p

o
s
it
iv

e
 r

a
te

 (
%

)

#m bits

Index size
False positive rate

 0

 2

 4

 6

 8

 10

 12

500 1000 1500 2000 2500
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

In
d

e
x
 s

iz
e

 (
G

B
)

F
a
ls

e
 p

o
s
it
iv

e
 r

a
te

 (
%

)

#m bits

Index size
False positive rate

Figure 4.10: Effect of m

and this process incurs large computation overheads on network traversal and keyword checking. We

can see that that our proposed algorithms LARC-C well outperforms the baseline algorithms Dijk-BF

and V∗-RN because it adopts the FindNext method to search the KP tree. For the communication

cost, Dijk-BF gains a constant value just as the same to previous experiments. For V∗-RN, LARC-C,

both of them have a decrease in the communication cost when we enlarge the keyword frequency. We

can also see that our proposed algorithms are slightly better than V∗-RN. For LARC, LARC++ and

LARC-C, LARC outperforms LARC++ when the query keywords are of high frequency in terms of

CPU cost. But LARC++ is slightly better than LARC in terms of communication cost, because the

dominance region determined by LARC++ is always larger than LARC.

Effect of m bits. In this set of experiments, we vary the number of m bits in hash code by

500,1000,1500,2000,2500 to study the effect on index size and false positive rate. As we can see in

Figure 4.10, the index size increases and the false positive rate decreases when we enlarge the value

of m. This is because when the value of m is large, more space will be used to construct the index

structure especially the KP tree, and keywords are less possible to share a same hash code.

Effect of multiple keywords. In this set of experiments, we vary the number of query keywords

by 1, 2, 3, 4, 5 to study the effect on these three algorithms. As we can see in Figure 4.11, the

experiment results have a similar pattern that our proposed algorithm LARC-C well outperform these

two baseline algorithms in terms of both the CPU cost and communication cost. Because when the

number of query keywords increases, the number of target vertices decreases. Therefore, LARC-C

has a better performance than Dijk-BF and V∗-RN.

4.6 Summary 83

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 2 3 4 5

C
P

U
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
)

#Query keyword number

Dijk-BF V*-RN LARC-C

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 3 4 5

C
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

#Query keyword number

Dijk-BF V*-RN LARC-C

Figure 4.11: Effect of multiple keywords

4.6 Summary

In this chapter, we study the problem of efficiently processing �CkNN query on road networks with

low computation and communication costs. By utilizing the 2-hop label technique on road networks,

we modify the original index structure and LARC++ construct a keyword-based label index. Based on

such index, we first introduce the �kNN query processing, and then propose two efficient algorithms

LARC and for processing the �CkNN on road networks. For LARC, we introduce a window sliding

approach to build a dominance interval to deal with low frequency keywords. For LARC++, we

propose a path-based dominance updating approach to resolve a dominance region for high frequency

keywords. Our experimental evaluation demonstrates the effectiveness and efficiency of our solution

for processing the�CkNN queries on large real-world datasets, which outperforms the state-of-the-art

method with almost 50% decrease on computation cost and almost 20% decrease on communication

cost.

84 Keyword-aware Continuous kNN Queries on Road Networks

Chapter 5

Efficient Clue-based Route Search on Road

Networks

With the advances in geo-positioning technologies and location-based services, it is nowadays quite

common for road networks to have textual contents on the vertices. Previous works on identifying an

optimal route that covers a sequence of query keywords have been studied in recent years. However, in

many practical scenarios, an optimal route might not always be desirable. For example, a personalized

route query is issued by providing some clues that describe the spatial context between PoIs along

the route, where the result can be far from the optimal one. Therefore, in this chapter, we investigate

the problem of clue-based route search (CRS), which allows a user to provide clues on keywords and

spatial relationships. First, we propose a greedy algorithm and a dynamic programming algorithm as

baselines. To improve efficiency, we develop a branch-and-bound algorithm that prunes unnecessary

vertices in query processing. In order to quickly locate candidate, we propose an AB-tree that stores

both the distance and keyword information in tree structure. To further reduce the index size, we

construct a PB-tree by utilizing the virtue of 2-hop label index to pinpoint the candidate. Extensive

experiments are conducted and verify the superiority of our algorithms and index structures.

The remainder of this chapter is organized as follows. We give an introduction in Section 5.1 and

define the necessary concepts, formulate the problem of clue-based route search CRS and introduce

some preliminary knowledge in Section 5.2. Then we propose a greedy algorithm GCS in Section 5.3

to answer CRS approximately. Section 5.4 presents a clue-based dynamic programming algorithm

85

86 Efficient Clue-based Route Search on Road Networks

CDP to return exact answer to CRS query. Efficient branch-and-bound algorithm BAB is introduced

in Section 5.5, as well as two index structures AB-tree and PB-tree. Section 5.6 presents a semi-

dynamic mechanism for proposed index structure. Section 5.7 reports the experimental observations.

Finally, Section 5.8 concludes the work.

5.1 Introduction

With the rapid development of location-based services and geo-positioning technologies, there is a

clear trend that an increasing amount of spatial-textual objects are available in many applications. For

example, the location information as well as concise textual descriptions of some businesses (e.g.,

restaurants, hotels) can be easily found in online local search services (e.g., yellow pages). Another

example is the GPS navigation system, where a PoI (Point-of-Interest) is a specific point location

that someone may find useful or interesting, and is usually annotated with textual information (e.g.,

descriptions and users’ reviews). By marking a PoI as destination on the map, users are able to plan

a trip with suggestions. Moreover, in many social network services (e.g., Facebook, Flickr), a huge

number of photographs are accumulated everyday that are geo-tagged by users. These uploaded pho-

tographs are usually associated with multiple text labels. To provide better user experience, various

keyword related spatial query models and techniques have emerged such that the spatial-textual ob-

jects can be efficiently retrieved. A basic spatial keyword query takes a geo-location and a set of

keywords as arguments and returns relevant top-k objects [23]. In more sophisticated case, keyword

queries are also combined with travel planning in commercial applications such as GPS navigation

systems or online map services. The existing solutions (e.g., [16, 63, 93]) for trip planning or route

search are dealing with the scenarios when a user wants to visit a sequence of PoIs, each of which

contains a user specified keyword. Different optimization constraints were proposed in these works,

and the goal was to find an optimal route with minimum cost. In general, the cost can be of various

different types, such as travel distance, time or budget.

However, in many practical scenarios, an optimal route might not always be desirable. It is not

uncommon that a user aims to plan a trip in a region but can only provide partial and approximate

spatial context around the PoIs within the trip. For example, a user wants to find an Italy restaurant in

a city visited many years ago. She cannot remember the exact name and address but she still recalls

5.1 Introduction 87

that “On the way driving to the restaurant from her home, she passed a cafe at about 1km away,

and drove about another 2km to reach the restaurant”. The information given above usually cannot

precisely locate a PoI, but intuitively it provides clues to identify the most likely PoIs along the route.

It is obvious that the optimal route definitely does not satisfy the user’s search intention since it could

be far from the best route. Consider another scenario, “A user wants to find a buffet restaurant and a

nearby cinema only in walking distance, say 3km, thus he can watch a movie after dinner. Therefore,

after having delicious food, he can walk to the cinema in order to maintain a healthy lifestyle”. These

personalized requirements make the route search become distance-sensitive such that the distance

between PoIs along the route must be as close as possible to the user specified distance. Another

example is that when a user wants to know the direction for a specific place and asks others for

help, she may still not be able to exactly figure out the route after obtaining the answers from them.

Therefore, a novel type of route search which interprets the clues contained in such answers becomes

necessary.

Motivated by these observations, in this work, we investigate the problem of clue-based route

search (CRS), which allows a user to provide clues on textual and spatial context within the route.

Formally, a CRS query is defined over a road network G, and the input to the query consists of a

source vertex vq and a sequence of clues C = {µi}, where each clue µi contains a query keyword wi

and a user expected network distance di. The query returns a path P in G starting at vq, such that

P passes through vertices (PoIs) that contain all the query keywords and comply the same keyword

order as in C. In the meantime, it has the minimum matching distance, which is defined as the

degree of satisfaction of the user to P. To the best of our knowledge, none of the existing solutions

(e.g., [16, 63, 93]) on trip planning or route search can be applicable for solving CRS queries.

In order to process the CRS query efficiently, we need to overcome several challenges. The first

challenge is concerned with the large amount of possible routes for validation. Basically, the CRS

requires candidate vertices that contain query keywords in the route to comply a specific order defined

in query. As a feasible path is supposed to cover all the query keywords, the number of feasible paths

increases exponentially with the amount of clues. Therefore, a greedy approach to solve our query is

proposed, which continuously finds the next candidate vertex with minimum matching distance. Un-

fortunately, the optimal result can be substantially different from what the greedy algorithm suggests.

Then, we propose a dynamic programming algorithm to answer CRS query exactly, but it requires

88 Efficient Clue-based Route Search on Road Networks

quadratic time and is not scalable especially for more frequent keywords. To avoid unnecessary route

search, we develop a branch-and-bound algorithm which adopts filter-and-refine paradigm, thus much

fewer feasible paths are considered. The second challenge is how to quickly locate candidate vertices

in road networks. Given a query vertex u, the matching distance between u and its next candidate v

is supposed to be smaller or equal to a threshold. The network expansion approach can be applied

here, but it is inefficient due to excessive network traversals. Therefore, we propose a novel index

structure, called AB-tree, which stores both keyword and distance information in each node. On top

of it, the candidate w.r.t. a query clue can be quickly retrieved. The third challenge is how to reduce

the index construction time and space. As AB-tree involves an all-pair matrix computation and has

a space cost of O(|V |2), we propose a PB-tree to further improve the performance. Inspired by the

2-hop label [2,6], which answers distance queries with a small label index, we modify the structure of

original label index to construct a binary tree on each pivot. In addition, we propose a semi-dynamic

mechanism for PB-tree to support the index updating.

The principal contributions of this work can be summarized as follows.

• We propose a greedy clue search algorithm (GCS) to answer the CRS query approximately

with no index involved. In GCS, we adopt the network expansion approach to greedily select

the current best candidate at each step to construct feasible paths.

• We also develop a clue-based dynamic programming algorithm (CDP) that attempts to enumer-

ate all feasible paths and finally returns the optimal result. In CDP, distance oracle is used to

compute the network distance between candidates.

• We further propose a branch-and-bound algorithm (BAB) by applying filter-and-refine paradigm

such that only a small portion of vertices are visited, hence improves the search efficiency. In

order to quickly locate the candidate vertices, we develop AB-tree and PB-tree structures to

speed up the tree traversal, as well as a semi-dynamic index updating mechanism to keep the

index maintainable when growing bigger.

• Our experimental evaluation demonstrates the efficiency of our algorithms and index structures

for processing the CRS queries on real-world datasets. We show the superiority of our algo-

rithms in answering CRS when compared with the baseline algorithms.

5.2 Problem Statement 89

5.2 Problem Statement

We model a road network as a weighted undirected graph G = (V, E), where V is the set of vertices

and E is the set of edges. Each edge (u, v) ∈ E has a positive weight, i.e., length or travelling time on

the edge, denoted as e(u, v). Each vertex v ∈ V contains a set of keywords, denoted as Φ(v). Given

a path between vertices u and v, denoted as P(u, . . . , v), the length is the sum of weights of all edges

along the path. For any two vertices u and v, the network distance between u and v on G, denoted

as dG(u, v), is the length of the shortest path between u and v, which is denoted as SP(u, v). The

notations used in this work is summarized in Table 5.1.

Table 5.1: Summary of notations in CRS

Notation Definition

G = (V, E) Road network with vertex V and edge

E

P(u, . . . , v) A path from u to v

FP(u, . . . , v) A feasible path from u to v

dG(u, v) Network distance between u and v in G

µ(w, d) A clue with query keyword w and ex-

pected network distance d

σ(u→ v) A match from u to v

dm(µ, σ) Matching distance between clue µ and

vertex pair σ

dm(C,FP) Matching distance between query C

and feasible path FP

L(v) 2-hop label of v

BT (v) Binary tree of v with keyword and dis-

tance information

PR(o) Pivot-based reserve label of vertex o

PB(o) Binary tree of pivot o

90 Efficient Clue-based Route Search on Road Networks

5.2.1 Problem Definition

Definition 5.1 (Clue). A clue is defined as µ(w, d), where w is a query keyword and d is a user defined

distance. Given a source vertex u, the clue implies that we can find a vertex v that contains w, and

the network distance dG(u, v) is as close as possible to d, in order that the user’s search intention is

satisfied.

Definition 5.2 (Matching Distance). Given a source u and a clue µ(w, d), we say that the vertex pair

σ(u→ v) is a match w.r.t. clue µ, if w ∈ Φ(v). The matching distance between a clue µ and its match

σ(u→ v) in G, denoted as dm(µ, σ), is computed by d and the network distance dG(u, v), such that

dm(µ, σ) =

1, if dG(u, v) ≥ 2d;

|d−dG(u,v)|
d , otherwise

(5.1)

Definition 5.3 (Feasible Path). We define a query Q = (vq,C) where C is a sequence of clues denoted

as C = {µ1(w1, d1), . . . , µk(wk, dk)}. Given a query Q, if a path P(vq, v1, . . . , vk) that starts from vq and

matches all keywords in C in the same order, i.e., w1 ∈ Φ(v1), . . . ,wk ∈ Φ(vk), we call such path as a

feasible path, denoted as FP(vq, v1, . . . , vk). Moreover, each segment vivi+1 ∈ FP is the shortest path

SP(vi, vi+1) in G. Note that, if vi is the matching vertex corresponds to the clue µi, then it is taken as

the source to find next matching vertex vi+1 that corresponds to µi+1 and constructs σ(vi → vi+1). The

matching distance between C and its feasible path FP is defined as the maximum matching distance

between all clues µ ∈ C and their corresponding matches σ ∈ FP, that is

dm(C,FP) = max
µi∈C,σi∈FP

dm(µi, σi) (5.2)

Definition 5.4 (Clue-based Route Search). A clue-based route search (CRS) contains a query Q =

(vq,C), and it finds a feasible path FP(vq, v1, . . . , vk), such that dm(C,FP) is minimized.

It is worth to note that the CRS query can be easily extended to have a destination by assuming

that the query keyword contained in destination is unique within G, or have no source involved. In

addition, for simplicity, we only discuss the optimal feasible path in this chapter, but the algorithms

introduced can be easily extended to find top-k feasible paths.

Example 5.1. Figure 5.1 shows an example of G, where σ(v4 → v8) is a match of clue µ(w2, 4) with

dm(µ, σ) = 0.25. Given query Q = (v1, {(w2, 5), (w1, 4), (w3, 5)}), it is easy to see P(v1, v3, v6, v7) is

5.2 Problem Statement 91

w1

w2

w3

w4

w5

3 3

4

4

5

3

2

2

3

4 4

5

3 2 2

1

v1

v2

v3

v4

v5
v7

v8

v9

v6

Figure 5.1: Running example of G

a feasible path with dm(C,P) = 0.25. Note that, P(v1, v3, v4, v7) is the optimal feasible path with

minimum matching distance dm(C,P) = 0.2.

5.2.2 Preliminary: Distance Oracle

We adopt the idea of distance oracleDO to calculate the network distance between two input vertices.

Given a source-target pair of vertices, DO returns the shortest network distance between them. As

we know, the algorithms and data structures onDO have been extensively studied by existing works,

which can be roughly summarized into two categories, expansion-based methods and lookup-based

methods. The most famous expansion-based method for DO is Dijkstra’s algorithm [34], which,

given a s-t pair in road network G, traverses the vertices in G from s to t. However, the problem

of using Dijkstra’s algorithm is that it must visit every vertex that is closer to s, and the number of

such unneeded vertices can be enormous when s and t are far apart, which incurs redundant network

traversal. Besides, the lookup-based methods usually have to store some precomputed results. For

example, all-pair method is space inefficient that we have to precompute and store a distance matrix,

which requires O(n2) space for a road network G with n vertices. To the best of our knowledge, one of

the most notable recent developments is the emergence of practical 2-hop labeling methods [2,5,6,54]

for DO on large networks. It constructs labels for vertices such that a distance query for any vertex

pair u and v can be answered by only looking up the common labels of u and v. For each vertex

v, we precompute a label, denoted as L(v), which is a set of label entries and each label entry is a

92 Efficient Clue-based Route Search on Road Networks

𝑣6 𝑣5

𝑣4

𝑣5

𝑣8

𝐿(𝑣1) 𝑣1, 0 , 𝑣2, 3 , 𝑣3, 4 , 𝑣4, 4

𝐿(𝑣2) 𝑣2, 0 , 𝑣4, 3 , 𝑣5, 5

𝐿(𝑣3) 𝑣3, 0 , 𝑣4, 4 , 𝑣6, 5

𝐿(𝑣4) 𝑣4, 0

𝐿(𝑣5) 𝑣4, 4 , 𝑣5, 0 , 𝑣8, 2

𝐿(𝑣6) 𝑣4, 3 , 𝑣6, 0 , 𝑣8, 2

𝐿(𝑣7) 𝑣4, 6 , 𝑣5, 2 , 𝑣7, 0 , 𝑣8, 3

𝐿(𝑣8) 𝑣4, 3 , 𝑣8, 0

𝐿(𝑣9) 𝑣4, 4 , 𝑣6, 1 , 𝑣8, 2 , 𝑣9, 0

𝑣6

4

0

2

0

3

2

Figure 5.2: 2-hop label index of G

pair (o, ηv,o), where o ∈ V and ηv,o = dG(v, o) is the distance between v and o. We say that o is a

pivot in label entry if (o, ηv,o) ∈ L(v). Given two vertices u and v, we can find a common pivot o that

(o, ηu,o) ∈ L(u) and (o, ηv,o) ∈ L(v):

dG(u, v) = min{ηu,o + ηv,o} (5.3)

We say that the pair (u, v) is covered by o and the distance query dG(u, v) is answered by o with

smallest ηu,o +ηv,o. Therefore, we can compute dG(u, v) in O(|L(u)|+ |L(v)|) time by using a merge-join

like algorithm. As shown in right side of Figure 5.2, we can find the generated label index. For the

distance query between v5 and v6, we first find their common pivots v4 and v8, then dG(v5, v6) = 4 is

returned since ηv5,v8 + ηv6,v8 = 4 < ηv5,v4 + ηv6,v4 = 7.

5.3 Greedy Clue Search Algorithm

We develop a greedy algorithm as a baseline for answering the CRS query, which is called Greedy

Clue Search (GCS) algorithm. Given a query Q = (vq,C), first we simply add vq into a candidate

path. Then we use the Procedure findNextMin() to determine the next candidate v1 that contains w1

and the matching distance between µ1 and σ1(vq → v1), i.e., dm(µ1, σ1), is minimized. Afterwards,

we insert v1 into the candidate path, and continue to find its contagious candidate by findNextMin().

This process is repeated until all the matching vertices are determined, thus the candidate path forms

5.3 Greedy Clue Search Algorithm 93

a feasible path, denoted as FPvq .

It is worth to note that, although FPvq can be quickly retrieved, its matching distance can be

substantially different from the optimal result. In order to improve the accuracy, we further select

the vertices that contain the most infrequent keyword wτ in C as our initial candidates, which can be

easily determined based on the frequencies of occurrences in road network G. Then, for each vertex

u that contains wτ, we fetch it into a candidate path and use Procedure findNextMin() to determine its

contagious candidate v that contains wτ+1 (or wτ−1). The rest of algorithm is the same as processing vq.

After all vertices u that contain wτ are processed, we obtain |Vwτ
|+ 1 feasible paths in total, where Vwτ

is the set of vertices that contain wτ. Finally, we select the feasible path with the smallest matching

distance, i.e., dm(C,FP), to answer the CRS approximately, and the result is denoted as FPgcs.

In Procedure findNextMin(), we utilize the network expansion algorithm [51] to find the nearby

vertices that contain the query keywords. The algorithm details are shown in Algorithm 8. Given the

source u, query keyword w and user expected distance d, we aim to find v that the difference between

dG(u, v) and d is minimized. In the network traversal starting from u, we check every visited vertex to

see if it contains w. If v is the first visited vertex containing w and dG(u, v) > d, then we stop and return

v since the difference incurred by the remaining unvisited vertices cannot be less than dG(u, v) − d.

Otherwise, we continue to find the next vertex v′ that contains w. If v′ is found and dG(u, v′) < d, we

update v by v′ since v′ renders a smaller difference than v. Otherwise, we compare d − dG(u, v) with

dG(u, v′) − d and return the smaller one as the result.

Basically, we use the most infrequent keyword wτ because this reduces the number of operations

to find all feasible paths FPu. As we know, in GCS, we have |Vwτ
| + 1 feasible paths as candidates.

For each feasible path, we execute k times of findNextMin() to determine candidates. If we assume

Procedure findNextMin() costs time f , then the time complexity of GCS is O(|Vwτ
| · k · f).

Example 5.2. In running example Figure 5.1, we are given query Q = (v1, {(w2, 5), (w1, 4), (w3, 5)}).

First, we fetch v1 into feasible path, and call findNextMin(v1,w2, 5) and return v3 with dm = 0.25.

Therefore, we repeat the process and finally obtain FPv1 = (v1, v3, v4, v7) with dm(C,FPv1) = 0.2.

Then we take w3 as wτ since w3’ frequency is only 1. Hence, we fetch v7 into feasible path and

repeat the process. Finally, we obtain feasible path FPv7 = (v1, v3, v6, v7) and dm(C,FPv7) = 0.25.

Therefore, we have FPgcs = FPv1 and dm(C,FPgcs) = 0.2.

94 Efficient Clue-based Route Search on Road Networks

Algorithm 8: Greedy Clue Search GCS
Input: Q = (vq,C = {(w1, d1), . . . , (wk, dk)})

Output: FPgcs with minimum dm(C,FP)

1 Find wτ ∈ C and u ∈ Vwτ
;

2 for each u ∈ Vwτ
do

3 for wi ← wτ ∈ {wτ, . . . ,wk} and {wτ, . . . ,w1} do

4 ui+1 ← findNextMin(ui,wi+1, di+1);

5 or ui−1 ← findNextMin(ui,wi−1, di);

6 Obtain dm(C,FPu);

7 if dmin > dm(C,FPu) then

8 dmin ← dm(C,FPu);

9 Compute FPvq;

10 return FPgcs and dm(C,FPgcs)← dmin;

Procedure findNextMin(u,w, d)

1 From u, find v contains w, thus obtain dG;

2 while true do

3 Find next v′ contains w, thus obtain d′G;

4 if dG < d and d′G > d then

5 break;

6 else

7 v← v′ and dG ← d′G;

8 return min{dm(µ, σ)} and v;

5.4 Clue-based Dynamic Programming Algorithm

As we know, even though GCS has a short response time, the accuracy of the answer cannot be

guaranteed. To achieve better accuracy, we propose an exact algorithm, called Clue-based Dynamic

Programming (CDP), to answer the CRS query. Generally, it is challenging to develop an efficient

exact algorithm for CRS queries, since we cannot avoid exhaustive search for PoIs in road networks.

5.4 Clue-based Dynamic Programming Algorithm 95

For instance, the number of vertices that contain wi ∈ C is denoted as |Vwi |, thus the time complexity

of the brute-force approach, which attempts all possible combinations, is O(
∏

wi∈C

|Vwi |).

In CDP, we construct a keyword posting list for each keyword w, which is a list of vertices that

contain w. When a CRS query is issued, we sort the posting lists according to the keyword order of

wi ∈ C. Note that the order of the vertices within each posting list does not matter and can be arbitrary,

hence are sorted by vertex id for simplicity. It is easy to see that these posting lists actually construct a

k-bipartite graph G′, which in fact shows all feasible paths for a given C. The weight of each edge in

G′ is computed as the matching distance. Specifically, for each u ∈ Vwi , we define D(wi, u) to denote

the minimum matching distance one can achieve with a walk that passes the keywords from w1 to wi

consistent with the order in C and stops at u. In other words, the weight of vertex u ∈ G′ is computed

by D(wi, u), which is the minimum matching distance of all partial feasible paths end at u. Then we

compute D(wi, u) by the following recursive formula:

D(wi, u) =

min

v∈Vwi−1

{max{D(wi−1, v), dm(µi, σ(v→ u))}}, i > 1

dm(µi(wi, di), σ(vq → u)), i = 1
(5.4)

For each iteration, we have |Vwi−1 | · |Vwi | combinations, thus the time required in Equation 5.4 is

O(
∑k

i=2 |Vwi−1 | · |Vwi |). The details of CDP is shown in Algorithm 9. In order to compute D(wi, u),

we have to access the posting list of wi−1. For each vertex v in this list, we compute dm(µi, σ(v→ u)).

Then we compare it with D(wi−1, v), and keep the greater one as intermediate value. Finally, we find

the minimum one as D(wi, u) from these |Vwi−1 | intermediate values. After we recursively process all

the keywords, we finally find the minimum D(wk, u) and backtrace the corresponding vertices that

construct FPcdp.

In each iteration, we have a clue µi(wi, di), therefore we have to compute dG(u, v) between each

u ∈ Vwi and its precedents v ∈ Vwi−1 as prerequisites for determining dm(µi, σ(v→ u)). Here we adopt

the distance oracle introduced in Section 5.2.2 to compute dG(u, v).

Example 5.3. As shown in Figure 5.3, given query Q = (v7, {(w1, 6), (w2, 4), (w4, 5)}). To compute

D(w4, v1), we first compare D(w2, v3) = 0 with dm(µ2, σ(v3 → v1)) = 0.2, and obtain intermediate

value 0.2. Then we also compute the other intermediate value 0.4, therefore D(w4, v1) = 0.2. Likewise,

we have D(w4, v5) = 0.6. Therefore, CDP returns FPcdp = (v7, v4, v3, v1) with dm(C,FPcdp) = 0.2.

96 Efficient Clue-based Route Search on Road Networks

w1

w2

w4

V4

4

V6

V3 V8

V1 V5

5

0 0.2 0.25 0.5

0.2 0.4 0.6 0.6

V7 v7

6 0 0.17

Figure 5.3: Matching distances of CDP

5.5 Branch and Bound Algorithm

Although CDP provides an exact solution, the search efficiency cannot be maintained. For instance,

consider the worst case, we assume that all vertices contain query keywords, then the time is O(k·|V |2).

To propose a more efficient algorithm, we assume there is an artificial directed graph G′, which is

similar to the k-bipartite graph in CDP that formed by all candidate vertices containing keywords

in C, where the edge of G′ is a match of one clue and in the meantime its direction complies the

keyword order of the clue. Note that, G′ is organised into k levels, and each level i corresponds to

each keyword wi. Based on G′, we develop a Branch-and-Bound (BAB) algorithm to search G′ in

a depth-first manner by applying the filter-and-refine paradigm, which only visits a small portion of

vertices in G′. We can use the result of GCS to speed up the search process since it can serve as

an initial upper bound. We start the searching from level 1 to k to obtain a feasible path FP, if the

matching distance dm(C,FP) is greater than the current upper bound, we continue to search for the

next candidate feasible path, otherwise we update the upper bound. It is worth to note that it is not

necessary to go through every candidate feasible path. If the matching distance at intermediate level

already exceeds the upper bound, it can be removed. This process terminates when the matching

distance next to be processed at level 1 can be filtered, since it is impossible to find a feasible path

with smaller match distance.

5.5 Branch and Bound Algorithm 97

Algorithm 9: Clue-based Dynamic Programming CDP
Input: Q = (vq,C = {(w1, d1), . . . , (wk, dk)})

Output: FPcdp with dm(C,FPcdp)

1 for each u ∈ Vw1 do

2 Initial D(w1, u);

3 for 1 < i ≤ k do

4 for each u ∈ Vwi do

5 Initial intermediate vector iv(u);

6 for each v ∈ Vwi−1 do

7 if dm(µi, σ(v→ u)) < D(wi−1, v) then

8 iv(u) insert D(wi−1, v);

9 else

10 iv(u) insert dm(µi, σ(v→ u));

11 D(wi, u)← min{iv(u)}

12 Find min{D(wk, u)};

13 return FPcdp and dm(C,FPcdp)← min{D(wk, u)};

Initially, we keep a stack to store the partial candidate path, which contains a sequence of vertices

and corresponding matching distances. First, we fetch a vertex vq into the stack, then we continue

to find next candidate at level 1. Basically, the key component of this algorithm is to quickly locate

the next best vertex, and the details of Procedure findNext() will be introduced later. Given a partial

candidate path P(vq, v1, . . . , vi) obtained at level i, we apply findNext() to find the next candidate vi+1

at level i + 1. Once vi+1 is found, we compute di+1
m (µi+1, σ(vi, vi+1)) and compare it with current UB.

For simplicity, we use di+1
m (vi+1) to denote the matching distance at level i + 1 resulted by vi+1, i.e.,

di+1
m (µi+1, σ(vi, vi+1)). Note that, vi+1 is accepted as a candidate and inserted into the stack if and only if

its matching distance di+1
m (vi+1) is smaller than UB. Otherwise, vi is removed from the stack as well as

di
m(vi). In other words, vi is not valid that the path P(vq, v1, . . . , vi−1) cannot survive by passing vi, then

we have to find an alternative v′i . As we know vi is the current best candidate at level i, therefore we

have to relax the matching distance by finding v′i where di
m(vi) ≤ di

m(v′i) and di
m(v′i) is minimum among

98 Efficient Clue-based Route Search on Road Networks

all the rest vertices untouched at level i. Afterwards, if v′i is valid, we continue to apply findNext() on

it.

Specifically, after we obtain P(vq, v1, . . . , vk−1) at level k−1, if vk is returned by findNext(), then we

check if dk
m(vk) exceeds UB. If vk is not valid, we prune vk and simply repeat the above process. Oth-

erwise, we insert vk into the stack, and a complete feasible path is determined. Hence, P(vq, v1, . . . , vk)

is regarded as a temporary result, and UB is updated by the minimum matching distance among all

di
m(vi)s. It is easy to see that, we cannot find a better feasible path by alternating vk with v′k at level

k, since no further level is available to make up the relaxation caused by v′k. Therefore, in addition to

remove vk, we continue to remove vk−1 from the stack and repeat the above process.

In general, the pruning happens from the lower levels to the higher levels, i.e., from level k to level

1. In the end, at level 1, if the matching distance induced by the next candidate vertex is greater than

UB, it is impossible to find another feasible path, thus the stack becomes empty after the last vertex

vq is removed, and this process terminates.

Example 5.4. In the running example, given query Q = (v7, {(w1, 6), (w2, 4), (w4, 5)}). First we fetch

v7 into the stack, and findNext() returns v4 with d1
m(v4) = 0. Then we insert v4 into stack and continue

to find next candidate vertex, and v3 is obtained with d2
m(v3) = 0. The process continues and then we

have v1 with d3
m(v1) = 0.2. As the size of stack is same as the number of query keywords, a feasible

path FP = (v7, v4, v3, v1) with dm(C,FP) = 0.2 is obtained, and UB is updated by 0.2. Next, we

remove v1 and v3 from the stack, and continue to find next candidate of v4. As d2
m(v3) = 0, we relax the

matching distance and call findNext() which returns v8 with d2
m(v8) = 0.25. Then we have to remove

v4 from the stack since d2
m(v8) already exceeds current upper bound UB. Now we move on to apply

findNext() on v7 and returns v6 with d1
m(v6) = 0.17. However, the next candidate v5 has d2

m(v3) = 0.25

greater than UB, thus we remove v6 and v7 from stack. Therefore, the algorithm terminates since no

other feasible path exists. We have FPbab = (v7, v4, v3, v1) with dm(C,FPbab) = 0.2.

5.5.1 All-Pair Distance Approach

In BAB, the Procedure findNext() is applied on vi−1 to find the next candidate vertex vi. We can simply

use Procedure findNextMin() in GCS to locate the next candidate, but it is inefficient due to redundant

network traversal when di ∈ µi is large. Moreover, when we prune vi and attempt to find alternative v′i ,

5.5 Branch and Bound Algorithm 99

Algorithm 10: Branch and Bound BAB
Input: Q = (vq,C = {(w1, d1), . . . , (wk, dk)})

Output: FPbab with dm(C,FPbab)

1 Initial stackV and stackD;

2 Initial search threshold θ;

3 Push vq into stackV;

4 while stackV is not empty do

5 i← stackV.size();

6 if findNext(vi−1, di,wi, θ) = true then

7 Obtain vi and di
m(vi);

8 θ ← 0.0;

9 Push vi into stackV;

10 Push di
m(vi) into stackD;

11 if i equals to k then

12 if max{stackD} <= UB then

13 Update UB by max{stackD};

14 Update FPbab by stackV;

15 Pop twice stackV;

16 Pop stackD;

17 Update θ by top of stackD;

18 Pop stackD;

19 else

20 Pop stackV;

21 Update θ by top of stackD;

22 Pop stackD;

23 return FPbab and dm(C,FPbab)← UB;

100 Efficient Clue-based Route Search on Road Networks

it is easy to see findNextMin() cannot be directly applied. Therefore, we propose an All-pair Binary

tree (AB-tree) index to improve the search efficiency.

All-Pair Binary Tree

Given a vertex u, we aim to find a vertex v containing keyword w such that the matching distance

between σ(u → v) and query clue µ is slightly greater than and closest to a threshold θ among all

vertices containing w in G. Note that, the threshold θ is settled by previous filtered candidate at the

same level with v, and it is 0 at initial stage. In other words, we are supposed to find the vertex v

that the difference between dG(u, v) and d ∈ µ is close to θ · d. To this end, we construct AB-tree as

follows.

For each v ∈ V , we construct a binary tree BT (v) that contains the information of network distances

and keywords. After the all-pair distance matrix is obtained, for each v, we have a list of vertices

sorted in ascending order of network distance to v. By utilizing the tree structure, the vertices in the

list are divided into fragments that the network distances w.r.t. v of the vertices in the same fragment

are close to each other, which speeds up the looking up for vertices by network distance. In addition,

the keyword information within each fragment is also stored in BT (v) such that the vertices containing

query keyword in a fragment can be efficiently retrieved.

We utilize a hash function H that maps keywords and vertices to a binary code with h bits. For

each keyword w, one of its h bits in H(w) is set to 1. Hence, the binary code of a vertex v is the

superimposition of H(w) for all w it contains, i.e., H(v) = ∨w∈Φ(v)H(w). Likewise, for a set of vertices

S , H(S) is the superimposition of H(v) that v ∈ S . It is worth to note that a non-zero value of

H(w)∧ H(S) indicates that there may exist a vertex v ∈ S containing w, and H(w)∧ H(S) = 0 means

w is definitely not contained by any v ∈ S . BT (v) is actually a B+-tree with fanout f = 2. Each leaf

node contains the information of a vertex u with both the network distance dG(u, v) and binary code

H(u) stored. For non-leaf node, it also keeps a routing element, which equals the maximum network

distance of its left subtree. Therefore, BT (v) is constructed recursively in bottom-up manner as shown

in Figure 5.4(a).

Storing BT (v) in an array. As we know, storing the tree structure as an array enables a better

performance than storing pointers. Therefore, we propose a scheme to sequentially store all nodes of

BT (v) in an array from nodes on height 0 to the root, as shown in Figure 5.4(b). In addition to this

5.5 Branch and Bound Algorithm 101

[0]
00001

[3]
10000

[3]
00001

[3]
00010

[4]
01000

[4]
00010

[4]
01000

[4]
10000

[6]
00100

[0]
10001

[3]
00011

[4]
01010

[4]
11000

[6]
00100

[3]
10011

[4]
11010

[6]
00100

[3]
11011

[6]
00100

[4]
11111

(19)

(18) (17)

(16) (15) (14)

(13) (12) (11) (10) (9)

V4 (0) V2 (1) V6 (2) V8 (3) V1 (4) V3 (5) V5 (6) V9 (7) V7 (8)

(a) Overview of BT (v4)

(0) … (8) (9) … (13) (14) … (16) (17) (18) (19)

[0] … [6] [0] … [6] [3] … [6] [3] [6] [4]

00001 … 00100 10001 … 00100 10011 … 00100 11011 00100 11111

0 9 14 17 19

0

(b) Storing BT (v4) in array

Figure 5.4: Overview of all-pair binary tree

array, we also keep an auxiliary array that indicates the number of nodes in each level of BT (v), by

which we can quickly determine the indices of the subnodes of a non-leaf node, or the index of its

parent node, in the array. For example, if we want to find the left and right subnodes of node 16 in

BT (v4), we know there are two nodes on its left side by 16−14 = 2 where 14 is the start index of nodes

at height 2, so the index of its left subnode is 9+2∗2 = 13 and the right is 9+2∗2+1 = 14. However,

we notice 14 is actually at height 2, then we figure out node 16 does not have a right subnode.

Predecessor and Successor Queries on AB-tree

After the construction of AB-tree, we discuss how to use it so that the next vertex in candidate path

can be quickly located. Initially, if there is no previous vertices accessed at the next level of vi−1, the

102 Efficient Clue-based Route Search on Road Networks

network distance dG(vi−1, vi) between vi−1 and next candidate vi is supposed to be smaller or equal to

lD = di, or greater or equal to rD = di, where di ∈ µi. Additionally, consider the aforementioned

scenario, we haveP(vq, v1, . . . , vi), but vi+1 returned at level i+1 exceeds UB. Then we have to remove

vi from the stack and turn to find v′i as alternative, where di
m(vi) ≤ di

m(v′i). It is easy to see the difference

between dG(vi−1, v′i) and di must be greater or equal to di
m(vi) · di. In other words, the network distance

dG(vi−1, v′i) is smaller or equal to lD = di − di
m(vi) · di or greater or equal to rD = di + di

m(vi) · di.

Therefore, the predecessor and successor queries can be issued on BT (vi−1) to retrieve next candidate

with two boundary network distances lD and rD, respectively.

Predecessor query. Given BT (u), a query keyword w and network distance lD, we aim to find vertex

v that contains w and dG(u, v) is smaller or equal to and closest to lD. First, we compute binary code

H(w) for query keyword w. Then we start the process of searching BT (u) recursively from top to

bottom. For non-leaf node o, if H(w) ∧ H(o) is non-zero, we continue to search its subtrees. If lD

is smaller than the routing element of o, only its left subtree needs to be considered. Otherwise, we

first check if we could find v in its right subtree (if exists), if not, we turn to search its left subtree.

For leaf node v, we directly check if v contains w and dG(u, v) is smaller or equal to lD, therefore,

false positives can be avoid. Finally, v is obtained. For example, a predecessor query on BT (v4) with

keyword w2 and lD = 4. First, we have H(w2) = 00010. The search starts from root, and as lD equals

to the routing element 4, thus we first search its right subtree. After checking H(w2) with binary code

of Node 18, we find it does not contain w2 and we turn to search Node 17. As the routing element of

Node 17 is smaller than lD, we move to search Node 15. Then we check H(w2) with the binary code

in Node 12, and find Node 12 does not contain w2. After checking with Node 11, we have v3 as result

of the predecessor query.

Successor query. Likewise, we have BT (u), a query keyword w and network distance rD, the goal

is to find vertex v that contains w and dG(u, v) is greater or equal to and closest to rD. For non-leaf

node o, if H(w) ∧ H(o) is non-zero, the subtrees of o need to be considered. If rD is smaller or equal

to the routing element of o, we search the left subtree to see if v could be found, if not, we turn to

search the right subtree (if exists). Otherwise, we simply search the right subtree (if exists) to locate

v. For leaf node v, if v contains w and dG(u, v) is greater or equal to rD, v is reported as result. For

example, a successor query on BT (v4) with keyword w2 and rD = 4. We first check the root with

H(w2) = 00010, and rD equals to the routing element, which means we first search Node 17 to see if

5.5 Branch and Bound Algorithm 103

it contains w2, then search Node 18. As the right routing element of Node 17 is smaller than rD, we

only need to check Node 15. Then, since the routing element of Node 15 is same as rD, we turn to

search Node 11. Finally, we obtain v3 as result of the successor query.

As mentioned before, we process a predecessor and a successor queries on BT (vi−1) with lD and

rD respectively to locate candidate at level i. If both predecessor and successor queries find candidate

vertices, we compare their matching distance and report the smaller one as result. If only one of

them finds candidate vertex, we directly report it. Otherwise, no candidate is found. Note that, in the

process to replace vi with v′i , we must skip vi in the tree traversal to avoid infinite loop caused by the

special case di
m(vi) = di

m(v′i).

Example 5.5. For Q = (v7, {(w1, 6), (w2, 4), (w4, 5)}), assume we already have stack (v7, v4, v3). At

level 2, we intend to remove v3 and find an alternative. Given d2
m(v3) = 0, we apply a predecessor

and successor queries on BT (v4). For the predecessor query, we take w2, 4 and 0.0 as input. As v3 is

previous result, we skip it and return v8. For the successor query, no vertex is found. Therefore, we

report v8 as our next candidate with d2
m(v8) = 0.25.

Lemma 5.1. Given G = (V, E), the space cost of AB-tree is O(|V |2 · h).

Proof. For each v ∈ V , we have |V | elements in distance matrix, thus each BT (v) has an index size

O(|V | · h). It is easy to see the size of AB-tree is O(|V |2 · h). �

104 Efficient Clue-based Route Search on Road Networks

Algorithm 11: Procedure findNext() with AB-tree
Input: Query vertex vi−1, clue wi and di, threshold θ

Output: Next candidate vi with di
m(vi)

1 Obtain BT (vi−1);

2 lD← di − di · θ;

3 rD← di + di · θ;

4 vp and dp ← BT (vi−1).predecessor(lD,wi) ;

5 vs and ds ← BT (vi−1).successor(rD,wi) ;

6 if di − dp ≤ ds − di then

7 return vp with dm(vp);

8 else

9 return vs with dm(vs);

Procedure Predecessor(lD,w,Node)

1 if Node is a leaf node then

2 Obtain vp and dp of current node;

3 if vp contains w and dp ≤ lD then

4 return vp and dp;

5 else

6 return false;

7 else

8 Generate H(w);

9 if H(w) ∧ H(Node) = 0 then

10 return false;

11 if lD < Node.routing then

12 lNode← index of its left subnode;

13 return Predecessor(lD,w, lNode);

14 else

15 rNode← index of its right subnode;

16 lNode← index of its left subnode;

17 if rNode exists then

18 if Predecessor(lD,w, rNode);

19 then

20 return vp and dp

21 else

22 return Predecessor(lD,w, lNode);

23 return Predecessor(lD,w, lNode);

5.5 Branch and Bound Algorithm 105

5.5.2 Keyword-based Label Approach

Even though AB-tree is able to answer findNext() query fast, the index space cost is still high and

could only be stored in disk, which results in undesired I/O consumption. In this section, we intro-

duce a main memory based index structure, namely Pivot reverse Binary tree (PB-tree), to deal with

findNext() query.

Pivot Reverse Binary Tree

As introduced in Section 5.2.2, we know 2-hop label possesses the nature to process distance queries

between any two vertices in network with fast response time, whilst keeping the size of the generated

label index as small as possible. The problem of reducing label size is orthogonal to our work, thus we

fully utilize the state-of-the-art results to build a small index in this work. As we know, in 2-hop label,

the distance between any vertex pair (u, v) can be computed correctly through a common pivot o, in

other words, each vertex u can reach any other vertex v in network through a pivot o. Therefore, based

on this intuition, we modify the structure of original 2-hop label to construct a pivot reverse index,

i.e., PR index [123] which stores all label entries (o, ηv,o) ∈
⋃

v∈V L(v) regarding vertex o as pivot into

the PR label of vertex o, i.e., (v, ηv,o) ∈ PR(o). In PR(o), we assume that all the label entries (v, ηv,o)

are sorted in ascending order of distance. For example, we have (v3, 0) ∈ L(v3) and (v3, 4) ∈ L(v1).

Through the transformation, we have PR(v3) = {(v3, 0), (v1, 4)}.

In order to find vertex by keyword and distance information, each PR(o) is organized as same as

the binary tree mentioned before, thus forms PB(o). The structure is shown in Figure 5.5, it is worth

to note that any network distance dG(u, v) is divided into two parts, the first part dG(u, o) between u

and its pivot o can be found in L(u), and the other part dG(o, v) between pivot o and target v can be

found in PB(o). Therefore, combined with original label index whose label entries are also sorted

in ascending order by network distance, PB-tree could be used to answer predecessor and successor

queries more efficiently than AB-tree with a much smaller size.

Predecessor and Successor Queries on PB-tree

With the construction of PB-tree, we discuss the predecessor and successor queries on top of it. Given

PB(vi−1), we aim to find candidate vi that contains wi and dG(vi−1, vi) is smaller or equal to lD, or

106 Efficient Clue-based Route Search on Road Networks

𝑣3

𝑣3

𝑣4

𝑣6

𝑃𝐵 𝑣4

𝑃𝐵 𝑣3

𝑃𝐵 𝑣6

𝑣6, 0 , 𝑣9, 1 , 𝑣3, 5

𝑣3, 0 , 𝑣1, 4 0

4

5

𝑣4 𝑣4

𝑣4, 0 ,… , 𝑣7, 6

……

……

……

0

Figure 5.5: Overview of pivot reverse binary tree

greater or equal to rD. As we know, dG(vi−1, vi) can be divided into two parts dG(vi−1, o) and dG(o, vi).

Therefore, straightforwardly, we can apply predecessor and successor queries on PB(o) for each pivot

o ∈ L(vi−1) with two bound network distances lDo = lD − dG(vi−1, o) and rDo = rD − dG(vi−1, o),

respectively. For each PB(o), we are supposed to obtain a temporary candidate. Through comparison,

we can finally find the next candidate vertex vi.

Fortunately, it is worth to note that we are not necessarily to access all PB(o)s to process predeces-

sor and successor queries. Basically, we know di
m(vi) must not exceed upper bound matching distance,

therefore current UB can be utilized to prune the search space. That is to say, vi could only be found

if dG(vi−1, vi) is greater or equal to lB = di − di ∗ UB, or is smaller or equal to rB = di + di ∗ UB.

Particularly, for each PB(o), the bound distances can be computed as lBo = lB − dG(vi−1, o) and

rBo = rB − dG(vi−1, o). Therefore, the search space can be narrowed down into [lBo, lDo] and

[rDo, rBo]. For current pivot o being processed, if we have rB < dG(vi−1, o), we are impossible to

find a candidate in PB(o) since rBo is negative. In other words, the network distance between vi−1

and any vertex in PB(o) is definitely greater than rB thus is not qualified. As we know, the pivots

in L(vi−1) are sorted in ascending order of network distance, the rest pivots o′ after o do not need to

be considered since they have even greater network distances to vi−1 than o. Therefore, the process

terminates.

Predecessor and successor queries. Given PB(o), a query keyword w and two network distance

bound ranges [lBo, lDo] and [rDo, rBo], we aim to find a temporary candidate vertex in PB(o). In

particular, the difference between AB-tree and PB-tree is that, given query vertex u, any target v only

5.5 Branch and Bound Algorithm 107

shows up once in AB(u), but it might appear in multiple PB(o)s. Moreover, if we find a candidate v in

PB(o), dG(u, o) + dG(o, v) is not necessarily equal to dG(u, v) since the network distance can only be

calculated by the pivot with minimum distance summation. Therefore, we use original label index to

check if P(u, . . . , o, . . . , v) is the shortest path SP(u, v). As mentioned before, if rB ≥ dG(vi−1, o), we

first apply a successor query on PB(o). After we obtain a temporary vertex vtmp locates in [rDo, rBo],

we check if o is on the shortest path SP(vi−1, vtmp) by comparing dG(vi−1, vtmp) with dG(vi−1, o) +

dG(o, vtmp). If so, vtmp is reported as a temporary successor result on PB(o). Otherwise, we update

rDo by dG(o, vtmp) and continue to apply a new successor query. This process is repeated until we find

a result. After successor query, we compare dG(vi−1, o) with lD to determine if we need to apply a

predecessor query on PB(o). Based on the same intuition, if lD ≥ dG(vi−1, o), the predecessor query

is applied in a similar approach as successor query. Finally, we compare the results of predecessor

and successor queries, and obtain the temporary candidate found in PB(o). It is worth to note that we

can further narrow down the search space by updating lB and rB. That is, after processing pivot o, if

we find a temporary candidate vtmp, lB can be updated by dG(vi−1, vtmp) and rB by 2 ∗ di − lB, which

benefits the processing of rest o′.

Example 5.6. For Q = (v7, {(w1, 6), (w2, 4), (w4, 5)}), assume we already have stack (v7, v4, v3). At

level 2, we intend to find the next candidate. Initially, θ is set as 0.0, therefore we have lD = rD = 5.

As current UB = 0.2, we have lB = 4 and rB = 6. As shown in Figure 5.5, we first check PB(v3)

with dG(v3, v3) = 0. Then we have lDv3 = rDv3 = 5, lBv3 = 4 and rBv3 = 6. A successor query

is applied and no vertex is found, and a predecessor query returns v1. As dG(v3, v1) = 4 does not

exceed lBv3 , v1 is taken as the temporary result for pivot v3. Then we continue to search PB(v4) with

lDv4 = rDv4 = 1, lBv4 = 0 and rBv4 = 2 but no vertex is found, neither in PB(v6). Finally, we report v1

with d3
m(v1) = 0.2.

Lemma 5.2. Given G = (V, E) and label index L(v) for all v ∈ V, the space cost of PB-tree is

O(|L| · h).

Proof. For each v ∈ V , we have |L(v)| label entries, thus each PB(v) has an index size O(|L(v)| · h). It

is easy to see the size of PB-tree is O(|L| · h) where |L| is the size of label index. �

108 Efficient Clue-based Route Search on Road Networks

Algorithm 12: Procedure findNext() with PB-tree
Input: Query vertex vi−1, clue wi and di, threshold θ

Output: Next candidate vi with di
m(vi)

1 lD← di − di · θ;

2 rD← di + di · θ;

3 lB← di − di · UB;

4 rB← di + di · UB;

5 for each pivot o ∈ L(vi−1) do

6 Obtain PB(vi−1), lDo, rDo, lBo and rBo;

7 if dG(vi−1, o) > rB then

8 break;

9 else

10 rDo ← rD − dG(vi−1, o);

11 while PB(vi−1).successor(rDo,wi) and dG(o, vtmp r) ≤ rBo do

12 Obtain vtmp r;

13 if dG(vi−1, vtmp r) , dG(vi−1, o) + dG(o, vtmp r) then

14 rDo ← dG(o, vtmp r);

15 else

16 Obtain temp suc result on PB(o);

17 break;

18 if dG(vi−1) < lD then

19 lDo ← lD − dG(vi−1, o);

20 while PB(vi−1).predecessor(lDo,wi) and dG(o, vtmp l) ≥ lBo do

21 Obtain vtmp l;

22 if dG(vi−1, vtmp l) , dG(vi−1, o) + dG(o, vtmp l) then

23 lDo ← dG(o, vtmp l);

24 else

25 Obtain temp pre result on PB(o);

26 break;

27 if di − dG(vi−1, vtmp l) ≤ dG(vi−1, vtmp r) − di then

28 lB← dG(vi−1, vtmp l);

29 rB← 2 ∗ di − lB;

30 vi ← vtmp l;

31 else

32 rB← dG(vi−1, vtmp r);

33 lB← 2 ∗ di − rB;

34 vi ← vtmp r;

35 return vi with di
m(vi);

5.6 DynamicMaintenance 109

5.6 Dynamic Maintenance

In this section, we discuss how to maintain the PB-tree for road network updating. To avoid recom-

puting the index structure from scratch, we propose a semi-dynamic mechanism to adjust the PB-tree

with a low overhead. As we know, PB-tree is built based on label index, thus the updating is divided

into two phases, the updating of label index and the updating of PB-tree. Instead of recomputing a

new label index, [7] introduces a dynamic label index scheme for distance queries on time-evolving

graphs, and we adopt the algorithm for the first phase label index updating.

5.6.1 Semi-Dynamic Index Structure

Basically, we have 4 operations to update the network: insert a new vertex with an edge connecting

to an existing vertex, delete a vertex with only one edge, insert an edge and delete an edge. As the

deletion operation is much harder than insertion, and it seems impossible to find an efficient approach

to support deletion in label generation. Moreover, it is rare to see deletion happens in road networks,

thus we only take insertion into consideration. As the newly updated vertex is isolated, its label can

be viewed as an empty set. Inserting a new vertex can be easily done by inserting an edge connecting

to it, thus we only need to focus on edge insertion. As keyword updating is easy to implement, thus

we omit it here.

Label index updating. Assume we insert an edge (a, b) into G, some shortest paths in old network

may change by passing (a, b). Based on the label generation algorithm, we do not have to remove

outdated distances in label but resume BFSs of affected vertices and add new label entries into index.

It is worth to note that only the pivots in L(a) and L(b) are affected by network updating, and it suffices

to conduct resumed BFSs originally rooted at pivot vk if vk ∈ L(a) ∪ L(b). Different with previous

pruning method, a prefixal pruning method is proposed to apply in BFS with a new parameter k,

where k is the vertex ordering of vk. The prefixal method is to answer the distance query between vk

and u from the pivots in L(vk)∩L(u) whose vertex orderings are at most k. Interested readers can refer

to [7] for algorithm details.

Pivot-based forest. To propose a semi-dynamic index structure, we present a general framework to

convert PB-tree into pivot-based forest (PF), which is inspired by the logarithmic method [12]. Given

PB(o) with m label entries, we divide it into l = blog mc + 1 partitions P0, . . . Pl−1. Each partition

110 Efficient Clue-based Route Search on Road Networks

Pi either has 2i label entries or is empty. We first compute a l-bit binary value of m. Interestingly,

whether Pi is empty or not is determined by the ith bit, if ith bit is 0 then Pi is empty. For non-empty

Pi, we follow the method introduced in Section 5.5.1 to construct a binary tree PF(o)i on these 2i

label entries. Finally, all these binary trees together form the pivot-based forest structure.

PF index updating. After label index updating, we add new label entries or rewrite distances of

existing label entries. Assume we add a new label entry (v, dG(o, v)) into PB(o), we first find the

smallest i such that PF(o)i is empty. If i equals to 0, we simply build PF(o)0 with only one label entry

(v, dG(o, v)). Otherwise, we union all label entries of PF(o)o, . . . , PF(o)i−1, together with (v, dG(o, v)),

into PF(o)i. It is worth to note that PF(o)i now has 2i elements and PF(o)o, . . . , PF(o)i−1 become

empty. As we know, the label entries in original PB(o) are sorted in ascending order of distance. In

PF(o), we do not consider the global distance order but instead consider a local order in each PF(o)i

when we rebuild the index. To rewrite distances of existing label entries, we only need to update the

PF(o)i they belong to.

Query processing on PF index. Given query vertex vi−1 and a clue µ(wi, di), we introduce how

to answer findNext() on PF index. As we know, both the predecessor and successor queries are

decomposable. Therefore, we simply apply the predecessor and successor queries on all non-empty

PF(o)i. Fortunately, it is not necessary to process queries on all PF(o)is. If the query distance is

smaller than the minimum network distance stored in PF(o)i, the predecessor query is not required,

where the similar case holds for successor query. Finally, we merge these intermediate results to

obtain the result.

5.7 Experiments

In this section, we conduct extensive experiments on real road network datasets to study the perfor-

mance of the proposed index structures and algorithms.

5.7.1 Experimental Settings

All these algorithms introduced in this work were implemented in GNU C++ on Linux and run on an

Intel(R) CPU i7-4770@3.4GHz and 32G RAM.

5.7 Experiments 111

Datasets. We use two real datasets, the road network datasets of Beijing and New York City from

the 9th DIMACS Implementation Challenge1. Each dataset contains an undirected weighted graph

that represents a part of the road network. The weight of each edge in a graph represents the distance

between two endpoints of the edge. We obtain the keywords of vertices from the OpenStreetMap2.

As shown in Table 5.2, for D1 in Beijing, we have 168,535 vertices and 196,307 edges. We also have

88,910 distinct keywords contained by vertices with the total occurrence 1,445,824. For D2 in New

York, we have more vertices and edges than D1 in road network with almost twice the size of D1, and

the number of keywords contained is larger than D1 as well.

Table 5.2: Statistics of dataset
Beijing New York

#|V | 168,535 264,346

#|E| 196,307 733,846

#|W | 88,910 102,450

#|Φ(V)| 1,445,824 3,086,166

Algorithms. We evaluate the performance of three algorithms, greedy clue search algorithm (GCS),

clue-based dynamic programming algorithm (CDP) and branch and-bound-algorithm (BAB). In CDP,

we use two different distance oracles DO to compute network distance, i.e., all-pair and 2-hop label.

In BAB, we evaluate the performances of three index structures, i.e., AB-tree, PB-tree and PF.

Table 5.3: Parameter settings

Parameters Values

Dataset cardinality 4K, 8K, 12K, 16K

The number of clues 2, 3, 4, 5, 6, 7, 8

Keyword frequency 10, 50, 100, 500, 1000, 5000, 10000

Average distance (km) 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

h bits hash code 64, 128, 256, 512

Parameter settings. To evaluate the algorithms under various settings, we vary the value of some

1http://www.dis.uniroma1.it/challenge9/download.shtml
2https://www.openstreetmap.org

112 Efficient Clue-based Route Search on Road Networks

parameters to study the performance, as shown in Table 5.3. For default settings, we choose 16K for

dataset cardinality (the number of vertices), 4 for the number of clues in query, 1000 for keyword

frequency, 10km for average expected distance and 64 for hash code length.

5.7.2 Performance Evaluation

Table 5.4: Performance of proposed algorithms and index structures

Algorithm
QT (s) IS (GB) IT (min)

BJ NY BJ NY BJ NY

GCS 154.55 213.54 - - - -

CDP
Allpair 24.89 32.67 106.1 260.6 - -

Label 80.74 91.17 0.51 0.78 - -

BAB

AB-tree 2.84 3.59 856 2104 1045 2569

PB-tree 1.02 1.57 2.1 3.21 2 3.1

PF 1.36 2.15 2.2 3.36 2 3.4

Table 5.4 shows the performance comparison of proposed algorithms and index structures on query

time, index size and index construction time. As GCS uses a small size keyword posting list, we omit

the evaluation of its size and construction time. The construction time of all-pair and 2-hop label,

which have been studies by existing works, are also excluded in our performance comparison. For the

query time evaluation, it is easy to see that BAB well outperforms GCS and CDP. Besides, applying

all-pair in CDP has a shorter response time but a larger space cost than 2-hop label, and using PB-tree

in BAB has a better performance than using AB-tree and PF. For index size and construction time,

label based approaches have a much smaller size and less time than all-pair based approaches. As NY

has a larger size than BJ, more time and space costs are required. For the rest experiments, we only

demonstrate the performance on BJ due to the space limit, where the performance on NY is similar

to that on BJ.

Effect of the keyword hash code length h. In this set of experiments, we study the effect of keyword

hash code length h on performance of AB-tree, PB-tree and PF index structures. As shown in Figure

5.6, the pivot-based indices well outperform AB-tree on index construction time, index size and query

time. The space of AB-tree is O(|V |2 · h) and PB-tree is O(|L| · h). When we enlarge h, both the index

5.7 Experiments 113

64 128 256 512
Length of keyword hash code

100

101

102

103

104
C

o
n
st

ru
ct

io
n
 t

im
e
 (

m
in

)

AB-tree

PB-tree

PF

64 128 256 512
Length of keyword hash code

103

104

Q
u
e
ry

 t
im

e
 (

m
s)

AB-tree

PB-tree

PF

64 128 256 512
Length of keyword hash code

100

101

102

103

104

In
d
e
x
 s

iz
e
 (

G
B

)

AB-tree

PB-tree

PF

Figure 5.6: Effect of the keyword hash code length h

size and construction time linearly increase. For query time, there are more false positives in tree

traversal when h is 64, we still have less query time since the bit operation costs less time than larger

h.

Effect of the dataset cardinality. In this set of experiments, we vary the size of datasets to study

the performance of proposed algorithms and index structures, as shown in Figure 5.7. Obviously, the

index size and construction time increase when we enlarge the size of datasets. It is worth to note

that the size of AB-tree increases exponentially with the number of vertices, and the sizes of PB-tree

and PF increase gently especially when the size is enlarged from 120K to 160K due to the property of

2-hop label. For the query time, the BAB algorithm outperforms the GCS and CDP by a large margin.

Effect of the number of clues. In this set of experiments, Figure 5.8 shows the performance of

algorithms by increasing the number of clues in CRS query. Not surprisingly, the response time

increases when we enlarge the number of clues of all proposed algorithms. For GCS, the response

time increases gently since only more rounds of network expansion are induced. For CDP, when we

114 Efficient Clue-based Route Search on Road Networks

40K 80K 120K 160K
Dataset cardinality

10-1

100

101

102

103

104
C

o
n
st

ru
ct

io
n
 t

im
e
 (

m
in

)

AB-tree

PB-tree

PF

40K 80K 120K 160K
Dataset cardinality

10-1

100

101

102

103

In
d
e
x
 s

iz
e
 (

G
B

)

AB-tree

PB-tree

PF

40K 80K 120K 160K
Dataset cardinality

103

104

105

106

Q
u
e
ry

 t
im

e
 (

m
s)

GCS

CDP+Allpair

CDP+Label

BAB+AB-tree

BAB+PB-tree

BAB+PF

Figure 5.7: Effect of the dataset cardinality

enlarge the number of clues, more iterations are triggered for the computation. For BAB, the number

of candidate vertices and feasible paths increase thus takes more computation time.

Effect of the average frequency of keywords. In this set of experiments, we study the performance

of algorithms by varying the frequency of query keywords, as shown in Figure 5.9. It suffices to say

that for low frequency keywords, say the frequency less than 500, it is more efficient if we adopt CDP

with all-pair, and for high frequency keywords, BAB with PB-tree has a much better performance on

both response time and index size. This is because, for CDP, there are not too many combinations

to consider if the frequency is low, but when we enlarge the frequency, the response time increases

exponentially to the frequency. For BAB, there are lots of false positives if the frequency is low, and

when we enlarge the frequency, the performance becomes much better since we can quickly locate

the candidate by using PB-tree.

Effect of the average expected distance. In this set of experiments, we study the effect of average

expected distance on the performance of proposed algorithms, as shown in Figure 5.10. As we know,

5.7 Experiments 115

2 3 4 5 6 7 8
Number of clues

101

102

103

104

105

106

R
e
sp

o
n
se

 t
im

e
 (

m
s)

GCS

CDP+Allpair

CDP+Label

BAB+AB-tree

BAB+PB-tree

BAB+PF

Figure 5.8: Effect of the number of clues

we apply the network expansion algorithm in GCS, which makes it sensitive to the expected distance.

When the distance increases, more vertices are involved that results in more computation cost. For

CDP with all-pair or label index, they both have a small dependency on the query distance. Therefore,

the computation time of CDP keeps almost steady as the distance increases. For BAB, the effect is

still not obvious but if the distance is small, we are supposed to find the next candidate more quickly

since there are only a small portion of vertices after filtered by distance.

Table 5.5: Evaluation of index updating

Dataset Update time Updated pivots

Beijing 78 ms 3.6

NY 127 ms 5.7

Evaluation of index updating. Here we evaluate the cost of index updating. It is easy to observe

that the average update time cost is much smaller than reconstruction the index from scratch. The

cost comes from two parts, the updating of label index and updating of PF. For each update, we only

have to update a very small number of pivot forest structures, that is, the semi-dynamic update is done

locally.

116 Efficient Clue-based Route Search on Road Networks

10 50 100 500 1000 5000 10000
Keyword frequency in clue

100

101

102

103

104

105

106

107
R

e
sp

o
n
se

 t
im

e
 (

m
s)

GCS

CDP+Allpair

CDP+Label

BAB+AB-tree

BAB+PB-tree

BAB+PF

Figure 5.9: Effect of the average frequency of keywords

5.8 Conclusion

In this chapter, we study the problem of clue-based route search, denoted as CRS, on road networks,

which aims to find an optimal route such that it covers a set of query keywords in a given specific order,

and the matching distance is minimized. To answer the CRS query, we first propose a greedy clue-

based algorithm GCS with no index where the network expansion approach is adopted to greedily

select the current best candidates to construct feasible paths. Then, we devise an exact algorithm,

namely clue-based dynamic programming CDP, to answer the query that enumerates all feasible

paths and finally returns the optimal result. To further reduce the computational overhead, we propose

a branch-and-bound algorithm BAB by applying filter-and-refine paradigm such that only a small

portion of vertices are visited, thus improves the search efficiency. In order to quickly locate the

candidate vertices, we develop AB-tree and PB-tree structures to speed up the tree traversal, as well

as a semi-dynamic index updating mechanism. Results of empirical studies show that all the proposed

algorithms are capable of answering CRS query efficiently, while the BAB algorithm runs much faster,

and the index size of PB-tree is much smaller than AB-tree.

5.8 Conclusion 117

2 4 6 8 10 12 14 16 18 20
Average query distance in clue (km)

101

102

103

104

105

106

R
e
sp

o
n
se

 t
im

e
 (

s)

GCS

CDP+Allpair

CDP+Label

BAB+AB-tree

BAB+PB-tree

BAB+PF

Figure 5.10: Effect of the average expected distance

118 Efficient Clue-based Route Search on Road Networks

Chapter 6

Final Remarks

6.1 Conclusions

In this thesis, I present several novel spatial keyword queries and efficient algorithms to manage a

variety of applications on geo-textual data. Chapter 3 presents our research on keyword-oriented

query on activity trajectories. I discuss our approach to process the keyword-aware continuous k

nearest neighbor queries on road networks in Chapter 4. Chapter 5 describes the techniques for clue-

based route search on road networks.

In Chapter 3, I study the problem of searching activity trajectory database given multiple query

keywords without location. To support efficient query processing, a novel index structure, called

GiKi, is developed that includes two components, i.e., AG-Tree and K-Ref, to index the activity tra-

jectory database. Based on such index structure, an efficient algorithm are proposed to compute the

minimum value of spatio-temporal ranking function. In the query processing, the pruning and re-

finement paradigm is applied to answer the query. Specifically, a dynamic programming algorithm

is proposed to compute the lower bound for each candidate trajectory. In addition, a trajectory seg-

mentation algorithm is developed to partition trajectories by leveraging multiple features. Then an

enhanced search algorithm is proposed with such segmentation method to answer the KOAT query

more efficiently. Extensive experimental results demonstrate that the proposed methods outperform

baseline algorithms significantly and achieve good scalability.

In Chapter 4, I study the problem of efficiently processing �CkNN query on road networks with

119

120 Final Remarks

low computation and communication costs. By utilizing the 2-hop label technique on road networks,

I modify the original index structure and LARC++ construct a keyword-based label index. Based on

such index, I first introduce the �kNN query processing, and then propose two efficient algorithms

LARC and for processing the�CkNN on road networks. For LARC, I introduce a window sliding ap-

proach to build a dominance interval to deal with low frequency keywords. For LARC++, I propose

a path-based dominance updating approach to resolve a dominance region for high frequency key-

words. The experimental evaluation demonstrates the effectiveness and efficiency of the solution for

processing the �CkNN queries on large real-world datasets, which outperforms the state-of-the-art

method with almost 50% decrease on computation cost and almost 20% decrease on communication

cost.

In Chapter 5, I study the problem of clue-based route search, denoted as CRS, on road networks,

which aims to find an optimal route such that it covers a set of query keywords in a given specific order,

and the matching distance is minimized. To answer the CRS query, I first propose a greedy clue-based

algorithm GCS with no index where the network expansion approach is adopted to greedily select the

current best candidates to construct feasible paths. Then, I devise an exact algorithm, namely clue-

based dynamic programming CDP, to answer the query that enumerates all feasible paths and finally

returns the optimal result. To further reduce the computational overhead, I propose a branch-and-

bound algorithm BAB by applying filter-and-refine paradigm such that only a small portion of vertices

are visited, thus improves the search efficiency. In order to quickly locate the candidate vertices,

I develop AB-tree and PB-tree structures to speed up the tree traversal, as well as a semi-dynamic

index updating mechanism. Results of empirical studies show that all the proposed algorithms are

capable of answering CRS query efficiently, while the BAB algorithm runs much faster, and the index

size of PB-tree is much smaller than AB-tree.

6.2 Directions for Future Work

In this section, I propose several possible directions for future work.

6.2 Directions for FutureWork 121

6.2.1 Answering Why-not Spatial Keyword Queries on Road Networks

In Chapter 4, I present efficient techniques for keyword-aware queries on road networks. Under such

setting, it may happen that the desirable geo-textual objects are unexpectedly missing from the result.

Then users may wonder why they are missing, and it is difficult for users to ensure that the parameters

of the score function are properly configured. Therefore, answering such why-not queries is of high

interest, and it is able to provide explanations on why the desired geo-textual objects are not included

in the result as well as the suggestions on how to revise the query so that these desired objects can be

re-included in the result. The main challenge of this future work is that we need to avoid accessing

the whole database and computing the scores at runtime, since it is very time-consuming.

6.2.2 An In-memory Implementation of Spatial Keyword Queries

Large volume of geo-textual data may fill up the main-memory of a single machine in a short time,

and it is also not desirable to store all the geo-textual data on hard disk. Moreover, when processing

the batch spatial keyword queries, the degree of parallelism of a single machine is constrained by its

limited memory and concurrency in particular. Therefore, it is necessary to implement a distributed

in-memory version of spatial keyword query processing algorithms. Apache Spark is a Hadopp-

like distributed framework with in-memory computing technology, it is a good potential platform for

us to implement the spatial keyword queries. There are two main challenges we have to consider

in this future work. The first is how to design an algorithm for processing batch spatial keyword

queries to load-balance the computation of nodes in the cluster. The second is to minimize the the

communication costs between nodes, since the data transmission through network is far slower than

in-memory.

6.2.3 Spatial Keyword Search by Incorporating Social Influence

The spatial keyword search is a fundamental problem in location based services, which combines

both the spatial and textual information to rank the objects. Along with the popular usage of location

based services, the social influence from the user’s friends may also highly affect the user to make

decision. Therefore, if a user issues a spatial keyword query, it is not a surprise that he considers not

only the results returned by the query, but also his friends’ suggestions. Based on such motivation,

122 Final Remarks

it is interesting to model an influence social network together with geo-textual objects and propose a

novel query predicate to study this topic.

References

[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. A hub-based labeling algorithm

for shortest paths in road networks. In International Symposium on Experimental Algorithms,

pages 230–241. Springer, 2011.

[2] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. Hierarchical hub labelings for

shortest paths. In ESA, pages 24–35. Springer, 2012.

[3] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck. Highway dimension, shortest paths,

and provably efficient algorithms. In Proceedings of the twenty-first annual ACM-SIAM sympo-

sium on Discrete Algorithms, pages 782–793. Society for Industrial and Applied Mathematics,

2010.

[4] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence databases. In

International Conference on Foundations of Data Organization and Algorithms, pages 69–84.

Springer, 1993.

[5] T. Akiba, Y. Iwata, K.-i. Kawarabayashi, and Y. Kawata. Fast shortest-path distance queries on

road networks by pruned highway labeling. In ALENEX, pages 147–154. SIAM, 2014.

[6] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance queries on large networks

by pruned landmark labeling. In SIGMOD, pages 349–360. ACM, 2013.

[7] T. Akiba, Y. Iwata, and Y. Yoshida. Dynamic and historical shortest-path distance queries on

large evolving networks by pruned landmark labeling. In WWW, pages 237–248. ACM, 2014.

[8] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins. In Proceedings of the

32nd international conference on Very large data bases, pages 918–929, 2006.

123

124 References

[9] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders, D. Wagner, and

R. F. Werneck. Route planning in transportation networks. arXiv preprint arXiv:1504.05140,

2015.

[10] H. Bast, S. Funke, and D. Matijević. Transit: ultrafast shortest-path queries with linear-time

preprocessing. In 9th DIMACS Implementation Challenge—Shortest Path, 2006.

[11] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. In transit to constant time shortest-

path queries in road networks. In Proceedings of the Meeting on Algorithm Engineering &

Expermiments, pages 46–59. Society for Industrial and Applied Mathematics, 2007.

[12] J. L. Bentley and J. B. Saxe. Decomposable searching problems i. static-to-dynamic transfor-

mation. Journal of Algorithms, 1(4):301–358, 1980.

[13] V. Botea, D. Mallett, M. A. Nascimento, and J. Sander. PIST: an efficient and practical indexing

technique for historical spatio-temporal point data. GeoInformatica, 12(2):143–168, 2008.

[14] Y. Cai and R. Ng. Indexing spatio-temporal trajectories with chebyshev polynomials. In SIG-

MOD, 2004.

[15] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu, A. Skovsgaard, D. Wu, and M. L. Yiu. Spa-

tial keyword querying. In International Conference on Conceptual Modeling, pages 16–29.

Springer, 2012.

[16] X. Cao, L. Chen, G. Cong, and X. Xiao. Keyword-aware optimal route search. PVLDB,

5(11):1136–1147, 2012.

[17] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based relevant spatial web objects.

PVLDB, 2010.

[18] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword querying. In

SIGMOD, 2011.

[19] V. P. Chakka, A. C. Everspaugh, and J. M. Patel. Indexing large trajectory data sets with SETI.

In CIDR, 2003.

References 125

[20] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins in data

cleaning. In ICDE, pages 5–5, 2006.

[21] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The bloomier filter: an efficient data structure

for static support lookup tables. In SODA, pages 30–39. SIAM, 2004.

[22] H. Chen, W.-S. Ku, M.-T. Sun, and R. Zimmermann. The multi-rule partial sequenced route

query. In SIGSPATIAL, page 10. ACM, 2008.

[23] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query processing: an experimental

evaluation. PVLDB, 2013.

[24] L. Chen and R. Ng. On the marriage of lp-norms and edit distance. In Proceedings of the

Thirtieth international conference on Very large data bases-Volume 30, pages 792–803. VLDB

Endowment, 2004.

[25] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search for moving object trajec-

tories. In Proceedings of the 2005 ACM SIGMOD international conference on Management of

data, pages 491–502. ACM, 2005.

[26] Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu. Monitoring path nearest neighbor in road networks.

In Proceedings of the 2009 ACM SIGMOD International Conference on Management of data,

pages 591–602. ACM, 2009.

[27] K. L. Cheung and A. W.-C. Fu. Enhanced nearest neighbour search on the r-tree. ACM SIG-

MOD Record, 27(3):16–21, 1998.

[28] H.-J. Cho and C.-W. Chung. An efficient and scalable approach to cnn queries in a road net-

work. In VLDB, pages 865–876. VLDB Endowment, 2005.

[29] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.

Technical report, DTIC Document, 1976.

[30] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant spatial web

objects. PVLDB, 2009.

126 References

[31] G. Cong, H. Lu, B. C. Ooi, D. Zhang, and M. Zhang. Efficient spatial keyword search in

trajectory databases. arXiv preprint arXiv:1205.2880, 2012.

[32] P. Cudre-Mauroux, E. Wu, and S. Madden. Trajstore: An adaptive storage system for very

large trajectory data sets. In ICDE, pages 109–120, 2010.

[33] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In ICDE, 2008.

[34] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,

1(1):269–271, 1959.

[35] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. Journal of

Computer and System Sciences, 66(4):614 – 656, 2003.

[36] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-

series databases, volume 23. ACM, 1994.

[37] Y. Gao, X. Qin, B. Zheng, and G. Chen. Efficient reverse top-k boolean spatial keyword queries

on road networks. IEEE Transactions on Knowledge and Data Engineering, 27(5):1205–1218,

2015.

[38] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies: Faster and

simpler hierarchical routing in road networks. In International Workshop on Experimental and

Efficient Algorithms, pages 319–333. Springer, 2008.

[39] A. V. Goldberg and C. Harrelson. Computing the shortest path: A search meets graph theory.

In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages

156–165. Society for Industrial and Applied Mathematics, 2005.

[40] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, D. Srivastava, et al.

Approximate string joins in a database (almost) for free. In VLDB, 2001.

[41] L. Guo, J. Shao, H. H. Aung, and K.-L. Tan. Efficient continuous top-k spatial keyword queries

on road networks. GeoInformatica, 19(1):29–60, 2015.

References 127

[42] T. Guo, X. Cao, and G. Cong. Efficient algorithms for answering the m-closest keywords query.

In SIGMOD, pages 405–418. ACM, 2015.

[43] A. Guttman. R-trees: a dynamic index structure for spatial searching. In SIGMOD, pages

47–57, 1984.

[44] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava. Fast indexes and algorithms

for set similarity selection queries. In ICDE, pages 267–276, 2008.

[45] M. Hadjieleftheriou and D. Srivastava. Weighted set-based string similarity. IEEE Data Eng.

Bull., 33(1):25–36, 2010.

[46] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Transactions on

Database Systems (TODS), 24(2):265–318, 1999.

[47] H. Hu, D. L. Lee, and J. Xu. Fast nearest neighbor search on road networks. In International

Conference on Extending Database Technology, pages 186–203. Springer, 2006.

[48] W. Huang, G. Li, K.-L. Tan, and J. Feng. Efficient safe-region construction for moving top-k

spatial keyword queries. In Proceedings of the 21st ACM international conference on Informa-

tion and knowledge management, pages 932–941. ACM, 2012.

[49] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing techniques in

relational database systems. ACM Computing Surveys (CSUR), 40(4):11, 2008.

[50] H. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. idistance: An adaptive b+-tree based

indexing method for nearest neighbor search. ACM TODS, 30(2):364–397, 2005.

[51] C. S. Jensen, J. Kolářvr, T. B. Pedersen, and I. Timko. Nearest neighbor queries in road net-

works. In GIS, pages 1–8. ACM, 2003.

[52] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of convoys in trajectory

databases. VLDBJ, 2008.

[53] M. Jiang, A. W.-C. Fu, and R. C.-W. Wong. Exact top-k nearest keyword search in large

networks. In SIGMOD, pages 393–404. ACM, 2015.

128 References

[54] M. Jiang, A. W.-C. Fu, R. C.-W. Wong, and Y. Xu. Hop doubling label indexing for point-to-

point distance querying on scale-free networks. PVLDB, 7(12):1203–1214, 2014.

[55] Y. Kanza, R. Levin, E. Safra, and Y. Sagiv. Interactive route search in the presence of order

constraints. PVLDB, 3(1-2):117–128, 2010.

[56] Y. Kanza, E. Safra, Y. Sagiv, and Y. Doytsher. Heuristic algorithms for route-search queries

over geographical data. In SIGSPATIAL, page 11. ACM, 2008.

[57] R. M. Karp. Reducibility among combinatorial problems. Springer, 1972.

[58] M. Kolahdouzan and C. Shahabi. Voronoi-based k nearest neighbor search for spatial network

databases. In Proceedings of the Thirtieth international conference on Very large data bases-

Volume 30, pages 840–851. VLDB Endowment, 2004.

[59] K. C. Lee, W.-C. Lee, and B. Zheng. Fast object search on road networks. In Proceedings of

the 12th International Conference on Extending Database Technology: Advances in Database

Technology, pages 1018–1029. ACM, 2009.

[60] K. C. Lee, W.-C. Lee, B. Zheng, and Y. Tian. Road: A new spatial object search framework for

road networks. IEEE transactions on knowledge and data engineering, 24(3):547–560, 2012.

[61] T. Lee, J.-w. Park, S. Lee, S.-w. Hwang, S. Elnikety, and Y. He. Processing and optimizing

main memory spatial-keyword queries. Proceedings of the VLDB Endowment, 9(3):132–143,

2015.

[62] C. Li, Y. Gu, J. Qi, G. Yu, R. Zhang, and W. Yi. Processing moving k nn queries using

influential neighbor sets. PVLDB, 8(2):113–124, 2014.

[63] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng. On trip planning queries in

spatial databases. In SSTD, pages 273–290. Springer, 2005.

[64] G. Li, J. Feng, and J. Xu. Desks: Direction-aware spatial keyword search. In ICDE, 2012.

[65] J. Li, Y. D. Yang, and N. Mamoulis. Optimal route queries with arbitrary order constraints.

TKDE, 25(5):1097–1110, 2013.

References 129

[66] Y. Li, G. Li, L. Shu, Q. Huang, and H. Jiang. Continuous monitoring of top-k spatial keyword

queries in road networks. J. Inf. Sci. Eng., 31(6):1831–1848, 2015.

[67] H. Ling and K. Okada. An efficient earth mover’s distance algorithm for robust histogram

comparison. IEEE Transactions on PAMI, 29(5):840–853, 2007.

[68] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold

algorithm. Machine learning, 2(4):285–318, 1988.

[69] S. Luo, Y. Luo, S. Zhou, G. Cong, J. Guan, and Z. Yong. Distributed spatial keyword querying

on road networks. In EDBT, pages 235–246. Citeseer, 2014.

[70] S. Ma, K. Feng, J. Li, H. Wang, G. Cong, and J. Huai. Proxies for shortest path and distance

queries. IEEE Transactions on Knowledge and Data Engineering, 28(7):1835–1850, 2016.

[71] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual partitioning: an efficient

method for continuous nearest neighbor monitoring. In SIGMOD, pages 634–645. ACM, 2005.

[72] K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis. Continuous nearest neighbor moni-

toring in road networks. In PVLDB, pages 43–54. VLDB Endowment, 2006.

[73] G. Navarro. A guided tour to approximate string matching. CSUR, 2001.

[74] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The v*-diagram: a query-dependent approach

to moving knn queries. PVLDB, 1(1):1095–1106, 2008.

[75] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial tessellations: concepts and applica-

tions of Voronoi diagrams, volume 501. John Wiley & Sons, 2009.

[76] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial network

databases. In Proceedings of the 29th international conference on Very large data bases-

Volume 29, pages 802–813. VLDB Endowment, 2003.

[77] O. Pele and M. Werman. A linear time histogram metric for improved sift matching. In ECCV,

pages 495–508. 2008.

130 References

[78] D. Pfoser, C. S. Jensen, Y. Theodoridis, et al. Novel approaches to the indexing of moving

object trajectories. In VLDB, 2000.

[79] I. Pohl. Bi-directional and heuristic search in path problems. PhD thesis, Dept. of Computer

Science, Stanford University., 1969.

[80] M. Qiao, L. Qin, H. Cheng, J. X. Yu, and W. Tian. Top-k nearest keyword search on large

graphs. PVLDB, 6(10):901–912, 2013.

[81] S. Rasetic, J. Sander, J. Elding, and M. A. Nascimento. A trajectory splitting model for efficient

spatio-temporal indexing. In Proceedings of VLDB, pages 934–945, 2005.

[82] M. Rice and V. J. Tsotras. Graph indexing of road networks for shortest path queries with label

restrictions. Proceedings of the VLDB Endowment, 4(2):69–80, 2010.

[83] J. B. Rocha-Junior and K. Nørvåg. Top-k spatial keyword queries on road networks. In Pro-

ceedings of the 15th international conference on extending database technology, pages 168–

179. ACM, 2012.

[84] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In ACM sigmod record,

volume 24, pages 71–79. ACM, 1995.

[85] Y. Rubner, C. Tomasi, and L. Guibas. The earth mover’s distance as a metric for image retrieval.

International Journal of Computer Vision, 40(2):99–121, 2000.

[86] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with applications to image

databases. In Sixth International Conference on Computer Vision, 1998., pages 59–66, 1998.

[87] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network distance browsing in spatial

databases. In Proceedings of the 2008 ACM SIGMOD international conference on Manage-

ment of data, pages 43–54. ACM, 2008.

[88] P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest path queries. In Euro-

pean Symposium on Algorithms, pages 568–579. Springer, 2005.

References 131

[89] J. Sankaranarayanan, H. Alborzi, and H. Samet. Efficient query processing on spatial networks.

In Proceedings of the 13th annual ACM international workshop on Geographic information

systems, pages 200–209. ACM, 2005.

[90] J. Sankaranarayanan and H. Samet. Query processing using distance oracles for spatial net-

works. IEEE Transactions on Knowledge and Data Engineering, 22(8):1158–1175, 2010.

[91] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates. In SIGMOD, 2004.

[92] C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh. A road network embedding technique for

k-nearest neighbor search in moving object databases. GeoInformatica, 7(3):255–273, 2003.

[93] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi. The optimal sequenced route query. VLDBJ,

17(4):765–787, 2008.

[94] S. Shekhar and J. S. Yoo. Processing in-route nearest neighbor queries: a comparison of

alternative approaches. In Proceedings of the 11th ACM international symposium on Advances

in geographic information systems, pages 9–16. ACM, 2003.

[95] C. S. J. Simonas Saltenis, S. T. Leutenegger, and M. A. Lopez. Indexing the positions of

continuously moving objects. In SIGMOD, pages 331–342, 2000.

[96] A. Singhal. Modern information retrieval: a brief overview. Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering, 24, 2001.

[97] M. A. Soliman, I. F. Ilyas, and K. Chen-Chuan Chang. Top-k query processing in uncertain

databases. In ICDE, pages 896–905, 2007.

[98] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search. In VLDB, pages 287–

298. VLDB Endowment, 2002.

[99] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: an optimized spatio-temporal access method

for predictive queries. In PVLDB, pages 790–801, 2003.

[100] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidimensional trajectories.

In Data Engineering, 2002. Proceedings. 18th International Conference on, pages 673–684.

IEEE, 2002.

132 References

[101] J. Wang, K. Zheng, H. Jeung, H. Wang, B. Zheng, and X. Zhou. Cost-efficient spatial network

partitioning for distance-based query processing. In 2014 IEEE 15th International Conference

on Mobile Data Management, volume 1, pages 13–22. IEEE, 2014.

[102] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong. Efficient continuously moving top-k spatial

keyword query processing. In ICDE, pages 541–552. IEEE, 2011.

[103] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. Shortest path and distance

queries on road networks: An experimental evaluation. Proceedings of the VLDB Endowment,

5(5):406–417, 2012.

[104] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. Shortest path and distance queries

on road networks: An experimental evaluation. Proc. VLDB Endow., pages 406–417, 2012.

[105] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity joins. In ICDE, pages 916–927,

2009.

[106] B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou. Approximate string search in spatial databases.

In ICDE, 2010.

[107] B. Yao, M. Tang, and F. Li. Multi-approximate-keyword routing in gis data. In SIGSPATIAL,

pages 201–210. ACM, 2011.

[108] B.-K. Yi, H. Jagadish, and C. Faloutsos. Efficient retrieval of similar time sequences under

time warping. In Data Engineering, 1998. Proceedings., 14th International Conference on,

pages 201–208. IEEE, 1998.

[109] M. L. Yiu, N. Mamoulis, and D. Papadias. Aggregate nearest neighbor queries in road net-

works. IEEE Transactions on Knowledge and Data Engineering, 17(6):820–833, 2005.

[110] C. Yu, B. C. Ooi, K.-L. Tan, and H. Jagadish. Indexing the distance: An efficient method to

knn processing. In VLDB, volume 1, pages 421–430, 2001.

[111] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighbor queries over moving objects.

In ICDE, pages 631–642. IEEE, 2005.

References 133

[112] J. Yuan, Y. Zheng, X. Xie, and G. Sun. T-drive: Enhancing driving directions with taxi drivers’

intelligence. IEEE Transactions on Knowledge and Data Engineering, 25(1):220–232, 2013.

[113] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. T-drive: driving directions

based on taxi trajectories. In Proceedings of the 18th SIGSPATIAL International conference on

advances in geographic information systems, pages 99–108. ACM, 2010.

[114] Y. Zeng, X. Chen, X. Cao, S. Qin, M. Cavazza, and Y. Xiang. Optimal route search with

the coverage of users preferences. In Proceedings of the Twenty-Fourth International Joint

Conference on Artificial Intelligence (IJCAI 2015), pages 2118–2124, 2015.

[115] C. Zhang, H. Liang, K. Wang, and J. Sun. Personalized trip recommendation with poi avail-

ability and uncertain traveling time. In CIKM, pages 911–920. ACM, 2015.

[116] C. Zhang, Y. Zhang, W. Zhang, and X. Lin. Inverted linear quadtree: Efficient top k spatial

keyword search. IEEE Transactions on Knowledge and Data Engineering, 28(7):1706–1721,

2016.

[117] C. Zhang, Y. Zhang, W. Zhang, X. Lin, M. A. Cheema, and X. Wang. Diversified spatial

keyword search on road networks. In EDBT, pages 367–378, 2014.

[118] D. Zhang, Y. M. Chee, A. Mondal, A. K. Tung, and M. Kitsuregawa. Keyword search in spatial

databases: Towards searching by document. In ICDE, pages 688–699. IEEE, 2009.

[119] D. Zhang, B. C. Ooi, and A. K. Tung. Locating mapped resources in web 2.0. In ICDE, pages

521–532. IEEE, 2010.

[120] H. J. Zhao, M. L. Yiu, Y. Li, Z. Gong, et al. Towards online shortest path computation. IEEE

Transactions on Knowledge and Data Engineering, 26(4):1012–1025, 2014.

[121] B. Zheng, N. J. Yuan, K. Zheng, X. Xie, S. Sadiq, and X. Zhou. Approximate keyword search

in semantic trajectory database. In ICDE, pages 975–986. IEEE, 2015.

[122] B. Zheng, K. Zheng, M. Sharaf, X. Zhou, and S. Sadiq. Efficient retrieval of top-k most similar

users from travel smart card data. In MDM, 2014.

134 References

[123] B. Zheng, K. Zheng, X. Xiao, H. Su, H. Yin, X. Zhou, and G. Li. Keyword-aware continuous

knn query on road networks. In ICDE, pages 871–882. IEEE, 2016.

[124] K. Zheng, S. Shang, N. J. Yuan, and Y. Yang. Towards efficient search for activity trajectories.

In ICDE, 2013.

[125] K. Zheng, H. Su, B. Zheng, S. Shang, J. Xu, J. Liu, and X. Zhou. Interactive top-k spatial

keyword queries. In ICDE, pages 423–434. IEEE, 2015.

[126] K. Zheng, G. Trajcevski, X. Zhou, and P. Scheuermann. Probabilistic range queries for uncer-

tain trajectories on road networks. In EDBT, 2011.

[127] K. Zheng, B. Zheng, J. Xu, G. Liu, A. Liu, and Z. Li. Popularity-aware spatial keyword search

on activity trajectories. World Wide Web, pages 1–25, 2016.

[128] K. Zheng, Y. Zheng, X. Xie, and X. Zhou. Reducing uncertainty of low-sampling-rate trajec-

tories. In 2012 IEEE 28th International Conference on Data Engineering, pages 1144–1155.

IEEE, 2012.

[129] K. Zheng, Y. Zheng, N. J. Yuan, and S. Shang. On discovery of gathering patterns from

trajectories. In ICDE, 2013.

[130] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting locations and travel sequences

from gps trajectories. In Proceedings of the 18th international conference on World wide web,

pages 791–800. ACM, 2009.

[131] R. Zhong, G. Li, K.-L. Tan, and L. Zhou. G-tree: An efficient index for knn search on road net-

works. In Proceedings of the 22nd ACM international conference on Information & Knowledge

Management, pages 39–48. ACM, 2013.

[132] R. Zhong, G. Li, K.-L. Tan, L. Zhou, and Z. Gong. G-tree: An efficient and scalable index

for spatial search on road networks. IEEE Transactions on Knowledge and Data Engineering,

27(8):2175–2189, 2015.

References 135

[133] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou. Shortest path and distance queries

on road networks: towards bridging theory and practice. In Proceedings of the 2013 ACM

SIGMOD International Conference on Management of Data, pages 857–868. ACM, 2013.

[134] G. K. Zipf. Human behavior and the principle of least effort. 1949.

