3,556 research outputs found

    Generalized Multi-manifold Graph Ensemble Embedding for Multi-View Dimensionality Reduction

    Get PDF
    In this paper, we propose a new dimension reduction (DR) algorithm called ensemble graph-based locality preserving projections (EGLPP); to overcome the neighborhood size k sensitivity in locally preserving projections (LPP). EGLPP constructs a homogeneous ensemble of adjacency graphs by varying neighborhood size k and finally uses the integrated embedded graph to optimize the low-dimensional projections. Furthermore, to appropriately handle the intrinsic geometrical structure of the multi-view data and overcome the dimensionality curse, we propose a generalized multi-manifold graph ensemble embedding framework (MLGEE). MLGEE aims to utilize multi-manifold graphs for the adjacency estimation with automatically weight each manifold to derive the integrated heterogeneous graph. Experimental results on various computer vision databases verify the effectiveness of proposed EGLPP and MLGEE over existing comparative DR methods

    Data mining based cyber-attack detection

    Get PDF

    Ranking-based Deep Cross-modal Hashing

    Full text link
    Cross-modal hashing has been receiving increasing interests for its low storage cost and fast query speed in multi-modal data retrievals. However, most existing hashing methods are based on hand-crafted or raw level features of objects, which may not be optimally compatible with the coding process. Besides, these hashing methods are mainly designed to handle simple pairwise similarity. The complex multilevel ranking semantic structure of instances associated with multiple labels has not been well explored yet. In this paper, we propose a ranking-based deep cross-modal hashing approach (RDCMH). RDCMH firstly uses the feature and label information of data to derive a semi-supervised semantic ranking list. Next, to expand the semantic representation power of hand-crafted features, RDCMH integrates the semantic ranking information into deep cross-modal hashing and jointly optimizes the compatible parameters of deep feature representations and of hashing functions. Experiments on real multi-modal datasets show that RDCMH outperforms other competitive baselines and achieves the state-of-the-art performance in cross-modal retrieval applications

    Joint & Progressive Learning from High-Dimensional Data for Multi-Label Classification

    Get PDF
    Despite the fact that nonlinear subspace learning techniques (e.g. manifold learning) have successfully applied to data representation, there is still room for improvement in explainability (explicit mapping), generalization (out-of-samples), and cost-effectiveness (linearization). To this end, a novel linearized subspace learning technique is developed in a joint and progressive way, called \textbf{j}oint and \textbf{p}rogressive \textbf{l}earning str\textbf{a}teg\textbf{y} (J-Play), with its application to multi-label classification. The J-Play learns high-level and semantically meaningful feature representation from high-dimensional data by 1) jointly performing multiple subspace learning and classification to find a latent subspace where samples are expected to be better classified; 2) progressively learning multi-coupled projections to linearly approach the optimal mapping bridging the original space with the most discriminative subspace; 3) locally embedding manifold structure in each learnable latent subspace. Extensive experiments are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods.Comment: accepted in ECCV 201

    Locality Preserving Projections for Grassmann manifold

    Full text link
    Learning on Grassmann manifold has become popular in many computer vision tasks, with the strong capability to extract discriminative information for imagesets and videos. However, such learning algorithms particularly on high-dimensional Grassmann manifold always involve with significantly high computational cost, which seriously limits the applicability of learning on Grassmann manifold in more wide areas. In this research, we propose an unsupervised dimensionality reduction algorithm on Grassmann manifold based on the Locality Preserving Projections (LPP) criterion. LPP is a commonly used dimensionality reduction algorithm for vector-valued data, aiming to preserve local structure of data in the dimension-reduced space. The strategy is to construct a mapping from higher dimensional Grassmann manifold into the one in a relative low-dimensional with more discriminative capability. The proposed method can be optimized as a basic eigenvalue problem. The performance of our proposed method is assessed on several classification and clustering tasks and the experimental results show its clear advantages over other Grassmann based algorithms.Comment: Accepted by IJCAI 201
    • …
    corecore