11,596 research outputs found

    A systematic literature review on source code similarity measurement and clone detection: techniques, applications, and challenges

    Full text link
    Measuring and evaluating source code similarity is a fundamental software engineering activity that embraces a broad range of applications, including but not limited to code recommendation, duplicate code, plagiarism, malware, and smell detection. This paper proposes a systematic literature review and meta-analysis on code similarity measurement and evaluation techniques to shed light on the existing approaches and their characteristics in different applications. We initially found over 10000 articles by querying four digital libraries and ended up with 136 primary studies in the field. The studies were classified according to their methodology, programming languages, datasets, tools, and applications. A deep investigation reveals 80 software tools, working with eight different techniques on five application domains. Nearly 49% of the tools work on Java programs and 37% support C and C++, while there is no support for many programming languages. A noteworthy point was the existence of 12 datasets related to source code similarity measurement and duplicate codes, of which only eight datasets were publicly accessible. The lack of reliable datasets, empirical evaluations, hybrid methods, and focuses on multi-paradigm languages are the main challenges in the field. Emerging applications of code similarity measurement concentrate on the development phase in addition to the maintenance.Comment: 49 pages, 10 figures, 6 table

    CARLA+: An Evolution of the CARLA Simulator for Complex Environment Using a Probabilistic Graphical Model

    Get PDF
    In an urban and uncontrolled environment, the presence of mixed traffic of autonomous vehicles, classical vehicles, vulnerable road users, e.g., pedestrians, and unprecedented dynamic events makes it challenging for the classical autonomous vehicle to navigate the traffic safely. Therefore, the realization of collaborative autonomous driving has the potential to improve road safety and traffic efficiency. However, an obvious challenge in this regard is how to define, model, and simulate the environment that captures the dynamics of a complex and urban environment. Therefore, in this research, we first define the dynamics of the envisioned environment, where we capture the dynamics relevant to the complex urban environment, specifically, highlighting the challenges that are unaddressed and are within the scope of collaborative autonomous driving. To this end, we model the dynamic urban environment leveraging a probabilistic graphical model (PGM). To develop the proposed solution, a realistic simulation environment is required. There are a number of simulators—CARLA (Car Learning to Act), one of the prominent ones, provides rich features and environment; however, it still fails on a few fronts, for example, it cannot fully capture the complexity of an urban environment. Moreover, the classical CARLA mainly relies on manual code and multiple conditional statements, and it provides no pre-defined way to do things automatically based on the dynamic simulation environment. Hence, there is an urgent need to extend the off-the-shelf CARLA with more sophisticated settings that can model the required dynamics. In this regard, we comprehensively design, develop, and implement an extension of a classical CARLA referred to as CARLA+ for the complex environment by integrating the PGM framework. It provides a unified framework to automate the behavior of different actors leveraging PGMs. Instead of manually catering to each condition, CARLA+ enables the user to automate the modeling of different dynamics of the environment. Therefore, to validate the proposed CARLA+, experiments with different settings are designed and conducted. The experimental results demonstrate that CARLA+ is flexible enough to allow users to model various scenarios, ranging from simple controlled models to complex models learned directly from real-world data. In the future, we plan to extend CARLA+ by allowing for more configurable parameters and more flexibility on the type of probabilistic networks and models one can choose. The open-source code of CARLA+ is made publicly available for researchers

    Modular lifelong machine learning

    Get PDF
    Deep learning has drastically improved the state-of-the-art in many important fields, including computer vision and natural language processing (LeCun et al., 2015). However, it is expensive to train a deep neural network on a machine learning problem. The overall training cost further increases when one wants to solve additional problems. Lifelong machine learning (LML) develops algorithms that aim to efficiently learn to solve a sequence of problems, which become available one at a time. New problems are solved with less resources by transferring previously learned knowledge. At the same time, an LML algorithm needs to retain good performance on all encountered problems, thus avoiding catastrophic forgetting. Current approaches do not possess all the desired properties of an LML algorithm. First, they primarily focus on preventing catastrophic forgetting (Diaz-Rodriguez et al., 2018; Delange et al., 2021). As a result, they neglect some knowledge transfer properties. Furthermore, they assume that all problems in a sequence share the same input space. Finally, scaling these methods to a large sequence of problems remains a challenge. Modular approaches to deep learning decompose a deep neural network into sub-networks, referred to as modules. Each module can then be trained to perform an atomic transformation, specialised in processing a distinct subset of inputs. This modular approach to storing knowledge makes it easy to only reuse the subset of modules which are useful for the task at hand. This thesis introduces a line of research which demonstrates the merits of a modular approach to lifelong machine learning, and its ability to address the aforementioned shortcomings of other methods. Compared to previous work, we show that a modular approach can be used to achieve more LML properties than previously demonstrated. Furthermore, we develop tools which allow modular LML algorithms to scale in order to retain said properties on longer sequences of problems. First, we introduce HOUDINI, a neurosymbolic framework for modular LML. HOUDINI represents modular deep neural networks as functional programs and accumulates a library of pre-trained modules over a sequence of problems. Given a new problem, we use program synthesis to select a suitable neural architecture, as well as a high-performing combination of pre-trained and new modules. We show that our approach has most of the properties desired from an LML algorithm. Notably, it can perform forward transfer, avoid negative transfer and prevent catastrophic forgetting, even across problems with disparate input domains and problems which require different neural architectures. Second, we produce a modular LML algorithm which retains the properties of HOUDINI but can also scale to longer sequences of problems. To this end, we fix the choice of a neural architecture and introduce a probabilistic search framework, PICLE, for searching through different module combinations. To apply PICLE, we introduce two probabilistic models over neural modules which allows us to efficiently identify promising module combinations. Third, we phrase the search over module combinations in modular LML as black-box optimisation, which allows one to make use of methods from the setting of hyperparameter optimisation (HPO). We then develop a new HPO method which marries a multi-fidelity approach with model-based optimisation. We demonstrate that this leads to improvement in anytime performance in the HPO setting and discuss how this can in turn be used to augment modular LML methods. Overall, this thesis identifies a number of important LML properties, which have not all been attained in past methods, and presents an LML algorithm which can achieve all of them, apart from backward transfer

    TabR: Unlocking the Power of Retrieval-Augmented Tabular Deep Learning

    Full text link
    Deep learning (DL) models for tabular data problems are receiving increasingly more attention, while the algorithms based on gradient-boosted decision trees (GBDT) remain a strong go-to solution. Following the recent trends in other domains, such as natural language processing and computer vision, several retrieval-augmented tabular DL models have been recently proposed. For a given target object, a retrieval-based model retrieves other relevant objects, such as the nearest neighbors, from the available (training) data and uses their features or even labels to make a better prediction. However, we show that the existing retrieval-based tabular DL solutions provide only minor, if any, benefits over the properly tuned simple retrieval-free baselines. Thus, it remains unclear whether the retrieval-based approach is a worthy direction for tabular DL. In this work, we give a strong positive answer to this question. We start by incrementally augmenting a simple feed-forward architecture with an attention-like retrieval component similar to those of many (tabular) retrieval-based models. Then, we highlight several details of the attention mechanism that turn out to have a massive impact on the performance on tabular data problems, but that were not explored in prior work. As a result, we design TabR -- a simple retrieval-based tabular DL model which, on a set of public benchmarks, demonstrates the best average performance among tabular DL models, becomes the new state-of-the-art on several datasets, and even outperforms GBDT models on the recently proposed ``GBDT-friendly'' benchmark (see the first figure).Comment: Code: https://github.com/yandex-research/tabular-dl-tab

    Segmentation of Pathology Images: A Deep Learning Strategy with Annotated Data

    Get PDF
    Cancer has significantly threatened human life and health for many years. In the clinic, histopathology image segmentation is the golden stand for evaluating the prediction of patient prognosis and treatment outcome. Generally, manually labelling tumour regions in hundreds of high-resolution histopathological images is time-consuming and expensive for pathologists. Recently, the advancements in hardware and computer vision have allowed deep-learning-based methods to become mainstream to segment tumours automatically, significantly reducing the workload of pathologists. However, most current methods rely on large-scale labelled histopathological images. Therefore, this research studies label-effective tumour segmentation methods using deep-learning paradigms to relieve the annotation limitations. Chapter 3 proposes an ensemble framework for fully-supervised tumour segmentation. Usually, the performance of an individual-trained network is limited by significant morphological variances in histopathological images. We propose a fully-supervised learning ensemble fusion model that uses both shallow and deep U-Nets, trained with images of different resolutions and subsets of images, for robust predictions of tumour regions. Noise elimination is achieved with Convolutional Conditional Random Fields. Two open datasets are used to evaluate the proposed method: the ACDC@LungHP challenge at ISBI2019 and the DigestPath challenge at MICCAI2019. With a dice coefficient of 79.7 %, the proposed method takes third place in ACDC@LungHP. In DigestPath 2019, the proposed method achieves a dice coefficient 77.3 %. Well-annotated images are an indispensable part of training fully-supervised segmentation strategies. However, large-scale histopathology images are hardly annotated finely in clinical practice. It is common for labels to be of poor quality or for only a few images to be manually marked by experts. Consequently, fully-supervised methods cannot perform well in these cases. Chapter 4 proposes a self-supervised contrast learning for tumour segmentation. A self-supervised cancer segmentation framework is proposed to reduce label dependency. An innovative contrastive learning scheme is developed to represent tumour features based on unlabelled images. Unlike a normal U-Net, the backbone is a patch-based segmentation network. Additionally, data augmentation and contrastive losses are applied to improve the discriminability of tumour features. A convolutional Conditional Random Field is used to smooth and eliminate noise. Three labelled, and fourteen unlabelled images are collected from a private skin cancer dataset called BSS. Experimental results show that the proposed method achieves better tumour segmentation performance than other popular self-supervised methods. However, by evaluated on the same public dataset as chapter 3, the proposed self-supervised method is hard to handle fine-grained segmentation around tumour boundaries compared to the supervised method we proposed. Chapter 5 proposes a sketch-based weakly-supervised tumour segmentation method. To segment tumour regions precisely with coarse annotations, a sketch-supervised method is proposed, containing a dual CNN-Transformer network and a global normalised class activation map. CNN-Transformer networks simultaneously model global and local tumour features. With the global normalised class activation map, a gradient-based tumour representation can be obtained from the dual network predictions. We invited experts to mark fine and coarse annotations in the private BSS and the public PAIP2019 datasets to facilitate reproducible performance comparisons. Using the BSS dataset, the proposed method achieves 76.686 % IOU and 86.6 % Dice scores, outperforming state-of-the-art methods. Additionally, the proposed method achieves a Dice gain of 8.372 % compared with U-Net on the PAIP2019 dataset. The thesis presents three approaches to segmenting cancers from histology images: fully-supervised, unsupervised, and weakly supervised methods. This research effectively segments tumour regions based on histopathological annotations and well-designed modules. Our studies comprehensively demonstrate label-effective automatic histopathological image segmentation. Experimental results prove that our works achieve state-of-the-art segmentation performances on private and public datasets. In the future, we plan to integrate more tumour feature representation technologies with other medical modalities and apply them to clinical research

    Dense Video Object Captioning from Disjoint Supervision

    Full text link
    We propose a new task and model for dense video object captioning -- detecting, tracking, and captioning trajectories of all objects in a video. This task unifies spatial and temporal understanding of the video, and requires fine-grained language description. Our model for dense video object captioning is trained end-to-end and consists of different modules for spatial localization, tracking, and captioning. As such, we can train our model with a mixture of disjoint tasks, and leverage diverse, large-scale datasets which supervise different parts of our model. This results in noteworthy zero-shot performance. Moreover, by finetuning a model from this initialization, we can further improve our performance, surpassing strong image-based baselines by a significant margin. Although we are not aware of other work performing this task, we are able to repurpose existing video grounding datasets for our task, namely VidSTG and VLN. We show our task is more general than grounding, and models trained on our task can directly be applied to grounding by finding the bounding box with the maximum likelihood of generating the query sentence. Our model outperforms dedicated, state-of-the-art models for spatial grounding on both VidSTG and VLN

    Automated Mapping of Adaptive App GUIs from Phones to TVs

    Full text link
    With the increasing interconnection of smart devices, users often desire to adopt the same app on quite different devices for identical tasks, such as watching the same movies on both their smartphones and TV. However, the significant differences in screen size, aspect ratio, and interaction styles make it challenging to adapt Graphical User Interfaces (GUIs) across these devices. Although there are millions of apps available on Google Play, only a few thousand are designed to support smart TV displays. Existing techniques to map a mobile app GUI to a TV either adopt a responsive design, which struggles to bridge the substantial gap between phone and TV or use mirror apps for improved video display, which requires hardware support and extra engineering efforts. Instead of developing another app for supporting TVs, we propose a semi-automated approach to generate corresponding adaptive TV GUIs, given the phone GUIs as the input. Based on our empirical study of GUI pairs for TV and phone in existing apps, we synthesize a list of rules for grouping and classifying phone GUIs, converting them to TV GUIs, and generating dynamic TV layouts and source code for the TV display. Our tool is not only beneficial to developers but also to GUI designers, who can further customize the generated GUIs for their TV app development. An evaluation and user study demonstrate the accuracy of our generated GUIs and the usefulness of our tool.Comment: 30 pages, 15 figure

    Enhanced object detection by integrating camera parameters into raw image-based faster R-CNN

    Get PDF
    The rapid progress in intelligent vehicle technology has led to a significant reliance on computer vision and deep neural networks (DNNs) to improve road safety and driving experience. However, the image signal processing (ISP) steps required for these networks, including demosaicing, color correction, and noise reduction, increase the overall processing time and computational resources. To address this, our paper proposes an improved version of the Faster R-CNN algorithm that integrates camera parameters into raw image input, reducing dependence on complex ISP steps while enhancing object detection accuracy. Specifically, we introduce additional camera parameters, such as ISO speed rating, exposure time, focal length, and F-number, through a custom layer into the neural network. Further, we modify the traditional Faster R-CNN model by adding a new fully connected layer, combining these parameters with the original feature maps from the backbone network. Our proposed new model, which incorporates camera parameters, has a 4.2% improvement in mAP@[0.5,0.95] compared to the traditional Faster RCNN model for object detection tasks on raw image data

    Reinforcement learning in large state action spaces

    Get PDF
    Reinforcement learning (RL) is a promising framework for training intelligent agents which learn to optimize long term utility by directly interacting with the environment. Creating RL methods which scale to large state-action spaces is a critical problem towards ensuring real world deployment of RL systems. However, several challenges limit the applicability of RL to large scale settings. These include difficulties with exploration, low sample efficiency, computational intractability, task constraints like decentralization and lack of guarantees about important properties like performance, generalization and robustness in potentially unseen scenarios. This thesis is motivated towards bridging the aforementioned gap. We propose several principled algorithms and frameworks for studying and addressing the above challenges RL. The proposed methods cover a wide range of RL settings (single and multi-agent systems (MAS) with all the variations in the latter, prediction and control, model-based and model-free methods, value-based and policy-based methods). In this work we propose the first results on several different problems: e.g. tensorization of the Bellman equation which allows exponential sample efficiency gains (Chapter 4), provable suboptimality arising from structural constraints in MAS(Chapter 3), combinatorial generalization results in cooperative MAS(Chapter 5), generalization results on observation shifts(Chapter 7), learning deterministic policies in a probabilistic RL framework(Chapter 6). Our algorithms exhibit provably enhanced performance and sample efficiency along with better scalability. Additionally, we also shed light on generalization aspects of the agents under different frameworks. These properties have been been driven by the use of several advanced tools (e.g. statistical machine learning, state abstraction, variational inference, tensor theory). In summary, the contributions in this thesis significantly advance progress towards making RL agents ready for large scale, real world applications

    Using machine learning to predict pathogenicity of genomic variants throughout the human genome

    Get PDF
    Geschätzt mehr als 6.000 Erkrankungen werden durch Veränderungen im Genom verursacht. Ursachen gibt es viele: Eine genomische Variante kann die Translation eines Proteins stoppen, die Genregulation stören oder das Spleißen der mRNA in eine andere Isoform begünstigen. All diese Prozesse müssen überprüft werden, um die zum beschriebenen Phänotyp passende Variante zu ermitteln. Eine Automatisierung dieses Prozesses sind Varianteneffektmodelle. Mittels maschinellem Lernen und Annotationen aus verschiedenen Quellen bewerten diese Modelle genomische Varianten hinsichtlich ihrer Pathogenität. Die Entwicklung eines Varianteneffektmodells erfordert eine Reihe von Schritten: Annotation der Trainingsdaten, Auswahl von Features, Training verschiedener Modelle und Selektion eines Modells. Hier präsentiere ich ein allgemeines Workflow dieses Prozesses. Dieses ermöglicht es den Prozess zu konfigurieren, Modellmerkmale zu bearbeiten, und verschiedene Annotationen zu testen. Der Workflow umfasst außerdem die Optimierung von Hyperparametern, Validierung und letztlich die Anwendung des Modells durch genomweites Berechnen von Varianten-Scores. Der Workflow wird in der Entwicklung von Combined Annotation Dependent Depletion (CADD), einem Varianteneffektmodell zur genomweiten Bewertung von SNVs und InDels, verwendet. Durch Etablierung des ersten Varianteneffektmodells für das humane Referenzgenome GRCh38 demonstriere ich die gewonnenen Möglichkeiten Annotationen aufzugreifen und neue Modelle zu trainieren. Außerdem zeige ich, wie Deep-Learning-Scores als Feature in einem CADD-Modell die Vorhersage von RNA-Spleißing verbessern. Außerdem werden Varianteneffektmodelle aufgrund eines neuen, auf Allelhäufigkeit basierten, Trainingsdatensatz entwickelt. Diese Ergebnisse zeigen, dass der entwickelte Workflow eine skalierbare und flexible Möglichkeit ist, um Varianteneffektmodelle zu entwickeln. Alle entstandenen Scores sind unter cadd.gs.washington.edu und cadd.bihealth.org frei verfügbar.More than 6,000 diseases are estimated to be caused by genomic variants. This can happen in many possible ways: a variant may stop the translation of a protein, interfere with gene regulation, or alter splicing of the transcribed mRNA into an unwanted isoform. It is necessary to investigate all of these processes in order to evaluate which variant may be causal for the deleterious phenotype. A great help in this regard are variant effect scores. Implemented as machine learning classifiers, they integrate annotations from different resources to rank genomic variants in terms of pathogenicity. Developing a variant effect score requires multiple steps: annotation of the training data, feature selection, model training, benchmarking, and finally deployment for the model's application. Here, I present a generalized workflow of this process. It makes it simple to configure how information is converted into model features, enabling the rapid exploration of different annotations. The workflow further implements hyperparameter optimization, model validation and ultimately deployment of a selected model via genome-wide scoring of genomic variants. The workflow is applied to train Combined Annotation Dependent Depletion (CADD), a variant effect model that is scoring SNVs and InDels genome-wide. I show that the workflow can be quickly adapted to novel annotations by porting CADD to the genome reference GRCh38. Further, I demonstrate the integration of deep-neural network scores as features into a new CADD model, improving the annotation of RNA splicing events. Finally, I apply the workflow to train multiple variant effect models from training data that is based on variants selected by allele frequency. In conclusion, the developed workflow presents a flexible and scalable method to train variant effect scores. All software and developed scores are freely available from cadd.gs.washington.edu and cadd.bihealth.org
    corecore