915 research outputs found

    Brain mechanisms of successful recognition through retrieval of semantic context

    Get PDF
    Episodic memory is associated with the encoding and retrieval of context information and with a subjective sense of reexperiencing past events. The neural correlates of episodic retrieval have been extensively studied using fMRI, leading to the identification of a "general recollection network" including medial temporal, parietal, and prefrontal regions. However, in these studies, it is difficult to disentangle the effects of context retrieval from recollection. In this study, we used fMRI to determine the extent to which the recruitment of regions in the recollection network is contingent on context reinstatement. Participants were scanned during a cued recognition test for target words from encoded sentences. Studied target words were preceded by either a cue word studied in the same sentence (thus congruent with encoding context) or a cue word studied in a different sentence (thus incongruent with encoding context). Converging fMRI results from independently defined ROIs and whole-brain analysis showed regional specificity in the recollection network. Activity in hippocampus and parahippocampal cortex was specifically increased during successful retrieval following congruent context cues, whereas parietal and prefrontal components of the general recollection network were associated with confident retrieval irrespective of contextual congruency. Our findings implicate medial temporal regions in the retrieval of semantic context, contributing to, but dissociable from, recollective experience

    Recollection, Familiarity, and Cortical Reinstatement: A Multivoxel Pattern Analysis

    Get PDF
    SummaryEpisodic memory retrieval is thought to involve reinstatement of the neurocognitive processes engaged when an episode was encoded. Prior fMRI studies and computational models have suggested that reinstatement is limited to instances in which specific episodic details are recollected. We used multivoxel pattern-classification analyses of fMRI data to investigate how reinstatement is associated with different memory judgments, particularly those accompanied by recollection versus a feeling of familiarity (when recollection is absent). Classifiers were trained to distinguish between brain activity patterns associated with different encoding tasks and were subsequently applied to recognition-related fMRI data to determine the degree to which patterns were reinstated. Reinstatement was evident during both recollection- and familiarity-based judgments, providing clear evidence that reinstatement is not sufficient for eliciting a recollective experience. The findings are interpreted as support for a continuous, recollection-related neural signal that has been central to recent debate over the nature of recognition memory processes

    Content reinstatement and source confidence during episodic memory retrieval

    Get PDF
    Abstract from public.pdf.Episodic retrieval is the process of bringing information about a past experience from memory into conscious awareness. Variation in the retrieval process, in regard to content and quality of the information retrieved, is believed to rely on the reactivation of neural patterns of activity elicited during the original experience -- a process called neural reinstatement. Research in support of this idea has relied on participant reports of retrieval quality, but not content, to assess variation in retrieval. Without measuring the content of retrieval, it is unclear whether reinstatement underlies retrieval per se, or merely the evaluation of retrieval quality. The current study addressed this issue by examining the relationship between the magnitude of neural reinstatement during retrieval, and a direct behavioral measure of both retrieval content and quality. Participants viewed a series of words in the context of three encoding tasks, and then completed a memory test on a series of words in which they first identified the encoding task completed for a given word, and next rated their confidence in that decision. Pattern classification analyses were performed on fMRI data acquired during encoding and retrieval phases to index reinstatement, and reinstatement effects were examined according to the behavioral and neural correlates of source confidence. The findings support a relationship between reinstatement and variation in the content and quality of retrieval, and also suggest a role for regions such as left posterior parietal cortex in monitoring reinstated activity to guide decisions about retrieval quality

    Hippocampal and cortical mechanisms at retrieval explain variability in episodic remembering in older adults

    Get PDF
    Age-related episodic memory decline is characterized by striking heterogeneity across individuals. Hippocampal pattern completion is a fundamental process supporting episodic memory. Yet, the degree to which this mechanism is impaired with age, and contributes to variability in episodic memory, remains unclear. We combine univariate and multivariate analyses of fMRI data from a large cohort of cognitively normal older adults (N=100) to measure hippocampal activity and cortical reinstatement during retrieval of trial-unique associations. Trial-wise analyses revealed that (a) hippocampal activity scaled with reinstatement strength, (b) cortical reinstatement partially mediated the relationship between hippocampal activity and associative retrieval, (c) older age weakened cortical reinstatement and its relationship to memory behaviour. Moreover, individual differences in the strength of hippocampal activity and cortical reinstatement explained unique variance in performance across multiple assays of episodic memory. These results indicate that fMRI indices of hippocampal pattern completion explain within-and across-individual memory variability in older adults

    When the brain, but not the person, remembers: Cortical reinstatement is modulated by retrieval goal in developmental amnesia

    Get PDF
    Developmental amnesia (DA) is associated with early hippocampal damage and subsequent episodic amnesia emerging in childhood alongside age-appropriate development of semantic knowledge. We employed fMRI to assess whether patients with DA show evidence of 'cortical reinstatement', a neural correlate of episodic memory, despite their amnesia. At study, 23 participants (5 patients) were presented with words overlaid on a scene or a scrambled image for later recognition. Scene reinstatement was indexed by scene memory effects (greater activity for previously presented words paired with a scene rather than scrambled images) that overlapped with scene perception effects. Patients with DA demonstrated scene reinstatement effects in the parahippocampal and retrosplenial cortex that were equivalent to those shown by healthy controls. Behaviourally, however, patients with DA showed markedly impaired scene memory. The data indicate that reinstatement can occur despite hippocampal damage, but that cortical reinstatement is insufficient to support accurate memory performance. Furthermore, scene reinstatement effects were diminished during a retrieval task in which scene information was not relevant for accurate responding, indicating that strategic mnemonic processes operate normally in DA. The data suggest that cortical reinstatement of trial-specific contextual information is decoupled from the experience of recollection in the presence of severe hippocampal atrophy

    Content dependence of the neural correlates of recollection: ERP old/new effects for faces, objects and words

    Get PDF
    As previous research on content-specificity of the neural correlates of recollection is inconclusive, event-related potentials were used to assess old/new effects for faces, objects and words. The data demonstrate temporal differences in ERP old/new effects as a function of item type, supporting the notion that material-dependent processes underlie recollection-related neural activity. The results are discussed in terms of how nameable and non-nameable material elicit different neural representations of mnemonic information, as a consequence of how different item types are encoded and retrieved according to perceptual and contextual content

    Mapping Specific Mental Content during Musical Imagery

    Get PDF
    Humans can mentally represent auditory information without an external stimulus, but the specificity of these internal representations remains unclear. Here, we asked how similar the temporally unfolding neural representations of imagined music are compared to those during the original perceived experience. We also tested whether rhythmic motion can influence the neural representation of music during imagery as during perception. Participants first memorized six 1-min-long instrumental musical pieces with high accuracy. Functional MRI data were collected during: 1) silent imagery of melodies to the beat of a visual metronome; 2) same but while tapping to the beat; and 3) passive listening. During imagery, inter-subject correlation analysis showed that melody-specific temporal response patterns were reinstated in right associative auditory cortices. When tapping accompanied imagery, the melody-specific neural patterns were reinstated in more extensive temporal-lobe regions bilaterally. These results indicate that the specific contents of conscious experience are encoded similarly during imagery and perception in the dynamic activity of auditory cortices. Furthermore, rhythmic motion can enhance the reinstatement of neural patterns associated with the experience of complex sounds, in keeping with models of motor to sensory influences in auditory processing
    • …
    corecore