1,587 research outputs found

    Entropy-based particle correspondence for shape populations

    Get PDF
    Statistical shape analysis of anatomical structures plays an important role in many medical image analysis applications such as understanding the structural changes in anatomy in various stages of growth or disease. Establishing accurate correspondence across object populations is essential for such statistical shape analysis studies

    Doctor of Philosophy in Computing

    Get PDF
    dissertationStatistical shape analysis has emerged as an important tool for the quantitative analysis of anatomy in many medical imaging applications. The correspondence based approach to evaluate shape variability is a popular method, based on comparing configurations of carefully placed landmarks on each shape. In recent years, methods for automatic placement of landmarks have enhanced the ability of this approach to capture statistical properties of shape populations. However, biomedical shapes continue to present considerable difficulties in automatic correspondence optimization due to inherent geometric complexity and the need to correlate shape change with underlying biological parameters. This dissertation addresses these technical difficulties and presents improved shape correspondence models. In particular, this dissertation builds on the particle-based modeling (PBM) framework described by Joshua Cates' 2010 Ph.D. dissertation. In the PBM framework, correspondences are modeled as a set of dynamic points or a particle system, positioned automatically on shape surfaces by optimizing entropy contained in the model, with the idea of balancing model simplicity against accuracy of the particle system representation of shapes. This dissertation is a collection of four papers that extend the PBM framework to include shape regression and longitudinal analysis and also adds new methods to improve modeling of complex shapes. It also includes a summary of two applications from the field of orthopaedics. Technical details of the PBM framework are provided in Chapter 2, after which the first topic related to the study of shape change over time is addressed (Chapters 3 and 4). In analyses of normative growth or disease progression, shape regression models allow characterization of the underlying biological process while also facilitating comparison of a sample against a normative model. The first paper introduces a shape regression model into the PBM framework to characterize shape variability due to an underlying biological parameter. It further confirms the statistical significance of this relationship via systematic permutation testing. Simple regression models are, however, not sufficient to leverage information provided by longitudinal studies. Longitudinal studies collect data at multiple time points for each participant and have the potential to provide a rich picture of the anatomical changes occurring during development, disease progression, or recovery. The second paper presents a linear-mixed-effects (LME) shape model in order to fully leverage the high-dimensional, complex features provided by longitudinal data. The parameters of the LME shape model are estimated in a hierarchical manner within the PBM framework. The topic of geometric complexity present in certain biological shapes is addressed next (Chapters 5 and 6). Certain biological shapes are inherently complex and highly variable, inhibiting correspondence based methods from producing a faithful representation of the average shape. In the PBM framework, use of Euclidean distances leads to incorrect particle system interactions while a position-only representation leads to incorrect correspondences around sharp features across shapes. The third paper extends the PBM framework to use efficiently computed geodesic distances and also adds an entropy term based on the surface normal. The fourth paper further replaces the position-only representation with a more robust distance-from-landmark feature in the PBM framework to obtain isometry invariant correspondences. Finally, the above methods are applied to two applications from the field of orthopaedics. The first application uses correspondences across an ensemble of human femurs to characterize morphological shape differences due to femoroacetabular impingement. The second application involves an investigation of the short bone phenotype apparent in mouse models of multiple osteochondromas. Metaphyseal volume deviations are correlated with deviations in length to quantify the effect of cancer toward the apparent shortening of long bones (femur, tibia-fibula) in mouse models

    Enhanced cortical thickness measurements for rodent brains via Lagrangian-based RK4 streamline computation

    Get PDF
    The cortical thickness of the mammalian brain is an important morphological characteristic that can be used to investigate and observe the brain's developmental changes that might be caused by biologically toxic substances such as ethanol or cocaine. Although various cortical thickness analysis methods have been proposed that are applicable for human brain and have developed into well-validated open-source software packages, cortical thickness analysis methods for rodent brains have not yet become as robust and accurate as those designed for human brains. Based on a previously proposed cortical thickness measurement pipeline for rodent brain analysis,1 we present an enhanced cortical thickness pipeline in terms of accuracy and anatomical consistency. First, we propose a Lagrangian-based computational approach in the thickness measurement step in order to minimize local truncation error using the fourth-order Runge-Kutta method. Second, by constructing a line object for each streamline of the thickness measurement, we can visualize the way the thickness is measured and achieve sub-voxel accuracy by performing geometric post-processing. Last, with emphasis on the importance of an anatomically consistent partial differential equation (PDE) boundary map, we propose an automatic PDE boundary map generation algorithm that is specific to rodent brain anatomy, which does not require manual labeling. The results show that the proposed cortical thickness pipeline can produce statistically significant regions that are not observed in the previous cortical thickness analysis pipeline

    Bits from Biology for Computational Intelligence

    Get PDF
    Computational intelligence is broadly defined as biologically-inspired computing. Usually, inspiration is drawn from neural systems. This article shows how to analyze neural systems using information theory to obtain constraints that help identify the algorithms run by such systems and the information they represent. Algorithms and representations identified information-theoretically may then guide the design of biologically inspired computing systems (BICS). The material covered includes the necessary introduction to information theory and the estimation of information theoretic quantities from neural data. We then show how to analyze the information encoded in a system about its environment, and also discuss recent methodological developments on the question of how much information each agent carries about the environment either uniquely, or redundantly or synergistically together with others. Last, we introduce the framework of local information dynamics, where information processing is decomposed into component processes of information storage, transfer, and modification -- locally in space and time. We close by discussing example applications of these measures to neural data and other complex systems

    Groupwise shape correspondence with local features

    Get PDF
    Statistical shape analysis of anatomical structures plays an important role in many medical image analysis applications such as understanding the structural changes in anatomy in various stages of growth or disease. Establishing accurate correspondence across object populations is essential for such statistical shape analysis studies. However, anatomical correspondence is rarely a direct result of spatial proximity of sample points but rather depends on many other features such as local curvature, position with respect to blood vessels, or connectivity to other parts of the anatomy. This dissertation presents a novel method for computing point-based correspondence among populations of surfaces by combining spatial location of the sample points with non-spatial local features. A framework for optimizing correspondence using arbitrary local features is developed. The performance of the correspondence algorithm is objectively assessed using a set of evaluation metrics. The main focus of this research is on correspondence across human cortical surfaces. Statistical analysis of cortical thickness, which is key to many neurological research problems, is the driving problem. I show that incorporating geometric (sulcal depth) and non-geometric (DTI connectivity) knowledge about the cortex significantly improves cortical correspondence compared to existing techniques. Furthermore, I present a framework that is the first to allow the white matter fiber connectivity to be used for improving cortical correspondence

    Dissipation and spontaneous symmetry breaking in brain dynamics

    Full text link
    We compare the predictions of the dissipative quantum model of brain with neurophysiological data collected from electroencephalograms resulting from high-density arrays fixed on the surfaces of primary sensory and limbic areas of trained rabbits and cats. Functional brain imaging in relation to behavior reveals the formation of coherent domains of synchronized neuronal oscillatory activity and phase transitions predicted by the dissipative model.Comment: Restyled, slight changes in title and abstract, updated bibliography, J. Phys. A: Math. Theor. Vol. 41 (2008) in prin

    Beyond the Circle of Life

    Get PDF
    It seems certain to me that I will die and stay dead. By “I”, I mean me, Greg Nixon, this person, this self-identity. I am so intertwined with the chiasmus of lives, bodies, ecosystems, symbolic intersubjectivity, and life on this particular planet that I cannot imagine this identity continuing alone without them. However, one may survive one’s life by believing in universal awareness, perfection, and the peace that passes all understanding. Perhaps, we bring this back with us to the Source from which we began, changing it, enriching it. Once we have lived – if we don’t choose the eternal silence of oblivion by life denial, vanity, indifference, or simple weariness – the Source learns and we awaken within it. Awareness, consciousness, is universal – it comes with the territory – so maybe you will be one of the few prepared to become unexpectedly enlightened after the loss of body and self. You may discover your own apotheosis – something you always were, but after a lifetime of primate experience, now much more. Since you are of the Source and since you have changed from life experience and yet retained the dream of ultimate awakening, plus you have brought those chaotic emotions and memories back to the Source with you (though no longer yours), your life & memories will have mattered. Those who awaken beyond the death of self will have changed Reality

    Cortical Surface Registration and Shape Analysis

    Get PDF
    A population analysis of human cortical morphometry is critical for insights into brain development or degeneration. Such an analysis allows for investigating sulcal and gyral folding patterns. In general, such a population analysis requires both a well-established cortical correspondence and a well-defined quantification of the cortical morphometry. The highly folded and convoluted structures render a reliable and consistent population analysis challenging. Three key challenges have been identified for such an analysis: 1) consistent sulcal landmark extraction from the cortical surface to guide better cortical correspondence, 2) a correspondence establishment for a reliable and stable population analysis, and 3) quantification of the cortical folding in a more reliable and biologically meaningful fashion. The main focus of this dissertation is to develop a fully automatic pipeline that supports a population analysis of local cortical folding changes. My proposed pipeline consists of three novel components I developed to overcome the challenges in the population analysis: 1) automatic sulcal curve extraction for stable/reliable anatomical landmark selection, 2) group-wise registration for establishing cortical shape correspondence across a population with no template selection bias, and 3) quantification of local cortical folding using a novel cortical-shape-adaptive kernel. To evaluate my methodological contributions, I applied all of them in an application to early postnatal brain development. I studied the human cortical morphological development using the proposed quantification of local cortical folding from neonate age to 1 year and 2 years of age, with quantitative developmental assessments. This study revealed a novel pattern of associations between the cortical gyrification and cognitive development.Doctor of Philosoph
    • …
    corecore