8 research outputs found

    Enabling Efficient, Robust, and Scalable Wireless Multi-Hop Networks: A Cross-Layer Approach Exploiting Cooperative Diversity

    Get PDF
    The practical performance in terms of throughput, robustness, and scalability of traditional Wireless Multihop Networks (WMNs) is limited. The key problem is that such networks do not allow for advanced physical layers, which typically require (a) spatial diversity via multiple antennas, (b) timely Channel State Information (CSI) feedback, and (c) a central instance that coordinates nodes. We propose Corridor-based Routing to address these issues. Our approach widens traditional hop-by-hop paths to span multiple nodes at each hop, and thus provide spatial diversity. As a result, at each hop, a group of transmitters cooperates at the physical layer to forward data to a group of receivers. We call two subsequent groups of nodes a stage. Since all nodes participating in data forwarding at a certain hop are part of the same fully connected stage, corridors only require one-hop CSI feedback. Further, each stage operates independently. Thus, Corridor-based Routing does not require a network-wide central instance, and is scalable. We design a protocol that builds end-to-end corridors. As expected, this incurs more overhead than finding a traditional WMN path. However, if the resulting corridor provides throughput gains, the overhead compensates after a certain number of transmitted packets. We adapt two physical layers to the aforementioned stage topology, namely, Orthogonal Frequency-Division Multiple Access (OFDMA), and Interference Alignment (IA). In OFDMA, we allocate each subchannel to a link of the current stage which provides good channel conditions. As a result, we avoid deep fades, which enables OFDMA to transmit data robustly in scenarios in which traditional schemes cannot operate. Moreover, it achieves higher throughputs than such schemes. To minimize the transmission time at each stage, we present an allocation mechanism that takes into account both the CSI, and the amount of data that each transmitter needs to transmit. Further, we address practical issues and implement our scheme on software-defined radios. We achieve roughly 30% average throughput gain compared to a WMN not using corridors. We analyze OFDMA in theory, simulation, and practice. Our results match in all three domains. Further, we design a physical layer for corridor stages based on IA in the frequency domain. Our practical experiments show that IA often performs poorly because the decoding process augments noise. We find that the augmentation factor depends only on the channel coefficients of the subchannels that IA uses. We design a mechanism to determine which transmitters should transmit to which receivers on which subchannels to minimize noise. Since the number of possible combinations is very large, we use heuristics that reduce the search space significantly. Based on this design, we present the first practical frequency IA system. Our results show that our approach avoids noise augmentation efficiently, and thus operates robustly. We observe that IA is most suitable for stages with specific CSI and traffic conditions. In such scenarios, the throughput gain compared to a WMN not using corridors is 25% on average, and 150% in the best case. Finally, we design a decision engine which estimates the performance of both OFDMA and IA for a given stage, and chooses the one which achieves the highest throughput. We evaluate corridors with up to five stages, and achieve roughly 20% average throughput gain. We conclude that switching among physical layers to adapt to the particular CSI and traffic conditions of each stage is crucial for efficient and robust operation

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids

    Decentralized Ultra-Reliable Low-Latency Communications through Concurrent Cooperative Transmission

    Get PDF
    Emerging cyber-physical systems demand for communication technologies that enable seamless interactions between humans and physical objects in a shared environment. This thesis proposes decentralized URLLC (dURLLC) as a new communication paradigm that allows the nodes in a wireless multi-hop network (WMN) to disseminate data quickly, reliably and without using a centralized infrastructure. To enable the dURLLC paradigm, this thesis explores the practical feasibility of concurrent cooperative transmission (CCT) with orthogonal frequency-division multiplexing (OFDM). CCT allows for an efficient utilization of the medium by leveraging interference instead of trying to avoid collisions. CCT-based network flooding disseminates data in a WMN through a reception-triggered low-level medium access control (MAC). OFDM provides high data rates by using a large bandwidth, resulting in a short transmission duration for a given amount of data. This thesis explores CCT-based network flooding with the OFDM-based IEEE 802.11 Non-HT and HT physical layers (PHYs) to enable interactions with commercial devices. An analysis of CCT with the IEEE 802.11 Non-HT PHY investigates the combined effects of the phase offset (PO), the carrier frequency offset (CFO) and the time offset (TO) between concurrent transmitters, as well as the elapsed time. The analytical results of the decodability of a CCT are validated in simulations and in testbed experiments with Wireless Open Access Research Platform (WARP) v3 software-defined radios (SDRs). CCT with coherent interference (CI) is the primary approach of this thesis. Two prototypes for CCT with CI are presented that feature mechanisms for precise synchronization in time and frequency. One prototype is based on the WARP v3 and its IEEE 802.11 reference design, whereas the other prototype is created through firmware modifications of the Asus RT-AC86U wireless router. Both prototypes are employed in testbed experiments in which two groups of nodes generate successive CCTs in a ping-pong fashion to emulate flooding processes with a very large number of hops. The nodes stay synchronized in experiments with 10 000 successive CCTs for various modulation and coding scheme (MCS) indices and MAC service data unit (MSDU) sizes. The URLLC requirement of delivering a 32-byte MSDU with a reliability of 99.999 % and with a latency of 1 ms is assessed in experiments with 1 000 000 CCTs, while the reliability is approximated by means of the frame reception rate (FRR). An FRR of at least 99.999 % is achieved at PHY data rates of up to 48 Mbit/s under line-of-sight (LOS) conditions and at PHY data rates of up to 12 Mbit/s under non-line-of-sight (NLOS) conditions on a 20 MHz wide channel, while the latency per hop is 48.2 µs and 80.2 µs, respectively. With four multiple input multiple output (MIMO) spatial streams on a 40 MHz wide channel, a LOS receiver achieves an FRR of 99.5 % at a PHY data rate of 324 Mbit/s. For CCT with incoherent interference, this thesis proposes equalization with time-variant zero-forcing (TVZF) and presents a TVZF receiver for the IEEE 802.11 Non-HT PHY, achieving an FRR of up to 92 % for CCTs from three unsyntonized commercial devices. As CCT-based network flooding allows for an implicit time synchronization of all nodes, a reception-triggered low-level MAC and a reservation-based high-level MAC may in combination support various applications and scenarios under the dURLLC paradigm

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Opportunistic forwarding in multi-hop OFDMA networks with local CSI

    No full text
    In multi-hop networks, conventional unipath routing approaches force the data transmission to follow a fixed sequence of nodes. In this paper, we widen this path to create a corridor of forwarding nodes. Within this corridor, data can be split and joined at different nodes as the data travels through the corridor towards the destination node. To split data, decode-and-forward OFDMA is used since with OFDMA, one can exploit the benefits of opportunistically allocating different subcarriers to different nodes according to their channel conditions. To avoid interference, each subcarrier is only allocated once per hop. It is assumed that only local channel state information (CSI) for the next hop towards the destination is available at the nodes, i.e. it can not be guaranteed that a certain node is able to forward its received data in the next hop. This leads to additional transmission phases decreasing the overall network throughput. In this paper, different opportunistic forwarding algorithms are presented which differ in the resource allocation strategy and in the amount of cooperation required between the nodes. Simulations show that in multihop networks, corridor-based routing using opportunistic forwarding with a proper resource allocation strategy outperforms conventional unipath routing approaches in terms of achievable throughput, especially in case of a node drop out

    Corridor-based Routing using Opportunistic Forwarding in OFDMA Multihop Networks

    No full text
    In multi-hop networks, conventional unipath routing approaches force the data transmission to follow a fixed sequence of nodes. In this paper, we widen this path to create a corridor of forwarding nodes. Within this corridor, data can be split and joined at different nodes as the data travels through the corridor towards the destination node. To split data, decode-and-forward OFDMA is used since with OFDMA, one can exploit the benefits of opportunistically allocating different subcarriers to different nodes according to their channel conditions. To avoid interference, each subcarrier is only allocated once per hop. For the presented scheme, the problem of optimizing the network throughput by means of resource and power allocation is formulated and two suboptimal algorithms are proposed to solve this problem with feasible effort. Simulations show that in multi-hop networks corridor-based routing using opportunistic forwarding outperforms conventional unipath routing approaches in terms of achievable throughput

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering
    corecore