1,183 research outputs found

    Image fusion techniques in permanent seed implantation

    Full text link

    Real-Time Magnetic Resonance Imaging

    Get PDF
    Real‐time magnetic resonance imaging (RT‐MRI) allows for imaging dynamic processes as they occur, without relying on any repetition or synchronization. This is made possible by modern MRI technology such as fast‐switching gradients and parallel imaging. It is compatible with many (but not all) MRI sequences, including spoiled gradient echo, balanced steady‐state free precession, and single‐shot rapid acquisition with relaxation enhancement. RT‐MRI has earned an important role in both diagnostic imaging and image guidance of invasive procedures. Its unique diagnostic value is prominent in areas of the body that undergo substantial and often irregular motion, such as the heart, gastrointestinal system, upper airway vocal tract, and joints. Its value in interventional procedure guidance is prominent for procedures that require multiple forms of soft‐tissue contrast, as well as flow information. In this review, we discuss the history of RT‐MRI, fundamental tradeoffs, enabling technology, established applications, and current trends

    Towards Omni-Tomography—Grand Fusion of Multiple Modalities for Simultaneous Interior Tomography

    Get PDF
    We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine

    Cardiac magnetic resonance assessment of central and peripheral vascular function in patients undergoing renal sympathetic denervation as predictor for blood pressure response

    Get PDF
    Background: Most trials regarding catheter-based renal sympathetic denervation (RDN) describe a proportion of patients without blood pressure response. Recently, we were able to show arterial stiffness, measured by invasive pulse wave velocity (IPWV), seems to be an excellent predictor for blood pressure response. However, given the invasiveness, IPWV is less suitable as a selection criterion for patients undergoing RDN. Consequently, we aimed to investigate the value of cardiac magnetic resonance (CMR) based measures of arterial stiffness in predicting the outcome of RDN compared to IPWV as reference. Methods: Patients underwent CMR prior to RDN to assess ascending aortic distensibility (AAD), total arterial compliance (TAC), and systemic vascular resistance (SVR). In a second step, central aortic blood pressure was estimated from ascending aortic area change and flow sequences and used to re-calculate total arterial compliance (cTAC). Additionally, IPWV was acquired. Results: Thirty-two patients (24 responders and 8 non-responders) were available for analysis. AAD, TAC and cTAC were higher in responders, IPWV was higher in non-responders. SVR was not different between the groups. Patients with AAD, cTAC or TAC above median and IPWV below median had significantly better BP response. Receiver operating characteristic (ROC) curves predicting blood pressure response for IPWV, AAD, cTAC and TAC revealed areas under the curve of 0.849, 0.828, 0.776 and 0.753 (p = 0.004, 0.006, 0.021 and 0.035). Conclusions: Beyond IPWV, AAD, cTAC and TAC appear as useful outcome predictors for RDN in patients with hypertension. CMR-derived markers of arterial stiffness might serve as non-invasive selection criteria for RDN

    A Review on Advances in Intra-operative Imaging for Surgery and Therapy: Imagining the Operating Room of the Future

    Get PDF
    none4openZaffino, Paolo; Moccia, Sara; De Momi, Elena; Spadea, Maria FrancescaZaffino, Paolo; Moccia, Sara; De Momi, Elena; Spadea, Maria Francesc

    Deep Multimodality Image-Guided System for Assisting Neurosurgery

    Get PDF
    Intrakranielle Hirntumoren gehören zu den zehn hĂ€ufigsten bösartigen Krebsarten und sind fĂŒr eine erhebliche MorbiditĂ€t und MortalitĂ€t verantwortlich. Die grĂ¶ĂŸte histologische Kategorie der primĂ€ren Hirntumoren sind die Gliome, die ein Ă€ußerst heterogenes Erschei-nungsbild aufweisen und radiologisch schwer von anderen HirnlĂ€sionen zu unterscheiden sind. Die Neurochirurgie ist meist die Standardbehandlung fĂŒr neu diagnostizierte Gliom-Patienten und kann von einer Strahlentherapie und einer adjuvanten Temozolomid-Chemotherapie gefolgt werden. Die Hirntumorchirurgie steht jedoch vor großen Herausforderungen, wenn es darum geht, eine maximale Tumorentfernung zu erreichen und gleichzeitig postoperative neurologische Defizite zu vermeiden. Zwei dieser neurochirurgischen Herausforderungen werden im Folgenden vorgestellt. Erstens ist die manuelle Abgrenzung des Glioms einschließlich seiner Unterregionen aufgrund seines infiltrativen Charakters und des Vorhandenseins einer heterogenen KontrastverstĂ€rkung schwierig. Zweitens verformt das Gehirn seine Form ̶ die so genannte "Hirnverschiebung" ̶ als Reaktion auf chirurgische Manipulationen, Schwellungen durch osmotische Medikamente und AnĂ€sthesie, was den Nutzen prĂ€opera-tiver Bilddaten fĂŒr die Steuerung des Eingriffs einschrĂ€nkt. Bildgesteuerte Systeme bieten Ärzten einen unschĂ€tzbaren Einblick in anatomische oder pathologische Ziele auf der Grundlage moderner BildgebungsmodalitĂ€ten wie Magnetreso-nanztomographie (MRT) und Ultraschall (US). Bei den bildgesteuerten Instrumenten handelt es sich hauptsĂ€chlich um computergestĂŒtzte Systeme, die mit Hilfe von Computer-Vision-Methoden die DurchfĂŒhrung perioperativer chirurgischer Eingriffe erleichtern. Die Chirurgen mĂŒssen jedoch immer noch den Operationsplan aus prĂ€operativen Bildern gedanklich mit Echtzeitinformationen zusammenfĂŒhren, wĂ€hrend sie die chirurgischen Instrumente im Körper manipulieren und die Zielerreichung ĂŒberwachen. Daher war die Notwendigkeit einer BildfĂŒhrung wĂ€hrend neurochirurgischer Eingriffe schon immer ein wichtiges Anliegen der Ärzte. Ziel dieser Forschungsarbeit ist die Entwicklung eines neuartigen Systems fĂŒr die peri-operative bildgefĂŒhrte Neurochirurgie (IGN), nĂ€mlich DeepIGN, mit dem die erwarteten Ergebnisse der Hirntumorchirurgie erzielt werden können, wodurch die GesamtĂŒberle-bensrate maximiert und die postoperative neurologische MorbiditĂ€t minimiert wird. Im Rahmen dieser Arbeit werden zunĂ€chst neuartige Methoden fĂŒr die Kernbestandteile des DeepIGN-Systems der Hirntumor-Segmentierung im MRT und der multimodalen prĂ€ope-rativen MRT zur intraoperativen US-Bildregistrierung (iUS) unter Verwendung der jĂŒngs-ten Entwicklungen im Deep Learning vorgeschlagen. Anschließend wird die Ergebnisvor-hersage der verwendeten Deep-Learning-Netze weiter interpretiert und untersucht, indem fĂŒr den Menschen verstĂ€ndliche, erklĂ€rbare Karten erstellt werden. Schließlich wurden Open-Source-Pakete entwickelt und in weithin anerkannte Software integriert, die fĂŒr die Integration von Informationen aus Tracking-Systemen, die Bildvisualisierung und -fusion sowie die Anzeige von Echtzeit-Updates der Instrumente in Bezug auf den Patientenbe-reich zustĂ€ndig ist. Die Komponenten von DeepIGN wurden im Labor validiert und in einem simulierten Operationssaal evaluiert. FĂŒr das Segmentierungsmodul erreichte DeepSeg, ein generisches entkoppeltes Deep-Learning-Framework fĂŒr die automatische Abgrenzung von Gliomen in der MRT des Gehirns, eine Genauigkeit von 0,84 in Bezug auf den WĂŒrfelkoeffizienten fĂŒr das Bruttotumorvolumen. Leistungsverbesserungen wurden bei der Anwendung fort-schrittlicher Deep-Learning-AnsĂ€tze wie 3D-Faltungen ĂŒber alle Schichten, regionenbasier-tes Training, fliegende Datenerweiterungstechniken und Ensemble-Methoden beobachtet. Um Hirnverschiebungen zu kompensieren, wird ein automatisierter, schneller und genauer deformierbarer Ansatz, iRegNet, fĂŒr die Registrierung prĂ€operativer MRT zu iUS-Volumen als Teil des multimodalen Registrierungsmoduls vorgeschlagen. Es wurden umfangreiche Experimente mit zwei Multi-Location-Datenbanken durchgefĂŒhrt: BITE und RESECT. Zwei erfahrene Neurochirurgen fĂŒhrten eine zusĂ€tzliche qualitative Validierung dieser Studie durch, indem sie MRT-iUS-Paare vor und nach der deformierbaren Registrierung ĂŒberlagerten. Die experimentellen Ergebnisse zeigen, dass das vorgeschlagene iRegNet schnell ist und die besten Genauigkeiten erreicht. DarĂŒber hinaus kann das vorgeschlagene iRegNet selbst bei nicht trainierten Bildern konkurrenzfĂ€hige Ergebnisse liefern, was seine AllgemeingĂŒltigkeit unter Beweis stellt und daher fĂŒr die intraoperative neurochirurgische FĂŒhrung von Nutzen sein kann. FĂŒr das Modul "ErklĂ€rbarkeit" wird das NeuroXAI-Framework vorgeschlagen, um das Vertrauen medizinischer Experten in die Anwendung von KI-Techniken und tiefen neuro-nalen Netzen zu erhöhen. Die NeuroXAI umfasst sieben ErklĂ€rungsmethoden, die Visuali-sierungskarten bereitstellen, um tiefe Lernmodelle transparent zu machen. Die experimen-tellen Ergebnisse zeigen, dass der vorgeschlagene XAI-Rahmen eine gute Leistung bei der Extraktion lokaler und globaler Kontexte sowie bei der Erstellung erklĂ€rbarer Salienzkar-ten erzielt, um die Vorhersage des tiefen Netzwerks zu verstehen. DarĂŒber hinaus werden Visualisierungskarten erstellt, um den Informationsfluss in den internen Schichten des Encoder-Decoder-Netzwerks zu erkennen und den Beitrag der MRI-ModalitĂ€ten zur end-gĂŒltigen Vorhersage zu verstehen. Der ErklĂ€rungsprozess könnte medizinischen Fachleu-ten zusĂ€tzliche Informationen ĂŒber die Ergebnisse der Tumorsegmentierung liefern und somit helfen zu verstehen, wie das Deep-Learning-Modell MRT-Daten erfolgreich verar-beiten kann. Außerdem wurde ein interaktives neurochirurgisches Display fĂŒr die EingriffsfĂŒhrung entwickelt, das die verfĂŒgbare kommerzielle Hardware wie iUS-NavigationsgerĂ€te und Instrumentenverfolgungssysteme unterstĂŒtzt. Das klinische Umfeld und die technischen Anforderungen des integrierten multimodalen DeepIGN-Systems wurden mit der FĂ€higkeit zur Integration von (1) prĂ€operativen MRT-Daten und zugehörigen 3D-Volumenrekonstruktionen, (2) Echtzeit-iUS-Daten und (3) positioneller Instrumentenver-folgung geschaffen. Die Genauigkeit dieses Systems wurde anhand eines benutzerdefi-nierten Agar-Phantom-Modells getestet, und sein Einsatz in einem vorklinischen Operati-onssaal wurde simuliert. Die Ergebnisse der klinischen Simulation bestĂ€tigten, dass die Montage des Systems einfach ist, in einer klinisch akzeptablen Zeit von 15 Minuten durchgefĂŒhrt werden kann und mit einer klinisch akzeptablen Genauigkeit erfolgt. In dieser Arbeit wurde ein multimodales IGN-System entwickelt, das die jĂŒngsten Fort-schritte im Bereich des Deep Learning nutzt, um Neurochirurgen prĂ€zise zu fĂŒhren und prĂ€- und intraoperative Patientenbilddaten sowie interventionelle GerĂ€te in das chirurgi-sche Verfahren einzubeziehen. DeepIGN wurde als Open-Source-Forschungssoftware entwickelt, um die Forschung auf diesem Gebiet zu beschleunigen, die gemeinsame Nut-zung durch mehrere Forschungsgruppen zu erleichtern und eine kontinuierliche Weiter-entwicklung durch die Gemeinschaft zu ermöglichen. Die experimentellen Ergebnisse sind sehr vielversprechend fĂŒr die Anwendung von Deep-Learning-Modellen zur UnterstĂŒtzung interventioneller Verfahren - ein entscheidender Schritt zur Verbesserung der chirurgi-schen Behandlung von Hirntumoren und der entsprechenden langfristigen postoperativen Ergebnisse
    • 

    corecore