892 research outputs found

    Revised self-consistent continuum solvation in electronic-structure calculations

    Full text link
    The solvation model proposed by Fattebert and Gygi [Journal of Computational Chemistry 23, 662 (2002)] and Scherlis et al. [Journal of Chemical Physics 124, 074103 (2006)] is reformulated, overcoming some of the numerical limitations encountered and extending its range of applicability. We first recast the problem in terms of induced polarization charges that act as a direct mapping of the self-consistent continuum dielectric; this allows to define a functional form for the dielectric that is well behaved both in the high-density region of the nuclear charges and in the low-density region where the electronic wavefunctions decay into the solvent. Second, we outline an iterative procedure to solve the Poisson equation for the quantum fragment embedded in the solvent that does not require multi-grid algorithms, is trivially parallel, and can be applied to any Bravais crystallographic system. Last, we capture some of the non-electrostatic or cavitation terms via a combined use of the quantum volume and quantum surface [Physical Review Letters 94, 145501 (2005)] of the solute. The resulting self-consistent continuum solvation (SCCS) model provides a very effective and compact fit of computational and experimental data, whereby the static dielectric constant of the solvent and one parameter allow to fit the electrostatic energy provided by the PCM model with a mean absolute error of 0.3 kcal/mol on a set of 240 neutral solutes. Two parameters allow to fit experimental solvation energies on the same set with a mean absolute error of 1.3 kcal/mol. A detailed analysis of these results, broken down along different classes of chemical compounds, shows that several classes of organic compounds display very high accuracy, with solvation energies in error of 0.3-0.4 kcal/mol, whereby larger discrepancies are mostly limited to self-dissociating species and strong hydrogen-bond forming compounds.Comment: The following article has been accepted by The Journal of Chemical Physics. After it is published, it will be found at http://link.aip.org/link/?jcp

    Continuous dielectric permittivity I: Specific features of the dielectric continuum solvation model with a position-dependent permittivity function

    Full text link
    We consider a modified formulation for the recently developed new approach in the continuum solvation theory (Basilevsky, M. V., Grigoriev, F. V., Nikitina, E. A., Leszczynski, J., J. Phys. Chem. B 2010, 114, 2457), which is based on the exact solution of the electrostatic Poisson equation with the space-dependent dielectric permittivity. Its present modification ensures the property curl E = 0 for the electric strength field E inherent to this solution, which is the obligatory condition imposed by Maxwell equations. The illustrative computation is made for the model system of the point dipole immersed in a spherical cavity of excluded volume.Comment: 31 pages, 4 figure

    The Poisson-Boltzmann model for implicit solvation of electrolyte solutions: Quantum chemical implementation and assessment via Sechenov coefficients.

    Get PDF
    We present the theory and implementation of a Poisson-Boltzmann implicit solvation model for electrolyte solutions. This model can be combined with arbitrary electronic structure methods that provide an accurate charge density of the solute. A hierarchy of approximations for this model includes a linear approximation for weak electrostatic potentials, finite size of the mobile electrolyte ions, and a Stern-layer correction. Recasting the Poisson-Boltzmann equations into Euler-Lagrange equations then significantly simplifies the derivation of the free energy of solvation for these approximate models. The parameters of the model are either fit directly to experimental observables-e.g., the finite ion size-or optimized for agreement with experimental results. Experimental data for this optimization are available in the form of Sechenov coefficients that describe the linear dependence of the salting-out effect of solutes with respect to the electrolyte concentration. In the final part, we rationalize the qualitative disagreement of the finite ion size modification to the Poisson-Boltzmann model with experimental observations by taking into account the electrolyte concentration dependence of the Stern layer. A route toward a revised model that captures the experimental observations while including the finite ion size effects is then outlined. This implementation paves the way for the study of electrochemical and electrocatalytic processes of molecules and cluster models with accurate electronic structure methods

    Equilibrium solvation in quadrupolar solvents

    Full text link
    We present a microscopic theory of equilibrium solvation in solvents with zero dipole moment and non-zero quadrupole moment (quadrupolar solvents). The theory is formulated in terms of autocorrelation functions of the quadrupolar polarization (structure factors). It can be therefore applied to an arbitrary dense quadrupolar solvent for which the structure factors are defined. We formulate a simple analytical perturbation treatment for the structure factors. The solute is described by coordinates, radii, and partial charges of constituent atoms. The theory is tested on Monte Carlo simulations of solvation in model quadrupolar solvents. It is also applied to the calculation of the activation barrier of electron transfer reactions in a cleft-shaped donor-acceptor complex dissolved in benzene with the structure factors of quadrupolar polarization obtained from Molecular Dynamics simulations.Comment: Submitted to J. Chem. Phys., 20 pages and 13 figure

    Theory of solvation in polar nematics

    Full text link
    We develop a linear response theory of solvation of ionic and dipolar solutes in anisotropic, axially symmetric polar solvents. The theory is applied to solvation in polar nematic liquid crystals. The formal theory constructs the solvation response function from projections of the solvent dipolar susceptibility on rotational invariants. These projections are obtained from Monte Carlo simulations of a fluid of dipolar spherocylinders which can exist both in the isotropic and nematic phase. Based on the properties of the solvent susceptibility from simulations and the formal solution, we have obtained a formula for the solvation free energy which incorporates experimentally available properties of nematics and the length of correlation between the dipoles in the liquid crystal. Illustrative calculations are presented for the Stokes shift and Stokes shift correlation function of coumarin-153 in 4-n-pentyl-4'-cyanobiphenyl (5CB) and 4,4-n-heptyl-cyanopiphenyl (7CB) solvents as a function of temperature in both the nematic and isotropic phase.Comment: 19 pages, 9 figure

    Hydration free energies of molecular ions from theory and simulation

    Get PDF
    We present a theoretical/computational framework for accurate calculation of hydration free energies of ionized molecular species. The method is based on a molecular theory, 3D-RISM, combined with a recently developed pressure correction (PC+). The 3D-RISM/PC+ model can provide ∌3 kcal/mol hydration free energy accuracy for a large variety of ionic compounds, provided that the Galvani potential of water is taken into account. The results are compared with direct atomistic simulations. Several methodological aspects of hydration free energy calculations for charged species are discussed
    • 

    corecore