9 research outputs found

    Will 1,2-dihydro-1,2-azaborine-based drugs resist metabolism by cytochrome P450 compound I?

    Get PDF
    1,2-dihydro-1,2-azaborine is a structural and electronic analogue of benzene which is able to occupy benzene-binding pockets in T4 lysozyme and has been proposed as suitable arene-mimicking group for biological and pharmaceutical applications. Its applicability in a biological context requires it to be able to resist modification by xenobiotic-degrading enzymes like the P450 cytochromes. Quantum chemical computations described in this work show that 1,2-dihydro-1,2-azaborine is much more prone to modification by these enzymes than benzene, unless steric crowding of the ring prevents it from reaching the active site, or otherwise only allows reaction at the less reactive C4-position. This novel heterocyclic compound is therefore expected to be of limited usefulness as an aryl bioisostere.info:eu-repo/semantics/publishedVersio

    Computational improvement of small-molecule inhibitors of Bacillus anthracis protective antigen activation through isostere-based substitutions

    Get PDF
    There has recently been interest in the development of small-molecule inhibitors of the oligomerization of Bacillus anthracis protective antigen for therapeutic use. Some of the proposed lead compounds have, however, unfavorable solubility in aqueous medium, which prevents their clinical use. In this computational work, we have designed several hundreds of derivatives with progressively higher hydro-solubility and tested their ability to dock the relevant binding cavity. The highest-ranking docking hits were then subjected to 125 nslong simulations to ascertain the stability of the binding modes. Several of the potential candidates performed quite disappointingly, but two molecules showed very stable binding modes throughout the complete simulations. Besides the identification of these two promising leads, these molecular dynamics simulations allowed the discovery of several insights that shall prove useful in the further improvement of these candidate towards higher potency and stability.info:eu-repo/semantics/acceptedVersio

    Unveiling the reaction mechanism of the das/chechik/marek synthesis of stereodefined quaternary carbon centers

    Get PDF
    The reaction mechanism of the Cu+‐catalyzed introduction of two all‐carbon‐substituted stereocenters in an ynamide system using a Grignard reagent, a zinc carbenoid, and an aldehyde, was investigated using density‐functional theory. In contrast to the formation of an organocopper(I) compound and subsequent carbocupration reaction, previously postulated as the initial step, the reaction proved to instead proceed through an initial complexation of the substrate alkyne bond by the Cu+‐catalyst, which primes this bond for reaction with the Grignard reagent. Subsequent addition of the zinc carbenoid then enables the nucleophilic attack on the incoming aldehyde, which is revealed as the rate‐limiting step. Our computations have also identified the factors governing the regio‐ and setereoselectivity of this interesting reaction, and suggest possible paths forits further development.info:eu-repo/semantics/publishedVersio

    Refining the reaction mechanism of O2towards its co-substrate in cofactor-free dioxygenases

    Get PDF
    Cofactor-less oxygenases perform challenging catalytic reactions between singlet co-substrates and triplet oxygen, in spite of apparently violating the spin-conservation rule. In 1-H-3-hydroxy-4-oxoquinaldine-2,4-dioxygenase, the active site has been suggested by quantum chemical computations to fine tune triplet oxygen reactivity, allowing it to interact rapidly with its singlet substrate without the need for spin inversion, and in urate oxidase the reaction is thought to proceed through electron transfer from the deprotonated substrate to an aminoacid sidechain, which then feeds the electron to the oxygen molecule. In this work, we perform additional quantum chemical computations on these two systems to elucidate several intriguing features unaddressed by previous workers. These computations establish that in both enzymes the reaction proceeds through direct electron transfer from co-substrate to O2 followed by radical recombination, instead of minimum-energy crossing points between singlet and triplet potential energy surfaces without formal electron transfer. The active site does not affect the reactivity of oxygen directly but is crucial for the generation of the deprotonated form of the co-substrates, which have redox potentials far below those of their protonated forms and therefore may transfer electrons to oxygen without sizeable thermodynamic barriers. This mechanism seems to be shared by most cofactor-less oxidases studied so far.info:eu-repo/semantics/publishedVersio

    Computational development of inhibitors of plasmid-borne bacterial dihydrofolate reductase

    Get PDF
    Resistance to trimethoprim and other antibiotics targeting dihydrofolate reductase may arise in bacteria harboring an atypical, plasmid-encoded, homotetrameric dihydrofolate reductase, called R67 DHFR. Although developing inhibitors to this enzyme may be expected to be promising drugs to fight trimethoprim-resistant strains, there is a paucity of reports describing the development of such molecules. In this manuscript, we describe the design of promising lead compounds to target R67 DHFR. Density-functional calculations were first used to identify the modifications of the pterin core that yielded derivatives likely to bind the enzyme and not susceptible to being acted upon by it. These unreactive molecules were then docked to the active site, and the stability of the docking poses of the best candidates was analyzed through triplicate molecular dynamics simulations, and compared to the binding stability of the enzyme–substrate complex. Molecule 32 ([6-(methoxymethyl)-4-oxo-3,7-dihydro-4H-pyrano[2,3-d]pyrimidin-2- yl]methyl-guanidinium) was shown by this methodology to afford extremely stable binding towards R67 DHFR and to prevent simultaneous binding to the substrate. Additional docking and molecular dynamics simulations further showed that this candidate also binds strongly to the canonical prokaryotic dihydrofolate reductase and to human DHFR, and is therefore likely to be useful to the development of chemotherapeutic agents and of dual-acting antibiotics that target the two types of bacterial dihydrofolate reductase.info:eu-repo/semantics/publishedVersio

    Mechanistic pathways of mercury removal from the organomercurial lyase active site

    Get PDF
    Bacterial populations present in Hg-rich environments have evolved biological mechanisms to detoxify methylmercury and other organometallic mercury compounds. The most common resistance mechanism relies on the H(+)-assisted cleavage of the Hg-C bond of methylmercury by the organomercurial lyase MerB. Although the initial reaction steps which lead to the loss of methane from methylmercury have already been studied experimentally and computationally, the reaction steps leading to the removal of Hg(2+) from MerB and regeneration of the active site for a new round of catalysis have not yet been elucidated. In this paper, we have studied the final steps of the reaction catalyzed by MerB through quantum chemical computations at the combined MP2/CBS//B3PW91/6-31G(d) level of theory. While conceptually simple, these reaction steps occur in a complex potential energy surface where several distinct pathways are accessible and may operate concurrently. The only pathway which clearly emerges as forbidden in our analysis is the one arising from the sequential addition of two thiolates to the metal atom, due to the accumulation of negative charges in the active site. The addition of two thiols, in contrast, leads to two feasible mechanistic possibilities. The most straightforward pathway proceeds through proton transfer from the attacking thiol to Cys159 , leading to its removal from the mercury coordination sphere, followed by a slower attack of a second thiol, which removes Cys96. The other pathway involves Asp99 in an accessory role similar to the one observed earlier for the initial stages of the reaction and affords a lower activation enthalpy, around 14 kcal mol(-1), determined solely by the cysteine removal step rather than by the thiol ligation step. Addition of one thiolate to the intermediates arising from either thiol attack occurs without a barrier and produces an intermediate bound to one active site cysteine and from which Hg(SCH3)2 may be removed only after protonation by solvent-provided H3O(+). Thiolate addition to the active site (prior to any attack by thiols) leads to pathways where the removal of the first cysteine becomes the rate-determining step, irrespective of whether Cys159 or Cys96 leaves first. Comparisons with the recently computed mechanism of the related enzyme MerA further underline the important role of Asp99 in the energetics of the MerB reaction. Kinetic simulation of the mechanism derived from our computations strongly suggests that in vivo the thiolate-only pathway is operative, and the Asp-assisted pathway (as well as the conversion of intermediates of the thiolate pathway into intermediates of the Cys-assisted pathway) is prevented by steric factors absent from our model and related to the precise geometry of the organomercurial binding-pocket

    Refining the reaction mechanism of O 2 towards its co-substrate in cofactor-free dioxygenases

    Get PDF
    ABSTRACT Cofactor-less oxygenases perform challenging catalytic reactions between singlet cosubstrates and triplet oxygen, in spite of apparently violating the spin-conservation rule. In 1-H -3-hydroxy-4-oxoquinaldine-2,4-dioxygenase, the active site has been suggested by quantum chemical computations to fine tune triplet oxygen reactivity, allowing it to interact rapidly with its singlet substrate without the need for spin inversion, and in urate oxidase the reaction is thought to proceed through electron transfer from the deprotonated substrate to an aminoacid sidechain, which then feeds the electron to the oxygen molecule. In this work, we perform additional quantum chemical computations on these two systems to elucidate several intriguing features unaddressed by previous workers. These computations establish that in both enzymes the reaction proceeds through direct electron transfer from co-substrate to O 2 followed by radical recombination, instead of minimum-energy crossing points between singlet and triplet potential energy surfaces without formal electron transfer. The active site does not affect the reactivity of oxygen directly but is crucial for the generation of the deprotonated form of the co-substrates, which have redox potentials far below those of their protonated forms and therefore may transfer electrons to oxygen without sizeable thermodynamic barriers. This mechanism seems to be shared by most cofactor-less oxidases studied so far. Subjects Biochemistr

    With or without light: comparing the reaction mechanism of dark-operative protochlorophyllide oxidoreductase with the energetic requirements of the light-dependent protochlorophyllide oxidoreductase

    Get PDF
    The addition of two electrons and two protons to the C17=C18 bond in protochlorophyllide is catalyzed by a light-dependent enzyme relying on NADPH as electron donor, and by a light-independent enzyme bearing a (Cys)3Asp-ligated [4Fe-4S] cluster which is reduced by cytoplasmic electron donors in an ATP-dependent manner and then functions as electron donor to protochlorophyllide. The precise sequence of events occurring at the C17=C18 bond has not, however, been determined experimentally in the dark-operating enzyme. In this paper, we present the computational investigation of the reaction mechanism of this enzyme at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory. The reaction mechanism begins with single-electron reduction of the substrate by the (Cys)3Asp-ligated [4Fe-4S], yielding a negatively-charged intermediate. Depending on the rate of Fe-S cluster re-reduction, the reaction either proceeds through double protonation of the single-electron-reduced substrate, or by alternating proton/electron transfer. The computed reaction barriers suggest that Fe-S cluster re-reduction should be the rate-limiting stage of the process. Poisson-Boltzmann computations on the full enzyme-substrate complex, followed by Monte Carlo simulations of redox and protonation titrations revealed a hitherto unsuspected pH-dependence of the reaction potential of the Fe-S cluster. Furthermore, the computed distributions of protonation states of the His, Asp and Glu residues were used in conjuntion with single-point ONIOM computations to obtain, for the first time, the influence of all protonation states of an enzyme on the reaction it catalyzes. Despite exaggerating the ease of reduction of the substrate, these computations confirmed the broad features of the reaction mechanism obtained with the medium-sized models, and afforded valuable insights on the influence of the titratable amino acids on each reaction step. Additional comparisons of the energetic features of the reaction intermediates with those of common biochemical redox intermediates suggest a surprisingly simple explanation for the mechanistic differences between the dark-catalyzed and light-dependent enzyme reaction mechanisms
    corecore