276 research outputs found

    A Study on Efficient Designs of Approximate Arithmetic Circuits

    Get PDF
    Approximate computing is a popular field where accuracy is traded with energy. It can benefit applications such as multimedia, mobile computing and machine learning which are inherently error resilient. Error introduced in these applications to a certain degree is beyond human perception. This flexibility can be exploited to design area, delay and power efficient architectures. However, care must be taken on how approximation compromises the correctness of results. This research work aims to provide approximate hardware architectures with error metrics and design metrics analyzed and their effects in image processing applications. Firstly, we study and propose unsigned array multipliers based on probability statistics and with approximate 4-2 compressors, full adders and half adders. This work deals with a new design approach for approximation of multipliers. The partial products of the multiplier are altered to introduce varying probability terms. Logic complexity of approximation is varied for the accumulation of altered partial products based on their probability. The proposed approximation is utilized in two variants of 16-bit multipliers. Synthesis results reveal that two proposed multipliers achieve power savings of 72% and 38% respectively compared to an exact multiplier. They have better precision when compared to existing approximate multipliers. Mean relative error distance (MRED) figures are as low as 7.6% and 0.02% for the proposed approximate multipliers, which are better than the previous state-of-the-art works. Performance of the proposed multipliers is evaluated with geometric mean filtering application, where one of the proposed models achieves the highest peak signal to noise ratio (PSNR). Second, approximation is proposed for signed Booth multiplication. Approximation is introduced in partial product generation and partial product accumulation circuits. In this work, three multipliers (ABM-M1, ABM-M2, and ABM-M3) are proposed in which the modified Booth algorithm is approximated. In all three designs, approximate Booth partial product generators are designed with different variations of approximation. The approximations are performed by reducing the logic complexity of the Booth partial product generator, and the accumulation of partial products is slightly modified to improve circuit performance. Compared to the exact Booth multiplier, ABM-M1 achieves up to 15% reduction in power consumption with an MRED value of 7.9 × 10-4. ABM-M2 has power savings of up to 60% with an MRED of 1.1 × 10-1. ABM-M3 has power savings of up to 50% with an MRED of 3.4 × 10-3. Compared to existing approximate Booth multipliers, the proposed multipliers ABM-M1 and ABM-M3 achieve up to a 41% reduction in power consumption while exhibiting very similar error metrics. Image multiplication and matrix multiplication are used as case studies to illustrate the high performance of the proposed approximate multipliers. Third, distributed arithmetic based sum of products units approximation is analyzed. Sum of products units are key elements in many digital signal processing applications. Three approximate sum of products models which are based on distributed arithmetic are proposed. They are designed for different levels of accuracy. First model of approximate sum of products achieves an improvement up to 64% on area and 70% on power, when compared to conventional unit. Other two models provide an improvement of 32% and 48% on area and 54% and 58% on power, respectively, with a reduced error rate compared to the first model. Third model achieves MRED and normalized mean error distance (NMED) as low as 0.05% and 0.009%. Performance of approximate units is evaluated with a noisy image smoothing application, where the proposed models are capable of achieving higher PSNR than existing state of the art techniques. Fourth, approximation is applied in division architecture. Two approximation models are proposed for restoring divider. In the first design, approximation is performed at circuit level, where approximate divider cells are utilized in place of exact ones by simplifying the logic equations. In the second model, restoring divider is analyzed strategically and number of restoring divider cells are reduced by finding the portions of divisor and dividend with significant information. An approximation factor pp is used in both designs. In model 1, the design with p=8 has a 58% reduction in both area and power consumption compared to exact design, with a Q-MRED of 1.909 × 10-2 and Q-NMED of 0.449 × 10-2. The second model with an approximation factor p=4 has 54% area savings and 62% power savings compared to exact design. The proposed models are found to have better error metrics compared to existing designs, with better performance at similar error values. A change detection image processing application is used for real time assessment of proposed and existing approximate dividers and one of the models achieves a PSNR of 54.27 dB

    Resilience of an embedded architecture using hardware redundancy

    Get PDF
    In the last decade the dominance of the general computing systems market has being replaced by embedded systems with billions of units manufactured every year. Embedded systems appear in contexts where continuous operation is of utmost importance and failure can be profound. Nowadays, radiation poses a serious threat to the reliable operation of safety-critical systems. Fault avoidance techniques, such as radiation hardening, have been commonly used in space applications. However, these components are expensive, lag behind commercial components with regards to performance and do not provide 100% fault elimination. Without fault tolerant mechanisms, many of these faults can become errors at the application or system level, which in turn, can result in catastrophic failures. In this work we study the concepts of fault tolerance and dependability and extend these concepts providing our own definition of resilience. We analyse the physics of radiation-induced faults, the damage mechanisms of particles and the process that leads to computing failures. We provide extensive taxonomies of 1) existing fault tolerant techniques and of 2) the effects of radiation in state-of-the-art electronics, analysing and comparing their characteristics. We propose a detailed model of faults and provide a classification of the different types of faults at various levels. We introduce an algorithm of fault tolerance and define the system states and actions necessary to implement it. We introduce novel hardware and system software techniques that provide a more efficient combination of reliability, performance and power consumption than existing techniques. We propose a new element of the system called syndrome that is the core of a resilient architecture whose software and hardware can adapt to reliable and unreliable environments. We implement a software simulator and disassembler and introduce a testing framework in combination with ERA’s assembler and commercial hardware simulators

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Get PDF
    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Single event upset hardened embedded domain specific reconfigurable architecture

    Get PDF

    Detection, diagnosis and modeling of ESD-induced soft failures - a gate-level and mixed-signal approach

    Get PDF
    Electronic systems are an indispensable part of people's lives today. However, the reliability of electronic systems can be threatened by external stimuli such as Electrostatic Discharges (ESDs). ESDs can either physically damage an electronic system or let it malfunction without damaging it. Therefore, a lot of design work and qualification testings are needed by manufacturers to improve the robustness against the negative effects of ESDs. The trial-and-error based solution implementation has incurred huge costs to companies in terms of labor and time. Despite the ever-increasing effort being devoted to solving ESD-related problems, cases of field returns still happen, and a significant portion can be attributed to soft failure induced by system-level ESD. Despite that, the ESD-induced permanent failures are well-studied and protection mechanisms have proven to work, the studies on ESD-induced soft failures are all on the physical and transistor level. In this thesis, we studied ESD-induced soft failures by first conducting case studies of injecting ESDs into physical devices and observing the application level symptoms of the failures, and then performing simulation-based ESD injections on a well-known instruction-set-architecture. For the first time, we correlated the physical level ESD event to high-level system behavior. We implemented a mixed-signal-simulation-based fault injection environment and device models to allow ESDs to be injected to target systems. By injecting different types of ESDs into the target system, we, for the first time, identified gate-level bit-flip patterns from a SPICE level high-voltage event. Our experimental results show that the extent of register value corruption can be single-bit or widespread, and the bit flips manifested can affect the system in multiple ways. We also demonstrated low-cost protection measures for some of the failures resulted

    Information Leakage Attacks and Countermeasures

    Get PDF
    The scientific community has been consistently working on the pervasive problem of information leakage, uncovering numerous attack vectors, and proposing various countermeasures. Despite these efforts, leakage incidents remain prevalent, as the complexity of systems and protocols increases, and sophisticated modeling methods become more accessible to adversaries. This work studies how information leakages manifest in and impact interconnected systems and their users. We first focus on online communications and investigate leakages in the Transport Layer Security protocol (TLS). Using modern machine learning models, we show that an eavesdropping adversary can efficiently exploit meta-information (e.g., packet size) not protected by the TLS’ encryption to launch fingerprinting attacks at an unprecedented scale even under non-optimal conditions. We then turn our attention to ultrasonic communications, and discuss their security shortcomings and how adversaries could exploit them to compromise anonymity network users (even though they aim to offer a greater level of privacy compared to TLS). Following up on these, we delve into physical layer leakages that concern a wide array of (networked) systems such as servers, embedded nodes, Tor relays, and hardware cryptocurrency wallets. We revisit location-based side-channel attacks and develop an exploitation neural network. Our model demonstrates the capabilities of a modern adversary but also presents an inexpensive tool to be used by auditors for detecting such leakages early on during the development cycle. Subsequently, we investigate techniques that further minimize the impact of leakages found in production components. Our proposed system design distributes both the custody of secrets and the cryptographic operation execution across several components, thus making the exploitation of leaks difficult

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link
    corecore