712 research outputs found

    Correct-by-Construction Approach for Self-Evolvable Robots

    Full text link
    The paper presents a new formal way of modeling and designing reconfigurable robots, in which case the robots are allowed to reconfigure not only structurally but also functionally. We call such kind of robots "self-evolvable", which have the potential to be more flexible to be used in a wider range of tasks, in a wider range of environments, and with a wider range of users. To accommodate such a concept, i.e., allowing a self-evovable robot to be configured and reconfigured, we present a series of formal constructs, e.g., structural reconfigurable grammar and functional reconfigurable grammar. Furthermore, we present a correct-by-construction strategy, which, given the description of a workspace, the formula specifying a task, and a set of available modules, is capable of constructing during the design phase a robot that is guaranteed to perform the task satisfactorily. We use a planar multi-link manipulator as an example throughout the paper to demonstrate the proposed modeling and designing procedures.Comment: The paper has 17 pages and 4 figure

    Learning directed locomotion in modular robots with evolvable morphologies

    Get PDF
    The vision behind this paper looks ahead to evolutionary robot systems where morphologies and controllers are evolved together and ‘newborn’ robots undergo a learning process to optimize their inherited brain for the inherited body. The specific problem we address is learning controllers for the task of directed locomotion in evolvable modular robots. To this end, we present a test suite of robots with different shapes and sizes and compare two learning algorithms, Bayesian optimization and HyperNEAT. The experiments in simulation show that both methods obtain good controllers, but Bayesian optimization is more effective and sample efficient. We validate the best learned controllers by constructing three robots from the test suite in the real world and observe their fitness and actual trajectories. The obtained results indicate a reality gap, but overall the trajectories are adequate and follow the target directions successfully

    "Going back to our roots": second generation biocomputing

    Full text link
    Researchers in the field of biocomputing have, for many years, successfully "harvested and exploited" the natural world for inspiration in developing systems that are robust, adaptable and capable of generating novel and even "creative" solutions to human-defined problems. However, in this position paper we argue that the time has now come for a reassessment of how we exploit biology to generate new computational systems. Previous solutions (the "first generation" of biocomputing techniques), whilst reasonably effective, are crude analogues of actual biological systems. We believe that a new, inherently inter-disciplinary approach is needed for the development of the emerging "second generation" of bio-inspired methods. This new modus operandi will require much closer interaction between the engineering and life sciences communities, as well as a bidirectional flow of concepts, applications and expertise. We support our argument by examining, in this new light, three existing areas of biocomputing (genetic programming, artificial immune systems and evolvable hardware), as well as an emerging area (natural genetic engineering) which may provide useful pointers as to the way forward.Comment: Submitted to the International Journal of Unconventional Computin

    Morphological Attractors in Darwinian and Lamarckian Evolutionary Robot Systems

    Get PDF
    • …
    corecore