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Abstract. We generalize the well-studied problem of gait learning in
modular robots in two dimensions. Firstly, we address locomotion in a
given target direction that goes beyond learning a typical undirected
gait. Secondly, rather than studying one fixed robot morphology we con-
sider a test suite of different modular robots. This study is based on
our interest in evolutionary robot systems where both morphologies and
controllers evolve. In such a system, newborn robots have to learn to
control their own body that is a random combination of the bodies of
the parents. We apply and compare two learning algorithms, Bayesian
optimization and HyperNEAT. The results of the experiments in simu-
lation show that both methods successfully learn good controllers, but
Bayesian optimization is more effective and efficient. We validate the
best learned controllers by constructing three robots from the test suite
in the real world and observe their fitness and actual trajectories. The
obtained results indicate a reality gap that depends on the controllers
and the shape of the robots, but overall the trajectories are adequate
and follow the target directions successfully.

Keywords: Evolutionary Robotics, Evolvable Morphologies, Modular Robots,
Bayesian optimization, HyperNEAT, Directed Locomotion.

1 Introduction

Developing robots for known and structured environments is a challenging task,
however, it is considerably harder for (partially) unknown and complex environ-
ments, like deep seas, rain forests or other planets. The challenge here is twofold:
the unpredictability and the complexity of the environment. Designing appropri-
ate robot morphologies and corresponding controllers for such environments is
a daunting task where classic engineering approaches seem to fall short. There-
fore, it would be highly useful to use an evolutionary approach for such problems,
where robots evolve their morphologies and controllers over generations to better
adapt to the environment.



The field that is concerned with such evolving robots is Evolutionary Robotics
[10,19,38]. To date, this research community has mainly been focusing on evolv-
ing only the controllers in fixed robot bodies. The evolution of morphologies has
received much less attention, even though it has been observed that adequate
robot behaviour depends on both the body and the brain (controller) [5,7,39].
To unlock the full potential of the evolutionary approach, especially for unknown
and/or changing environments, one should apply it to both bodies and brains
and even to the materials used in the robot components [25].

A generic architecture of robot systems, where both morphologies and con-
trollers evolve in real time and real space has been introduced in [20,21], and a
proof-of-concept has been conducted recently [29]. The underlying model, called
the Triangle of Life (ToL), describes a life cycle that runs from conception (being
conceived) to conception (conceiving offspring) through three principal stages:
Birth, Infancy, and Mature Life as illustrated in Figure 1.

Fig. 1: Generic system architecture
represented by the Triangle of Life.
The pivotal moments that span the
triangle and separate the three stages
are: 1) Conception: A new genotype is
activated, construction of a new robot
starts. 2) Delivery: Construction of
the new robot (the phenotype) is com-
pleted. 3) Fertility: The robot becomes
an adult, ready to conceive offspring.
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One of the challenges inherent to evolving robot bodies – be it simulated
or real – is rooted in the fact that ‘robot children’ are random combinations of
the bodies and brains of their parents. In general, it cannot be assumed that
simply recombining the parents’ controllers results in a controller that fits the
recombined body. Hence, a ‘robot child’ must undergo a learning process to learn
to control its body, not unlike a little calf that spends the first hour of its life
learning to walk. It is vital that the learning method is general enough to work
for a large variety of morphologies, and fast enough to work within practical
time intervals.

In this paper, we address a special case of this generic problem, that of
acquiring directed locomotion skills. Formerly, we have investigated the most
elementary case, gait learning [29,30,31,46]. However, although gait learning is
a popular problem within evolutionary robotics, in practice we are typically not
only interested in a robot that just walks without purpose. For most cases, a
robot has to move in a target direction, e.g., to move towards a destination
or to systematically explore its environment. Therefore, we focus on the task
of directed locomotion, where the robot must follow a given direction, e.g. “go



North” or “go forward”. To validate our results, we test the best controllers on
real robots as well. The corresponding general problem statement is as follows:

How to learn controllers efficiently for directed locomotion in a variety
of modular robots with different morphologies?

The paper addresses this problem by three specific research goals:

1. Describe possible candidates, i.e., algorithms to learn controllers for directed
locomotion in modular robots.

2. Evaluate these algorithms on a test suite of modular robots with different
shapes and sizes by comparing their efficacy and efficiency in simulation.

3. Demonstrate the learned directed locomotion behavior on real robots and
reflect on the reality gap in this application.

2 Related work

Evolutionary robotics aims to design adaptive robots automatically that can
evolve to accomplish a specific task while adapting to environmental changes [2].
A number of studies have demonstrated the feasibility of evolutionary methods
for generating robotic control and/or morphology [29].

The design of locomotion for modular robots with evolvable morphologies
is a difficult task. Several approaches based on various types of controllers and
algorithms for locomotion of robots have been proposed in [3,42]. An early ap-
proach is based on gait control tables that, in essence, are a simple cyclic finite
state machine [9]. A second major approach is based on neural networks, for
instance, HyperNEAT [43]. In previous work [23,46], we have implemented evo-
lutionary controllers for locomotion in modular robots using HyperNEAT. Other
studies [16,49] have also shown that HyperNEAT can evolve good controllers for
efficient gaits of robots. Moreover, Bayesian optimization have been proven to
perform the state-of-the-art data-efficient learning of controllers for robots [17].
[13,12] present efficient gait learning on a physical bipedal robot within limited
trials by Bayesian optimization. In recent studies [35,48], Bayesian optimization
achieves data-efficient learning of locomotion on a 6-legged microrobot. Other
successful approaches that have been extensively investigated for robot loco-
motion are based on Central Pattern Generators (CPG) [27]. CPGs are neural
networks that can produce rhythmic patterned outputs without rhythmic sen-
sory or central input [24]. The CPG-based controller allows one to reduce the
dimensionality of the locomotion control problem while remaining highly flexi-
ble to continuously adjust velocity, direction, and type of gait according to the
environmental context [28]. This technique has been shown to produce well-
performing and stable gaits for modular robots [32,33,36]. Lastly, an alternative
approach based on machine learning for adaptive locomotion was proposed by
Cully et al. [18].

Although there are extensive studies on the locomotion of robots, most of
them focus on the controllers in fixed robot bodies for gait learning, and only



some of them consider multiple shapes of robots [32,42]. Voxel soft and modular
robots are studied with evolvable morphologies in simulation for gait learning
in [15,45] respectively. Dylan et al. [6] present the jointly evolution of both
controllers and bodies, while it studies on the locomotion task in simulation
with simple ant robots. Ahmadzadeh and Masehian [1] reviewed many fixed
special modular robots for the tasks of gait learning, self-reconfiguration, self-
assembly, self-disassembly, self-adaptation, and grasping in simulation or/and
real-world. However, none of them achieve directed locomotion in modular robots
with evolvable morpholoiges. In this paper, we aim to evolve modular robots that
can move towards target directions.

Most existing studies in directed locomotion for the robots are about the
control of vertebrates with fixed shapes, such as a biped [22]. There were many
neural-based control systems for directed vertebrates locomotion proposed. For
instance, a CPG approach based on phase oscillators towards directed biped
locomotion is outlined in [37]. In [14], a reinforcement learning is used to learn
directed locomotion for a special snake-like robot with screw-drive units. How-
ever, there are only few studies that investigate directed locomotion of modular
robots, and they focus on fixed morphologies or special structures.

Even though evolutionary robotics is not new, rarely it has been used to
generate a physical demonstration of evolved robots, due to the wear and tear
of hardware, the infamous reality gap, etc. In [40], it is estimated that more
than 95% of the literature is focused on the evolution of robot controllers in
simulation, and less than 1% of reported works physically tested the generated
morphologies and controllers in the remaining 5%. Among them, Sproewitz et al.
[42] implemented three modular robots with fixed morphology for gait learning
with CPG controller in a simulated environment and real-world. In other studies,
a gait learning task in the real world are performed on a quadruped robot [28],
salamander robot[44], and modular robot [49]. Although [9] studied the directed
locomotion in simulation and real-world, they only focused on the task in a
quadruped robot without multiple and evolvable morphologies. [37] studied on

Articles Robots Morphology Environments Tasks Year

[32,33] Modular robots Multiple fixed SIM & RW GL [2005,2004]
[9] Quadruped robot One fixed SIM & RW DL [2006]
[28] Salamander robot One fixed RW DL [2007]
[42] Modular robots Three fixed SIM & RW GL [2008]
[16] Quadruped robot One fixed SIM GL [2009]
[23] Modular robots One fixed SIM GL [2010]
[49] Quadruped robot One fixed RW GL [2011]
[37] Biped robot One fixed SIM & RW DL [2014]
[44] Modular robot One fixed RW GL [2014]
[8] Modular robots Evolvable SIM GL, others [2014]
[29,30,45,46] Modular robots Evolvable SIM GL [2017,16,17,17]
[1] Modular robots Multiple fixed SIM & RW GL, others [2017]
[15] Voxel soft robots Evolvable SIM GL [2018]
[6] Modular ant robots Evolvable SIM GL [2019]
Our work Modular robots Evolvable SIM & RW DL -

Table 1: Overview of related work and the position of our work. SIM: simulation;
RW: real-world; GL: gait learning; DL: directed locomotion.



a fixed biped robot in simulation and real world for directed locomotion. Even
though [32,33] investigated the modular robots with multiple morphologies in
both simulation and real-world, they mainly focused on gait learning. In this
paper, we are concerned with learning controllers for directed locomotion on
modular robots with evolvable morphologies in simulation and demonstrate the
best controllers in real-world. We show an overview of the related work and the
position of our work in Table 1.

3 Robot system

3.1 Robot morphologies

We design the modular robots using a subset of the components: brick compo-
nents, a core component, and active hinges [29], which is based on Robogen [4].
The brick components are cubic with four slots on their sides available for other
modules to attach to. The core component is a larger brick that holds the con-
troller board and a battery. It also has four slots on its lateral faces to attach
other components. The active hinge component is a joint actuated by a servo
motor. It can attach other components on two opposite sides by inserting its
lateral faces into the slots of other components. Each robot’s genotype describes
its layout and consists of a tree structure with the root node representing a core
module from which further components branch out. Component types contain
specific features described by its genotypical encoding dependant on a compo-
nent’s type. These models are used in the simulation, but could also be used for
3D printing and construction of the real robots.

As a test suite we chose nine modular robots in three different shapes and
sizes that represent “parent” and “baby” robots. We refer to the three shapes as
spider, gecko, and baby (see Figure 2). The “baby” robots were created through
recombination or mutation of the “spider” and “gecko” [30]. Each type of shape
includes three sizes: small (7, 8 or 9 bricks for, spider, gecko, and baby, respec-
tively), medium (11, 12 or 13 bricks), and large (15 or 17 bricks), resulting in
the nine robots shown in Figure 2.

3.2 Robot controllers

CPG-based Controllers have been proven to perform well in modular robotics
[27]. A CPG controller is a neural circuit, in which the activation functions of
neurons is flexible. While different types of CPGs exist as a robot controller,
the CPG with a system of Ordinary Differential Equations (ODEs) as activation
function is often used, i.e., differential CPG [47]. As a result, the output values
of the nodes are subject to oscillatory behaviour.

In this work, we implement the CPGs whose main components are differ-
ential oscillators. Each robot joint has a differential oscillator that is defined
by two neurons, a xi-neuron, a yi-neuron, and outi-neuron that are recursively
connected as shown in Figure 3. The index i represents the number of a differen-



spider9 spider13 spider17

gecko7 gecko12 gecko17

babyA babyB babyC

Fig. 2: Images of the simulated modular robots. The top and middle rows exhibit
the basic shapes named spider, gecko in three sizes separately. The bottom row
shows the three ‘baby’ morphologies created through recombining or/and mu-
tating basic shapes. Please note that the top leg of gecko17 and that of babyC
are different; specifically, babyC has one more active hinge in the top leg, where
gecko17 has a brick and an active hinge.

xiyi outi

wxiyi
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Fig. 3: A differential oscillator i with output node in a joint of modular robots
as used in the CPG controller.

tial oscillator, and wxiyi , wyixi
, and wxioi denote the weights of the connections

between the neurons. The xi-neuron and yi-neuron feed their activation values
multiplied by weights wxiyi and wyixi to the yi-neuron and xi-neuron respec-
tively. At a time step t, the changes of activation value of xi-neuron (dx(i,t))
and yi-neuron (dy(i,t)) can be calculated according to the following differential
equation:

dx(i,t)

dt
= wyixi

y(i,t−1)

dy(i,t)

dt
= wxiyix(i,t−1)

(1)



where t− 1 represents the last time step. xi-neuron and yi-neuron generate the
activation values x(i,t) and y(i,t) of oscillatory patterns over time according to
the following expression:

x(i,t) = x(i,t−1) +
dx(i,t)

dt

y(i,t) = y(i,t−1) +
dy(i,t)

dt

(2)

The xi-neuron feeds its activation value multiplied by the weight wxioi to the
outi-neuron, the outi-neuron applies the activation function and generates the
driving signal to the servo in a joint of the robot. As the differential oscillator
in a robot controller, the activation values of the neurons have to meet two
conditions. First, the activation value of outi-neuron should be bounded due to
the limited rotating angle of the joints. Therefore, we use a variant of the sigmoid
function, the hyperbolic tangent function (tanh), as the activation function of
outi-neurons to bound the output value in [−1, 1]. At a time step t, the tanh
activation value of outi-neuron can be calculated as follows:

out(i,t)(x(i,t)) =
2

1 + e−2x(i,t)
− 1 (3)

Second, the activation value of outi-neuron should be periodic. The weights
with the same values but different signs, i.e., wxiyi = −wyixi

, achieve periodic
activation values of neurons. We use the predefined initial values (x(i,0), y(i,0)) =
(− 1

2

√
2, 12
√
2), and (wxiyi , wyixi

) = (0.5,−0.5), but they can be randomly initial-
ized except 0. In such a way, the differential oscillator can generate the oscillatory
activation values.

An independent differential oscillator generates only sinusoidal waves. How-
ever, for the modular robot controllers, we implement the CPG controllers with
the connections of the neighbouring differential oscillators. For instance, for the
specific morphology of the modular robot spider9, its CPG network has con-
nections between the neighboring differential oscillators, as shown in Figure 4.
As a result, the output values are a composition of multiple sinusoidal signals.

Fig. 4: Schematic view of CPG net-
work generated for the robot spider9.
The squares represent the components
of fixed bricks. The circles with num-
bers represent the differential oscillators
in the joints (active hinges).
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Combining the differential oscillator (rf. Figure 3) into each joint (the circle with
number), the CPG network of the robot spider9 can be specified as shown in
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Fig. 5: The specific network of CPG controller generated for a specific morphol-
ogy of the modular robot spider9.

Figure 5. With the connections to the neighbouring differential oscillators, the
activation values of each differential oscillator can be calculated as follows:

x(i,t) = x(i,t−1) +
dx(i,t)

dt
+
∑
j∈Ni

x(j,t−1)wji

y(i,t) = y(i,t−1) +
dy(i,t)

dt

(4)

where i is the number of the differential oscillator, Ni is the set of indices of the
neighbouring differential oscillators. For instance, the differential oscillators 1
and 2 have N1 = {2} and N2 = {1, 3, 6, 8}, respectively, for the CPG network of
the robot spider9. Subsequently, the output value of each differential oscillator
can be calculated by Equation 3. To reduce the number of weights to be learned,
we set wxioi = 1.0 in this work, i.e., the input of the outi-neuron equals the
activation value x(i,t) of the xi-neuron. Furthermore, we apply wji = −wij to
the CPG controllers.

To be able to optimize CPG controllers with Bayesian optimization and Hy-
perNEAT, we need a unique one-to-one topology mapping for each weight. In
our system, each node of a CPG controller has an unique three-dimensional co-
ordinate that is determined in two steps. First, a differential oscillator of the
CPG is encoded to a two dimensional coordinate that corresponds to the rela-
tive position of the given active hinge. Second, the third coordinate is defined
depending on the nodes: output nodes (outi-neurons) are given a value of 0,
while differential nodes are given the value of 1 for xi the node (xi-neuron) and
−1 for the yi node (yi-neuron).

Moreover, we need to specify source nodes and target nodes for distinguish-
ing the weights in CPG controllers. Therefore, we combine the three dimensional



coordinates of two nodes as a unique six dimensional information of a connec-
tion weight from a source node to a target node. For instance, if (a, b) is the two
dimensional coordinate of a differential oscillator, then the weight wyixi from
the yi-neuron to the xi-neuron has the six dimensional vector (a, b,−1, a, b, 1).
Similarly, (a, b, 1, a, b,−1) corresponds to the weight wxiyi . The number of the
parameters that need to be optimized for the nine modular robots are shown in
Table 2. Recall that we apply wij = −wji, and wxioi = 1.0 to the CPG controllers

Robots Spdier9 Spider13 Spider17 Gecko7 Gecko12 Gecko17 BabyA babyB babyC

Weights 18 26 34 13 23 33 16 22 32

Table 2: Number of parameters in the controllers of the robots in our test suite.

for reduction of the number of parameters to be learned and wxiyi = −wyixi
for

the periodicity of the activation value of neurons. Optimizing the weights of the
CPG controllers can achieve expected behaviours of modular robots with differ-
ent morphologies. Therefore, the outstanding optimization algorithms (learners)
are crucial to search the optimal CPG controllers by optimizing the weights.

3.3 Learning algorithms

We apply two algorithms, Bayesian optimization and HyperNEAT, to learn the
weights of CPG controllers for the test suite of nine modular robots with dif-
ferent shapes and sizes. For each robot we test the learning algorithms on five
target directions (40◦, 20◦, 0◦, −20◦, and −40◦ relative to the robot) to simulate
the robot’s limited field of view in the real-world. The CPG controller of each
modular robot with certain topology is automatically generated according to its
genotypical encoding. The learning run is repeated ten times for each robot and
each target direction. The overall architecture of the learning system is shown
in Figure 6, including three stages:

1. Generating topologies of CPG controllers automatically according to the
genotypical encoding of different modular robots. That is shown as the blue
blocks on the left of the figure. For any certain robot, the topology of CPG
controller is fixed as it is fully determined by the given morphology.

2. Learning weights of CPG controllers by learning algorithms. The algorithms
learn the weights of CPG controllers that their topologies are generated in
the first stage. We apply Bayesian optimization and HyperNEAT to be the
learners, as shown in the two red blocks. The algorithms take the information
of CPG topologies and output the learned value of the corresponding weights.

3. Evaluating the behaviours of modular robots with the learned controllers
by the fitness function. The CPG controllers with the same topology but
different value of the weights drive the modular robot to perform different
behaviors, that in turn obtains different fitnesses.
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Fig. 6: The overall architecture of the learning system. The learning methods are
implemented by Bayesian optimization and HyperNEAT. The learners optimize
the weights of the CPG controllers whose topologies are generated automatically
according to the (evolved) morphologies of modular robots.

In the grand scheme of the Triangle of Life, in the context of infancy, the
learning loop is the combination of the second and the third stage. A CPG topol-
ogy of a modular robot is generated in the first stage, subsequently the learning
loop consisting of the second and third stage are executed for learning the op-
timal weights of the CPG controller until a termination condition is triggered,
i.e., 1500 evaluations. That is, for the first stage, there are 1500 combinations of
the second and third stage executed and 10 repetitions. The fitness reflects the
quality of the learned weights that the learners aim to maximize.

Bayesian Optimization Bayesian optimization is a state-of-the-art machine
learning framework for optimizing stochastic functions, and has been success-
fully applied in engineering, machine learning, and design [41]. It aims to find an
optimal solution in a small number of function evaluations that is especially ad-
vantageous in situations where evaluations are costly [11]. This can be achieved
by constructing the surrogate model using a Gaussian process (GP) approxi-
mation of the objective function of a task, and selecting a new controller with
the weights

−→
Wk(w1, w2, ..., wj) to evaluate on the basis of an acquisition function

that balances exploration and exploitation. The surrogate model is updated with
the evaluation of a new controller. Then, the learning system selects the next
new controller and repeats the learning process until it reaches the termination
criterion. The performance of a CPG controller is evaluated in a given evalua-
tion time by the fitness function defined below. We empirically set the evaluation
time to be 60 seconds to balance computing time and accurately evaluating a
complex task as directed locomotion. The pseudocode of Bayesian optimization
for optimizing the weights of CPG controllers is shown in Algorithm 1.

In this paper, we use the upper confidence bound (UCB) as the acquisition
function and Matérn 5/2 kernel as the kernel function. Particularly, we use Latin
Hypercube Sampling (LHS) to generate 50 initial samples of the weights instead
of random sampling that Bayesian optimization typically uses. In our prelimi-
nary experiments, Bayesian optimization with LHS performs better than with
random sampling for all nine modular robots. The main parameters of Bayesian



Algorithm 1 Bayesian optimization for learning the weights of CPG controllers.

1: generate n initial controllers
−→
W1,
−→
W2, ...,

−→
Wi, ...,

−→
Wn; n = 50 in this work,

−→
Wi is a j

dimensional vector
−→
Wi(w1, w2, ..., wj) that is the weights extracted automatically

according to the morphologies of different modular robots.
2: evaluate the initial controllers by the fitness function in Equation 9 to obtain fitness
f1, f2, ..., fi, ..., fn.

3: get the initial GP: µ(
−→
W1:n), σ2(

−→
W1:n).

4: for k = n+ 1, n+ 2, ... do . k is the index of evaluations
5: select a new controller

−→
Wk by optimizing acquisition function u(

−→
Wk):

−→
Wk = argmax−→

Wk

u(
−→
Wk|
−→
W1:k−1)

6: evaluate the new controller
−→
Wk to obtain the fitness fk.

7: augment data (
−→
W1:k, f1:k) = {

−→
W1:k−1, (

−→
Wk, fk)}.

8: update GP: µk(
−→
W1:k), σ2

k(
−→
W1:k).

9: end for
10: return data (

−→
W1:k, f1:k).

optimization and the tuned values that we used for our experiments, are shown
in Table 3.

Parameters Value Description

Initial samples 50 The number of initial samples.
learning iterations 1450 The number of evaluations, excluding initial samples.
Kernel variance 1.0 The kernel variance in Matérn 5/2 kernel.
Kernel length 0.2 The characteristic length-scale in Matérn 5/2 kernel.
UCB alpha 3.0 The weight in the acquisition function.
Initial sampling LHS The method used to generate initial sampling.

Table 3: Main experimental parameters of Bayesian optimization.

HyperNEAT It has been repeatedly demonstrated that HyperNEAT performs
well to learn controllers in modular robots for a given task [23,34,31,49]. Hyper-
NEAT generates Compositional Pattern-Producing Networks (CPPNs) that are
a variation of artificial neural networks (ANNs) but evolving. The unique six
dimensional information (Section 3.2) of a weight in CPG controllers is the in-
put of the evolved CPPN. The CPPN outputs the values of the weights that in
turn constitute the CPG controller that induces the behaviour for directed loco-
motion. The behaviour is evaluated by a fitness function (Section 3.4) and the
fitness value is returned to HyperNEAT which in turn generates new CPPNs,



closing the loop (Fig. 6). CPPNs evolve until a termination condition is trig-
gered; in our experiments this is reaching a maximum number of generations.
The pseudocode of HyperNEAT for generating CPPNs to optimize the weights
of CPG controllers is shown in Algorithm 2.

Algorithm 2 HyperNEAT learns the CPG controllers.
1: generate n initial CPPNs, noted N1,N2, ...,Ni, ...,Nn, population size n = 20.
2: evaluate the CPG controllers

−→
W1,
−→
W2, ...,

−→
Wi, ...,

−→
Wn generated by the initial

CPPNs to obtain the fitness f1, f2, ..., fi, ..., fn.
3: for k = 2, 3, ... do . k is the index of generation
4: generate new candidate CPPNs, N ′((k−1)∗n+1):(k∗n) by mutation and crossover.

5: evaluate the CPG controllers
−→
W ′((k−1)∗n+1):(k∗n) generated by the CPPNs

N ′((k−1)∗n+1):(k∗n) to obtain the fitness f ′((k−1)∗n+1):(k∗n).
6: select the CPPNs from N ′((k−1)∗n+1):(k∗n) by the fitness to be the CPPNs
N((k−1)∗n+1):(k∗n) in next generation, and update the corresponding CPG con-
trollers W((k−1)∗n+1):(k∗n) and their fitness f((k−1)∗n+1):(k∗n).

7: update
−→
W1:(k∗n) and their fitness f1:(k∗n).

8: end for
9: return data (

−→
W1:(k∗n), f1:(k∗n)).

An initial population of 20 CPPNs are randomly generated in the first genera-
tion. Each CPPN generates weights of a CPG controller whose topology is based
on a robot’s morphology. The performance of the CPG controller is evaluated in
60 seconds as the same duration with Bayesian optimization. Each learning run
is terminated after 75 generations with 20 populations, that is, 1500 fitness eval-
uations. The experimental parameters we used in the experiments are described
in Table 4.

Parameters Value Description

Mutation 0.8 Probability of mutation for individuals
Generations 75 Termination condition for each run
Population size 20 Number of individuals per generation
Tournament size 4 Number of individuals used in tournament selection

Table 4: Main experimental parameters of HyperNEAT

3.4 Fitness Function for Directed Locomotion

Learning CPG controllers for directed locomotion in modular robots with evolv-
able morphologies is a black-box optimization problem, we therefore need to



formulate a fitness function to the objective. In our system, fitness function is
not only used to evaluate the performance of controllers but also serves as the
guiding metric of learning controllers. We define a fitness function for directed
locomotion that combines two objectives: minimizing deviation with respect to
the target direction and maximizing speed with minimum length of the trajec-
tory. In this section, we provide a step-by-step derivation, culminating in the
final fitness function stated in Equation 9.

Fig. 7: Illustration of the fitness calculation.
p0(x0, y0) is the starting position of the robot,
p1(x1, y1) is the end position. The red line l0
shows the target direction, the blue line l1 is the
direction actually travelled between p0 and p1.
The angle δ is the deviation between l0 and l1.
The point p(xp, yp) is the projection of p1 on the
line l0. The red lines Tra.1 and Tra.2 show two
different trajectories between p0 and p1.

β1β0

𝛿

T0

T1

x

y

p(xp, yp)

l1l0 

p0(x0, y0)

p1(x1, y1)Tra.2

Tra.1

The scenario for an evaluation in our experiments is illustrated in Fig. 7. We
can collect the following measurements from the Revolve framework:

1. p0(x0, y0) is the coordinate of the core component of the robot at the start
of the simulation, i.e., time T0.

2. p1(x1, y1) is the coordinate of the core component of the robot at the end of
the simulation,i.e., time T1.

3. The orientation of the robot in time T0.

The target direction, β0, is an angle with respect to the initial orientation of
the robot at time T0. In Fig. 7 we drew lines in the target direction, l0, and the
line l1 through p0 and p1. The angle between l1 and x−axis, β1 = atan2((y1 −
y0), (x1 − x0)), is the actual direction of the robot displacement between time
T0 and T1.

The absolute intersection angle between l0 and l1, δ, is the deviation between
the actual direction of the robot locomotion and the target direction. It can be
calculated as:

δ(β0,β1) =

{
2π − |β1 − β0| (|β1 − β0| > π)

|β1 − β0| (|β1 − β0| ≤ π)
(5)

Note that we pick the smallest angle between the two lines. To perform well for
a directed locomotion task, δ(β0,β1) should be as small as possible. However, just
minimizing δ(β0,β1) is not enough to achieve successful directed locomotion.

In addition to moving in the right direction, i.e., minimizing δ(β0,β1), the robot
should move as far as possible in the target direction. Therefore, we calculate
distance travelled by the robot in the target direction by projecting the final



position at time T1, (x1, y1), onto the target direction l0, i.e., the point p(xp, yp);
we denote this point as p = (xp, yp). The distance travelled is then

D(p,p0) = sign |p− p0|, (6)

where |p − p0| is the Euclidean distance between p and p0, and sign = 1 if
δ(β0,β1) <

π
2 (noting that δ(β0,β1) is an absolute value) and sign = −1 otherwise.

The D(p,p0) is thus negative when the robot moves in the opposite direction. To
further penalize deviating from the target direction we calculate the distance
between (x1, y1) and (xp, yp) :

P(p,p1) = ω |p1 − p|, (7)

where |p1 − p| is the Euclidean distance between p1 and its projection p on the
target direction line l0. ω is a constant scalar penalty factor, further determining
the relative importance of the deviation. In our experiments we use ω = 0.01. A
naive version of the fitness function would be:

F(D,P,δ) =
D(p,p0)

δ(β0,β1) + 1
− P(p,p1), (8)

where (δ(β0,β1)+1) aims to guarantee that the denominator does not equal zero.
Particularly, F(D,P,δ) = D(p,p0) when the final position p of a locomotion is
exactly in the target direction line l0, i.e., δ(β0,β1) = 0 and P(p,p1) = 0.

While F(D,P,δ) is proportional to D(p,p0), and inversely proportional to devi-
ation δ(β0,β1) and penalty P(p,p1), this does not yet entirely express all desirable
features of a good directed locomotion. Specifically, we not only care about the
final position of the robot, but also about how is the trajectory of the locomotion
from starting position to end position.

To illustrate this we consider the trajectories marked Tra.1 and Tra.2 in
Figure 7. Although the robot has the same starting and end position for both
trajectories, Tra.1 is a more efficient way of moving between the two points.
Therefore, we would expect the controller of Tra.1 to have a higher fitness than
that of Tra.2. In general, we aim to evolve controllers that modular robots move
from start to finish as efficiently as possible, i.e., in a straight line. Putting this
all together we obtain the following fitness function to measure the performance
of controllers for directed locomotion:

F(D,P,δ,L) =

∣∣D(p,p0)

∣∣
L+ ε

(
D(p,p0)

δ(β0,β1) + 1
− P(p,p1)), (9)

where ε is an infinitesimal constant, the length of the trajectory L is calculated
by summing the distances between two neighbouring positions in the trajec-
tory that consist of ten positions during an evaluation. This fitness function is
proportional to D(p,p0), but inversely proportional to L and δ(β0,β1). That is,
the fitness function rewards higher speed in the target direction (as measured
through D(p,p0)) and penalizes the length of trajectory L and the deviation from
the target direction δ(β0,β1).



4 Experiments

Experimental work is carried out in simulation as well as on real hardware. The
underlying logic is to execute the learning algorithms in simulation and to test
the best learned controllers on physical robots afterwards.

4.1 Experimental Setup

Simulation This work uses our own custom framework, Revolve1 [26], based
on Gazebo2, that implements the components for running the Triangle of Life
experiments [26]. It enables us to test the parts of the system as well as to set an
entire environment for the complete evolutionary process. All experiments were
performed using an infinite plane environment to avoid any extra complexity.

To learn the controllers for directed locomotion, we run Bayesian optimiza-
tion and HyperNEAT with 1500 fitness evaluations using a 60 seconds test period
per evaluation for each robot and each target direction. We repeat each learn-
ing run 10 times with different random seeds to compensate for the stochastic
nature of the learning methods and aggregate the results over these 10 runs. All
together this means 2 learners × 9 robots × 5 target directions × 10 repetitions
that took about eight weeks time on a Linux computer with a 32 cores, 3.8GHz
CPU and 64GB RAM.

Real-world We construct three representative robots with different shapes from
the test suite, Spider9, Gecko7, and BabyA, as shown in Figure 8. The compo-

spider9 gecko7 babyA

Fig. 8: The prototypes of the three physical modular robots, Spider9, Gecko7,
BabyA. The 3D printed components include bricks, core, active hinges. The
electronic hardware inside of the core components includes Raspberry Pi with
hat board design on top and battery mounted below. The combinations of the
colorful papers on the top of robot heads are identification tags.

1 https://github.com/ci-group/revolve
2 http://gazebosim.org/

https://github.com/ci-group/revolve
http://gazebosim.org/


nents bricks, core, active hinges are printed in a 3D printer, and then assembled
by hand with the electrical components including servos, Raspberry Pi micro-
computer (with hat board), cables, and a battery. The combination of the col-
orful papers on the top of the robots’ heads are the identification tags used to
recognize the position of the robots by the overhead camera localization system.

In the real world experiments we do not replicate the learning processes. In-
stead, we validate the outcomes of learning: we run the best learned controllers
on the robots and compare the real world performance with the simulated one.
For this purpose, we test the best three controllers for each robot and each tar-
get direction and have the controller run for a period of 60 seconds in an arena
of 4m×3m. The performance of the best learned controllers on real robots are
evaluated with an overhead camera system above the arena that can recognize
the positions of the robots on the performed locomotion trajectories. These po-
sitions are recorded over a 60 seconds test period and fed into the same fitness
function as used in simulation. To cope with random effects we repeat each ex-
periment three times. This implies 3 robots × 3 controllers × 5 directions × 3
repetitions: 135 real world experiments in total. All experiments in the real world
took about two weeks time to perform because of the practicalities (assembly,
servo breakdowns, system calibration, software errors).

4.2 Results with Simulated Robots

In this section, we present the experimental results from different perspectives.
We show the development of the fitness over time during the learning process,
but note that the numerical values come from Equation 9 and have no inter-
pretable meaning. Therefore we also display the curves that show the deviation
and locomotion speed and we plot the trajectories of robots using the best con-
trollers.

The plots that show how fitness values change over time during the learning
process are shown in Figure 9. Each sub-figure shows the average best fitness for
a robot in five target directions, averaged over ten repetitions. The solid lines and
dashed lines show the results for Bayesian optimization and HyperNEAT, respec-
tively. These curves show a clear difference between the two learners. Bayesian
optimization obtains higher fitness by the end of the learning period and learns
much faster than HyperNEAT in the first hundreds of evaluations. It flattens
out after about 500 evaluations and keeps growing at a slow pace. HyperNEAT
performs a different learning processes at a more or less constant rate. Under
the conditions of our experiments (1500 evaluations) it is inferior to Bayesian
optimization considering the achieved fitness values at the end of the learning pe-
riod. Specifically, we are concerned with morphologically evolving robot systems,
where a newborn robot must acquire some basic behaviours after birth quickly.
This implies that we are interested in the first part of the learning curves and
not in the potential results after long times.

As noted above, the fitness values calculated by Equation 9 have no inter-
pretable meaning. Therefore we also display the curves that show locomotion
speed in Figure 10. These figures exhibit the same overall trends as Figure 9,
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Fig. 9: The best fitness for Bayesian optimization (solid lines) and HyperNEAT
(dashed lines) averaged over 10 runs. Colours represent target directions, red,
green, black, blue and purple correspond to 40◦, 20◦, 0◦,−20◦, and −40◦, respec-
tively. To keep figures uncluttered, we do not show the standard deviations.

but now with specific information about speeds. Bayesian optimization is faster
in the beginning and for most robots it achieves higher speeds by the end as well.
Regarding speed, our robots perfrom locomotion at 1 to 2 meters per minute,
depending on the shape and the size. The fastest robot is gecko12 with speeds
close to 2 meters/minute, while its smaller / larger versions (gecko7 / gecko17)
only achieve about 1.3 meters/minute.

Next we show the deviation δ(β0,β1) of the locomotion with the best controllers
in Figure 11. Considering that we are concerned with the task of directed loco-
motion, this is a a highly meaningful measure. We observe that for all robots
and all directions, δ(β0,β1) gradually decreases to low values close to zero. This
indicates correctly directed locomotion towards the target directions. Just as
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Fig. 10: Locomotion speed of the best controller for Bayesian optimization
(solid lines) and HyperNEAT (dashed lines) averaged over 10 runs. Colours
represent target directions, red, green, black, blue and purple correspond to
40◦, 20◦, 0◦,−20◦, and −40◦, respectively. To keep figures uncluttered, we do
not show the standard deviations.

before, we notice that Bayesian optimization performs better than HyperNEAT,
although the differences are less prominent. The most apparent difference be-
tween the two learners is the consistency. Bayesian optimization quickly reaches
and keeps low deviation values, while HyperNEAT experiences periods of dete-
riorating performance, where the deviations (temporarily) grow.

Last but not least we inspect the trajectories of the robots with the best
controllers. For each robot, each target direction, and both learners we select
the top three controllers (with the highest fitness) from the 15000 controllers
(1500 evaluations per run, 10 repetitions) that have been generated and tested
by the given learner. Then we average out these three trajectories such that we
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Fig. 11: Deviation from the target direction with the best controller for Bayesian
optimization (solid lines) and HyperNEAT (dashed lines) averaged over 10 runs.
Colours represent target directions, red, green, black, blue and purple correspond
to 40◦, 20◦, 0◦,−20◦, and −40◦, respectively. To keep figures uncluttered, we do
not show the standard deviations.

obtain just one trajectory per robot, target direction, and learner, as shown in
Figure 12.

These trajectories support the observations based on the previous figures,
the robots show adequate behaviour following the target directions. Overall, the
solid lines tend to be longer and more accurate than the dashed ones. This
confirms that Bayesian optimization is better than HyperNEAT. However, there
are differences between the robots’ behaviours. Maximizing the distance in the
target direction, D(p,p0), is rewarded in the fitness function, as well as minimizing
the deviation from the target directions and evolution can lead to different trade-
offs between these two desirable properties. The trajectories of spider9 are almost
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Fig. 12: Trajectories of the top three controllers averaged for each robot and
each direction. for Bayesian optimization (solid lines) and HyperNEAT (dashed
lines) averaged over 10 runs. Colours represent target directions, red, green,
black, blue and purple correspond to 40◦, 20◦, 0◦,−20◦, and −40◦, respectively.
The grey arrows show target directions.



exactly on the lines of the target directions. On the other hand, the solid red line
of spider13 deviates far from the target direction, but scores a high fitness value
because of the long distance it covers. The solid purple line of gecko12 shows a
similar effect.

In summary, the experiments in simulation show that successful controllers
can be learned for directed locomotion on modular robots within a few hundreds
of evaluations (learning trials) using Bayesian optimization as learning method.
Figure 9 and Figure 10 indicate that 300 evaluations (learning trials) can already
deliver decent performance. Spending a minute per learning trial this would cost
about four hours. Whether or not this is fast enough depends on the specific
circumstances, but in general, four hours to learn some desired behaviour on a
‘newborn’ robot does sound practicable.

4.3 Results with Real Robots

According to [40], less than 1% of evolutionary robotics studies tested the gener-
ated behaviours on real robots. However, due to the wear and tear of hardware
and the infamous reality gap, the results obtained in simulations can be far off
those observed on the actual hardware. Therefore, we perform additional exper-
iments on three physical robots to see how the simulated behaviours hold up
in the real world. For each real robot, the best three learned CPG controllers
are evaluated with an overhead camera localization system. The resulting three
fitness values for each real robot in each target direction are presented and com-
pared with the simulated results in Figure 13. Each green bar shows the fitness of
a top controller in simulation. Each orange bar shows the average fitness of three
repetitions that a robot with the same top controller performed in the real-world.
The three blue points in the column of an orange bar show the fitnesses of this
controller for three repetitions in the real-world environment. Since we tested
top three controllers for each target direction, Figure 13 therefore shows three
green and orange bars for each target direction. The combination of a green bar,
a orange bar and three blue points are the performance from the same controller
in a target direction. As we can notice, most of the fitness values of the best
controllers in simulation are higher than their fitness in the real-world scenario.
That is, in our experiments we encounter the infamous reality gap for the di-
rected locomotion of modular robots. Interestingly, three controllers obtained
higher average fitness in real-world than the simulation, namely, the third con-
troller of gecko7 in the target direction 0◦ and −20◦, and the third controller
of babyA in the target direction −20◦, as shown in Figure 13. There are many
factors that can lead to the locomotion of physical modular robots with higher
fitness, We discuss one of the most likely factors in section 5.

The trajectories of the physical robots demonstrate how the best controllers
perform in the real world. We take the average position of the locomotion over
top three controllers with three repetitions as the trajectories that the best
controllers performed on the physical modular robots in the target directions,
as shown in Figure 14. The average trajectories of the locomotion with top
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Fig. 13: The fitness comparison of the top three controllers in simulation and
real world for the three robots (spider9, gecko7, and babyA) and each target
direction. Each green bar shows the fitness of a top controller in simulation and
its average fitness of three repetitions on the real robot is shown by the its right
orange bar. The blue points in the column of an orange bar show the fitness
values of a top controller for three repetitions in the real world. Note that some
of the blue points coincide briefly because of their subequal fitness value.

three controllers for three repetitions that the best controllers performed on the
physical modular robots in the target directions, are shown in Figure 14.

The physical modular robots with the best controllers basically carry out
well-directed locomotions in the target directions. For instance, let us consider
the trajectories of spider9 that are almost on the lines of the target directions.
While the second half of the average trajectory of spider9 in 40◦ is slightly
deviated from the correct direction, the entire trajectory basically follows the
direction in 40◦. Comparing the average trajectories (solid lines) of top three
controllers in Figure 12, it is apparent that directed locomotion is harder to be
implemented in physical modular robots than in simulated robots. Particularly,
the average trajectories of gecko7 in the target directions −20◦ and −40◦, and
babyA in the target directions −20◦ and −40◦ show the long locomotion distance
and good directions (low δ(β0,β1)). Thus, they achieve high fitness that is close to
the fitness in the simulation as shown in Figure 13. We conclude that the learned
best controllers work well in the physical modular robots for directed locomotion.
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spider9 gecko7 babyA

Fig. 14: The average trajectories of the top 3 controllers (with the highest fit-
ness) for each robot and each direction in the real world. Each controller is run
three repetitions and take the average trajectories. Five arrows in the sub-figures
represent the five target directions. The trajectories are shown in five colours.

The video3 of the physical modular robots shows the directed locomotion with
the best learned controllers.

5 Discussion

5.1 Real World Behaviour

In the experiments with physical robots, we observed interesting behaviours
that resemble animals in nature. The robot spider9 performs the well-directed
locomotion directly in the five directions without rotating. This is different from
the trajectories of gecko7 and babyA that perform curvilinear movement in target
directions except the direction 0◦ rather than exactly follow the line in the target
direction directly. Interestingly, animals like spiders and crabs also can go multi
directions without rotating. The robot spider9 performs biomimetic-like gait like
zigzag for directed locomotion, as shown in Figure 14. Although the trajectories
are averaged, the zigzag patterns are clear. We hypothesize that this is a gait
characteristic for a spider topology.

For the robot gecko7, we observed that it achieves directed locomotion with
curvilinear trajectories, as shown in the middle figure of Figure 14. That is,
gecko7 has to rotate for the locomotion in multiple directions except forward
that results in a similar behavior to animals with similar morphologies, e.g.,
geckos and rabbits. Furthermore, we notice that the robot gecko7 moves towards
the target directions by pushing mainly from the combination of back legs and
3 https://www.youtube.com/watch?v=Dhg1e8fqBgU

https://www.youtube.com/watch?v=Dhg1e8fqBgU


a waist. The front legs are mainly used to control the direction. Interestingly,
animals like geckos and rabbits mainly use the back legs to drive the movement
and control the direction. Nevertheless, they basically use their front limbs to
control the locomotion direction rather than support the power to drive the
locomotion.

The robot babyA is generated by recombination from spider9 and gecko7. As
we can see in Figure 8, its topology is more similar to gecko7 than to spider9.
As a result, babyA performs quite similarly to gecko7 in terms of trajectories, as
shown in Figure 14. Moreover, the real babyA achieves directed locomotion with
curvilinear trajectories that are similar to the trajectories of gecko7, but quite
different from the trajectories of spider9. In addition, babyA has not performed
the zigzag locomotion as the robot spider9.

The robustness of learned controllers in the real world is always an important
issue. We therefore test this by answering the following question:

How does a controller, learned for target direction A1, perform in another
target direction A2 that it was not previously learned for?

We take the trajectories of a controller, originally obtained for target direction
A1, and calculate the fitnesses of these trajectories using target direction A2. By
this way, we evaluate the robustness of the controllers using other four target
directions. The resulting robustness are shown in Table 5. The fitnesses in the
diagonals of three robots represent the performance of the controllers in the
original target directions. As we can see, although the controllers perform the
best fitness in the original target directions (diagonals), they generally work well
for the close target directions. For instance, the controller of babyA in a target
direction 0◦ with a fitness of 0.88 achieves the fitnesses of 0.58 and 0.74 in the
close target directions 20◦ and −20◦, respectively. While the fitness values of a
controller in other target directions are lower than it in original direction, it still
obtains good fitness values in the close target directions. Therefore, we include
that the CPG controllers are robust for the nearby target directions.

5.2 Reality Gap

The mismatch between simulation studies and experiments in real environments
is always an important aspect of any research. As we highlighted in the exper-
iments, in this work we notice the reality gap too. As exhibited in Figure 13,
most of the fitness values for the physical modular robots are lower than the
fitness in simulation. There are multiple possible causes of the reality gap, these
are discussed in the following.

Inconsistent friction: It is demanding to design the same friction for the
experiments in simulation and real-world because the friction in real world is
difficult to be measured. Moreover, the friction between the physical robots and
floor is dynamic when the robots is moving. In the physical experiments, we
notice that the locomotion with the same controller becomes different when the
components of the physical robots slide or get stuck on the floor. This is one of
the main factors that lead to the reality gap, and is difficult to be solved.



testing in→ 40◦ 20◦ 0◦ −20◦ −40◦

40◦ 0.52 0.44 0.27 0.10 -0.01
20◦ 0.47 0.49 0.35 0.19 0.07

spider9 0◦ 0.25 0.47 0.63 0.46 0.24
−20◦ 0.05 0.17 0.35 0.55 0.54
−40◦ 0.0 0.05 0.21 0.47 0.77

40◦ 0.75 0.69 0.40 0.17 0.04
20◦ 0.72 0.82 0.59 0.30 0.10

gecko7 0◦ 0.31 0.65 1.06 0.96 0.56
−20◦ 0.16 0.45 0.86 1.18 0.98
−40◦ 0.03 0.15 0.40 0.74 0.96

40◦ 1.09 0.75 0.39 0.14 0.02
20◦ 0.54 0.55 0.33 0.15 0.04

babyA 0◦ 0.29 0.58 0.88 0.74 0.42
−20◦ 0.18 0.47 0.85 1.09 0.71
−40◦ 0.02 0.11 0.33 0.65 0.91

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Table 5: Robustness of the top learned controllers for different directions in the
real world. The data shows the fitness that the top controllers of three robots
in 5 directions (the second column) perform in another directions (the first row).
The fitness value in a cell is averaged over three controller and three repetitions
for each controller. The dark and light color represent the high and low fitness
value respectively.

Assembly errors: The modular robots from simulation to real-world need to
be assembled by hand. Thus, it is inevitable that the manual assembling leads
to some errors. There are three main issues that are associated with manual
assembling. First, the physical gap in the joints of the modular robots cause the
different actuation. In this case, the physical modular robot perform a different
locomotion from the robot with the same controller in the simulation. Second,
the manual assembling is difficult to implement the physical modular robots with
the exactly same size as in simulation. In particular, the position errors of the
components in vertical usually cause the fatal errors. For instance, a “leg” of the
physical robots is 0.1 cm off the floor since the assembly errors, which probably
causes the “leg” to slide and further changes the locomotion. Third, the assembly
gaps causes the physical robots have the model mismatch from the simulated
modular robots. Although the model mismatch is in practice not too large and
the learned CPG controller performs good robustness, a slight discrepancy may
lead to a serious error, particularly in the task of directed locomotion. These
errors can be accumulated and have a big impact on the behavior of directed
locomotion.

Physical weights: The physical modular robots consist of many hardware
including 3D printed components, servos, cables, microcomputer, and a battery.
Correctly modeling these physical components is difficult. Therefore, the mod-
ular robots in simulation and real-world inevitably have different weights. The



different weights impact the locomotion pattern, particularly the robots gecko7
and babyA. Moreover, the different weight is a factor that cause the inconsistent
friction.

Initial directions: At the start of each test, we position the physical robots
in the correct direction 0◦ manually. Because of this, the deviations of the actual
positioned direction from the direction 0◦ are inevitable. This usually causes that
the same controller performs the locomotions with the different actual directions.
Unlike most factors that cause a reality gap with a decreased fitness value,
the initial direction errors probably decrease or increase the fitness value. For
instance, the locomotion with the best controller deviates the target direction
a little in the simulation, the initialization errors may cause the physical robot
with the same controller performing a smaller or bigger deviation.

Battery power: The battery power decreases over time. We notice that the
physical modular robots move faster with the fully charged battery than in the
low battery mode. Therefore, the physical modular robots driven by the same
controller generally have better performance (higher fitness) with fully charged
battery than the low battery. Although this is not so remarkable as the issues
above, it can still be a cause of the reality gap.

Camera localization: The camera localization system on the top of the
arena is developed to recognize the position of the physical robot during the lo-
comotion. Thus, the deviations of the localization also cause the different fitness
for the locomotions with the same controllers.

Servo quality: Even though we use the same servos, the different servos
quality cause that the same controller leads to a different locomotion.

6 Concluding Remarks

In this paper, we address the problem of learning sensory-motor skills in mor-
phologically evolvable robot systems where the body of newborn robots is a
random combination of the bodies of the parents. In particular, we consider
a vital task, directed locomotion. We compare the popular HyperNEAT algo-
rithm with Bayesian optimization using a fitness function that balances the
distance travelled in a desired direction and the deviation angle between the
actually travelled and the desired directions. We test the generality and scala-
bility of the methods on a test suite of nine robots with different shapes and
sizes for five different target directions. The results indicate that both methods
learn good controllers across all of these morphologies and target directions, but
Bayesian optimization outperforms HyperNEAT in terms of higher fitness values
and faster learning speed. We noted a sweat spot around 300 learning trials that
seem to be sufficient to learn good values for 20-30 parameters of the controller
and deliver good performance in most cases. This is a large improvement over
earlier results and even feasible to do on real robots. Analyzing the results of the
locomotion speeds and the deviation angles, we could establish that our fitness
function provides effective guidance for the learning algorithm by adequately
balancing the locomotion speed and the direction of movement. Inspecting the



trajectories obtained by using the best learned controllers demonstrated that the
robots performed directed locomotion successfully. Nevertheless, a comparison
of the results in the simulated and real robots shows that our system suffers
from the infamous reality gap.

Ongoing work is aiming at a threefold extension of this study. The first direc-
tion concerns the improvement of the learning algorithm. While Bayesian opti-
mization is very data-efficient, it is not time-efficient since its computation time
increases cubically over evaluations. In addition, the performance of Bayesian
optimization grows slowly after the initial stage. Therefore, we are working on
a combination of evolutionary algorithms with Bayesian optimization to achieve
lower computation times and higher accuracy.

The second line of research is to change the currently used open loop robot
controller that works without feedback from perception. The enhanced system
will employ a closed loop controller with feedback on the actual orientation of
the robot. This will extend the applicability beyond a lab setup and hopefully
reduce the reality gap by correcting locomotion towards the target direction.
Moreover, the robustness (see Table 5) of the controllers can be improved by the
closed loop directed locomotion. In a closed loop system, the deviation of actual
traveling direction can be corrected real time.

Finally, we are integrating infant learning (as investigated here) in the grand
evolutionary loop of the Triangle of Life. The resulting system features a mor-
phologically evolving robot population, where reproduction among two parents
delivers a new robot that performs learning right after ‘birth’ so as to maximize
the potential of its morphology. This represents a novel combination of evolu-
tion and learning with unprecedented opportunities for researching evolution in
robots and investigating hypotheses about natural evolution as well.
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