19 research outputs found

    Corpora for the conceptualisation and zoning of scientific papers

    Get PDF
    We present two complementary annotation schemes for sentence based annotation of full scientific papers, CoreSC and AZ-II, which have been applied to primary research articles in chemistry. The AZ scheme is based on the rhetorical structure of a scientific paper and follows the knowledge claims made by the authors. It has been shown to be reliably annotated by independent human coders and has proven useful for various information access tasks. AZ-II is its extended version, which has been successfully applied to chemistry. The CoreSC scheme takes a different view of scientific papers, treating them as the humanly readable representations of scientific investigations. It therefore seeks to retrieve the structure of the investigation from the paper as generic high-level Core Scientific Concepts (CoreSC). CoreSCs have been annotated by 16 chemistry experts over a total of 265 full papers in physical chemistry and biochemistry. We describe the differences and similarities between the two schemes in detail and present the two corpora produced using each scheme. There are 36 shared papers in the corpora, which allows us to quantitatively compare aspects of the annotation schemes. We show the correlation between the two schemes, their strengths and weaknesses and discuss the benefits of combining a rhetorical based analysis of the papers with a content-based one

    TechMiner: Extracting Technologies from Academic Publications

    Get PDF
    In recent years we have seen the emergence of a variety of scholarly datasets. Typically these capture ‘standard’ scholarly entities and their connections, such as authors, affiliations, venues, publications, citations, and others. However, as the repositories grow and the technology improves, researchers are adding new entities to these repositories to develop a richer model of the scholarly domain. In this paper, we introduce TechMiner, a new approach, which combines NLP, machine learning and semantic technologies, for mining technologies from research publications and generating an OWL ontology describing their relationships with other research entities. The resulting knowledge base can support a number of tasks, such as: richer semantic search, which can exploit the technology dimension to support better retrieval of publications; richer expert search; monitoring the emergence and impact of new technologies, both within and across scientific fields; studying the scholarly dynamics associated with the emergence of new technologies; and others. TechMiner was evaluated on a manually annotated gold standard and the results indicate that it significantly outperforms alternative NLP approaches and that its semantic features improve performance significantly with respect to both recall and precision

    Domain-independent Extraction of Scientific Concepts from Research Articles

    Get PDF
    We examine the novel task of domain-independent scientific concept extraction from abstracts of scholarly articles and present two contributions. First, we suggest a set of generic scientific concepts that have been identified in a systematic annotation process. This set of concepts is utilised to annotate a corpus of scientific abstracts from 10 domains of Science, Technology and Medicine at the phrasal level in a joint effort with domain experts. The resulting dataset is used in a set of benchmark experiments to (a) provide baseline performance for this task, (b) examine the transferability of concepts between domains. Second, we present two deep learning systems as baselines. In particular, we propose active learning to deal with different domains in our task. The experimental results show that (1) a substantial agreement is achievable by non-experts after consultation with domain experts, (2) the baseline system achieves a fairly high F1 score, (3) active learning enables us to nearly halve the amount of required training data.Comment: Accepted for publishing in 42nd European Conference on IR Research, ECIR 202

    Requirements Analysis for an Open Research Knowledge Graph

    Get PDF
    Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get an overview of the state of the art in a certain field, or reproducibility is hampered by fixed-length, document-based publications which normally cannot cover all details of a research work. Recently, several initiatives have proposed knowledge graphs (KGs) for organising scientific information as a solution to many of the current issues. The focus of these proposals is, however, usually restricted to very specific use cases. In this paper, we aim to transcend this limited perspective by presenting a comprehensive analysis of requirements for an Open Research Knowledge Graph (ORKG) by (a) collecting daily core tasks of a scientist, (b) establishing their consequential requirements for a KG-based system, (c) identifying overlaps and specificities, and their coverage in current solutions. As a result, we map necessary and desirable requirements for successful KG-based science communication, derive implications and outline possible solutions.Comment: Accepted for publishing in 24th International Conference on Theory and Practice of Digital Libraries, TPDL 202

    NLPContributions: An Annotation Scheme for Machine Reading of Scholarly Contributions in Natural Language Processing Literature

    Get PDF
    We describe an annotation initiative to capture the scholarly contributions in natural language processing (NLP) articles, particularly, for the articles that discuss machine learning (ML) approaches for various information extraction tasks. We develop the annotation task based on a pilot annotation exercise on 50 NLP-ML scholarly articles presenting contributions to five information extraction tasks 1. machine translation, 2. named entity recognition, 3. question answering, 4. relation classification, and 5. text classification. In this article, we describe the outcomes of this pilot annotation phase. Through the exercise we have obtained an annotation methodology; and found ten core information units that reflect the contribution of the NLP-ML scholarly investigations. The resulting annotation scheme we developed based on these information units is called NLPContributions. The overarching goal of our endeavor is four-fold: 1) to find a systematic set of patterns of subject-predicate-object statements for the semantic structuring of scholarly contributions that are more or less generically applicable for NLP-ML research articles; 2) to apply the discovered patterns in the creation of a larger annotated dataset for training machine readers of research contributions; 3) to ingest the dataset into the Open Research Knowledge Graph (ORKG) infrastructure as a showcase for creating user-friendly state-of-the-art overviews; 4) to integrate the machine readers into the ORKG to assist users in the manual curation of their respective article contributions. We envision that the NLPContributions methodology engenders a wider discussion on the topic toward its further refinement and development. Our pilot annotated dataset of 50 NLP-ML scholarly articles according to the NLPContributions scheme is openly available to the research community at https://doi.org/10.25835/0019761.Comment: In Proceedings of the 1st Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE 2020) co-located with the ACM/IEEE Joint Conference on Digital Libraries in 2020 (JCDL 2020), Virtual Event, China, August 1. http://ceur-ws.org/Vol-2658

    NLPContributions: An Annotation Scheme for Machine Reading of Scholarly Contributions in Natural Language Processing Literature

    Get PDF
    We describe an annotation initiative to capture the scholarly contributions in natural language processing (NLP) articles, particularly, for the articles that discuss machine learning (ML) approaches for various information extraction tasks. We develop the annotation task based on a pilot annotation exercise on 50 NLP-ML scholarly articles presenting contributions to five information extraction tasks 1. machine translation, 2. named entity recognition, 3. Question answering, 4. relation classification, and 5. text classification. In this article, we describe the outcomes of this pilot annotation phase. Through the exercise we have obtained an annotation methodology; and found ten core information units that reflect the contribution of the NLP-ML scholarly investigations. The resulting annotation scheme we developed based on these information units is called NLPContributions. The overarching goal of our endeavor is four-fold: 1) to find a systematic set of patterns of subject-predicate-object statements for the semantic structuring of scholarly contributions that are more or less generically applicable for NLP-ML research articles; 2) to apply the discovered patterns in the creation of a larger annotated dataset for training machine readers [18] of research contributions; 3) to ingest the dataset into the Open Research Knowledge Graph (ORKG) infrastructure as a showcase for creating user-friendly state-of-the-art overviews; 4) to integrate the machine readers into the ORKG to assist users in the manual curation of their respective article contributions. We envision that the NLPContributions methodology engenders a wider discussion on the topic toward its further refinement and development. Our pilot annotated dataset of 50 NLP-ML scholarly articles according to the NLPContributions scheme is openly available to the research community at https://doi.org/10.25835/0019761

    Something old, something new: Identifying knowledge source in bio-events

    Get PDF
    Locating new experimental knowledge in biomedical texts is important for several tasks undertaken by biologists. Although several systems can distinguish between new and existing knowledge, this generally happens at the text zone level. In contrast to text zones, bio-events constitute structured representations of biomedical knowledge. They bridge text with domain knowledge and can be used to develop sophisticated semantic search systems. Typically, event extraction systems locate and classify events and their arguments, but ignore interpretative information (meta-knowledge) from their textual context. Since several events (often nested) can occur in a sentence, determining which event(s) are affected by which textual clues can be complex. We have analysed knowledge source annotation in two bio-event corpora: GENIA-MK (abstracts) and FP-MK (full papers), and have developed a system to classify bioevents automatically according to their knowledge source. Our system performs with an accuracy of over 99% on both abstracts and full papers
    corecore