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Abstract

   Purpose: This work aims to normalize the NLPCONTRIBUTIONS scheme (henceforward, 
NLPCONTRIBUTIONGRAPH) to structure, directly from article sentences, the contributions 
information in Natural Language Processing (NLP) scholarly articles via a two-stage 
annotation methodology: 1) pilot stage—to define the scheme (described in prior work); and 
2) adjudication stage—to normalize the graphing model (the focus of this paper). 

Design/methodology/approach: We re-annotate, a second time, the contributions-pertinent 
information across 50 prior-annotated NLP scholarly articles in terms of a data pipeline 
comprising: contribution-centered sentences, phrases, and triple statements. To this end, 
specifically, care was taken in the adjudication annotation stage to reduce annotation noise 
while formulating the guidelines for our proposed novel NLP contributions structuring and 
graphing scheme.

Findings: The application of NLPCONTRIBUTIONGRAPH on the 50 articles resulted finally in 
a dataset of 900 contribution-focused sentences, 4,702 contribution-information-centered 
phrases, and 2,980 surface-structured triples. The intra-annotation agreement between the 
first and second stages, in terms of F1-score, was 67.92% for sentences, 41.82% for phrases, 
and 22.31% for triple statements indicating that with increased granularity of the information, 
the annotation decision variance is greater.

Research limitations: NLPCONTRIBUTIONGRAPH has limited scope for structuring scholarly 
contributions compared with STEM (Science, Technology, Engineering, and Medicine) 
scholarly knowledge at large. Further, the annotation scheme in this work is designed by only 
an intra-annotator consensus—a single annotator first annotated the data to propose the initial 
scheme, following which, the same annotator reannotated the data to normalize the annotations 
in an adjudication stage. However, the expected goal of this work is to achieve a standardized 
retrospective model of capturing NLP contributions from scholarly articles. This would entail 
a larger initiative of enlisting multiple annotators to accommodate different worldviews into 
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a “single” set of structures and relationships as the final scheme. Given that the initial scheme 
is first proposed and the complexity of the annotation task in the realistic timeframe, our intra-
annotation procedure is well-suited. Nevertheless, the model proposed in this work is presently 
limited since it does not incorporate multiple annotator worldviews. This is planned as future 
work to produce a robust model.

Practical implications: We demonstrate NLPCONTRIBUTIONGRAPH data integrated into the 
Open Research Knowledge Graph (ORKG), a next-generation KG-based digital library with 
intelligent computations enabled over structured scholarly knowledge, as a viable aid to assist 
researchers in their day-to-day tasks. 

Originality/value: NLPCONTRIBUTIONGRAPH is a novel scheme to annotate research 
contributions from NLP articles and integrate them in a knowledge graph, which to the best 
of our knowledge does not exist in the community. Furthermore, our quantitative evaluations 
over the two-stage annotation tasks offer insights into task difficulty.

Keywords Scholarly knowledge graphs; Open science graphs; Knowledge representation; 
Natural language processing; Semantic publishing

1 Introduction

Our present rapidly amassing wealth of scholarly publications (Jinha, 2010) poses 
a crucial dilemma for the research community. That is: how to stay on-track with 
the past and the current rapid-evolving research progress? In this era of the 
publications deluge (Johnson, Watkinson, & Mabe, 2018), such a task is becoming 
increasingly infeasible even within one’s own narrow discipline. The need for novel 
technological infrastructures in support of intelligent scholarly knowledge access 
models is, thus, only made more imminent. A viable solution to the dilemma is to 
make the research progress skimmable for the scientific community with the aid of 
advanced information access tools. This would help curtail the time-intensive and 
seemingly unnecessary cognitive labor that currently constitute the researcher’s task 
of searching just for the contribution information in full-text articles to track 
scholarly progress (Auer, 2018).

Knowledge graphs (KG), i.e. large semantic networks of entities and relationships, 
are a potent data model solution in this space. KGs enable fine-grained semantic 
knowledge capture over precise information targets modeled as nodes and links 
under an optional cumulative knowledge capture theme. Unlike academic articles, 
KGs facilitate complete programmatic access to their semantified data at the model-
specified granularity. Knowledge customizations given targeted queries are possible 
as knowledge subgraph views over single or aggregated KGs. Consider this in light 
of the fact, that the researcher’s key day-to-day search task over scholarly knowledge 
is mainly focused on determining scholarly contribution highlights. E.g. “Which is 
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the top-performing system on the SQuAD dataset?” “What methods are used for 
NER?” etc. KGs are ideal to power such fine-grained knowledge searches. Their 
well-known utility is in offering enhanced contextualized search as demonstrated 
successfully in industry by Facebook (Noy et al., 2019) and by Google 
(A Reintroduction to Our Knowledge Graph and Knowledge Panels, 2020); and 
even in the open data community by Wikidata (Vrandečić & Krötzsch, 2014) that 
serves information over many general domains. 

In the technological ecosystem of scholarly KGs, the Open Research Knowledge 
Graph (ORKG) framework, hosted at TIB—a central library and information 
center for science and technology—is an emerging initiative geared toward storing 
scholarly KGs in a digital library of the future (Auer, 2018). It targets the storage 
of structured scholarly contributions content extensible over the various domains 
and subdomains in Science at large (Jaradeh et al., 2019). Differing from existing 
scholarly KG building endeavors that focus on bibliographic and metadata 
information (Birkle et al., 2020; Hendricks et al., 2020; Wang et al., 2020), the 
ORKG focuses on organizing the gist of scholarly articles as semantically structured 
contribution descriptions. It supports a templatized system for the specification of 
scholarly contributions, thereby obtaining standardized and comparable scholarly 
knowledge data representations (Oelen et al., 2019; Vogt et al., 2020) which are also 
in conformance with the FAIR guiding principles for scientific data management 
and stewardship (Wilkinson et al., 2016).

Given this background, the work described here examines an annotation scheme 
called the NLPCONTRIBUTIONGRAPH (NCG) (D’Souza & Auer, 2020) that guides 
the information structuring process of the unstructured scholarly contributions in 
NLP articles. Application-wise, it specifically targets a scholarly knowledge data 
acquisition branch of the ORKG, and generally places itself within the wider context 
of the structuring of scholarly knowledge. By eliciting a set of guidelines for 
structuring unstructured NLP research contributions, it facilitates instance-based 
KG data annotation. Figure 1 illustrates a part of an instantiated contributions-
focused KG from this scheme. While NCG strives to evolve as a comprehensive 
templatization model of NLP research contributions, in its present version, it is 
templated only at the top-level of information organization under the construct 
of what we refer to as Information Units (IU)—a set of 12 broad information 
aggregation constructs inspired from scholarly article section names. The rest of the 
NCG data is modeled based on an annotator’s data-driven subjective judgements. 

 https://www.tib.eu/
  The full KG for the partial structured contribution information depicted in Figure 1 can be accessed as a 

resource in the ORKG platform here https://www.orkg.org/orkg/paper/R69764.
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Nevertheless, this latter modeling decision subjectivity is to a certain extent, 
constrained by the IUs. Finally, data annotated in the NCG scheme comprise the 
following three elements. 1. Contribution sentences: a set of sentences about the 
contribution, where sentences have been adopted in previous scholarly knowledge 
structuring initiatives albeit with a different semantic focus (Fisas, Ronzano, & 
Saggion, 2016; Liakata et al., 2010; Teufel, Carletta, & Moens, 1999; Teufel, 
Siddharthan, & Batchelor, 2009). 2. Scientific terms and relations: a set of 
scientific term and predicate phrases extracted from the contribution sentences, 
where scientific terms and predicates have also been considered in prior knowledge 
structuring annotation initiatives (Augenstein et al., 2017; Luan et al., 2018). 
3. Triples: semantic statements of related subject-object scientific term pairs toward 
RDF statement representations for KG building. The complete RDFization of NCG 
triples would entail an additional linking of the scientific terms and predicates to 
existing ontology resource URIs by synonymy identification and ontology alignment. 
An alternative and simpler strategy would be the RDFization of the NCG triples by 
simply coining own URIs. However, the latter method would create large amounts 
of new resources rather than leveraging existing ones.

Figure 1. Structured Model information as part of the research contribution highlights of a scholarly article 
(Lample et al., 2016) in the NLPCONTRIBUTIONGRAPH scheme.

In contrast to other existing content-based scholarly KG generation methods 
(Buscaldi et al., 2019; Jiang et al., 2020; Luan et al., 2018), NCG has an overarching 
knowledge capture theme, i.e. to capture only the scholarly articles’ “contributions.” 
With this overarching knowledge capture objective, the first version of NCG (2020) 
was developed over the course of an annotation exercise performed on 50 NLP 
articles which were uniformly selected across five different NLP subfields: 1. 
machine translation, 2. named entity recognition, 3. question answering, 4. relation 
classification, and 5. text classification.
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In this study, the NCG scheme is revisited with a two-fold objective: 1) to identify 
any redundancies in the representation and thereby normalize them; and 2) to obtain 
a fairly reliable and consistent set of annotation guidelines. Building on our prior 
work, in this article, we re-annotated the same set of 50 articles a second time and 
examined the changes obtained via this adjudication task. Specifically, the following 
questions were investigated:

• How data intensive is the annotation procedure?—i.e. what proportion of 
the full-text article content constitutes core contribution information, and 
consequently, the structured data within this scheme?

• Were significant changes needed to be made to the annotation scheme between 
the pilot and the adjudication phases?—i.e. were large quantified changes 
observed in the intra-annotation measures?

Summarily, NCG informs instance-based KG generation over NLP scholarly 
articles where the modeling process is mostly data-driven, unguided by a specific 
ontology, except at the top-level categorization of the information under IUs. 
Nevertheless, a large dataset of annotated instances by the NCG scheme would be 
amenable to ontology learning (Cimiano et al., 2009) and concept discovery (Lin 
& Pantel, 2002). The NCG data characteristically caters to practical applications 
such as the ORKG (Jaradeh et al., 2019) and other similar scholarly KG content 
representation frameworks designed for the discoverability of research conceptual 
artefacts and comparability of these artefacts across publications (Oelen et al., 2020) 
which we demonstrate concretely in Section 6. By adhering to data creation 
standards, the NCG by-product data when linked to web resources will fully conform 
to the FAIRness principle for scientific data (Wilkinson et al., 2016) as its data 
elements will become Findable, Accessible, Interoperable, and Reusable.

2 Related work

Early initiatives in semantically structuring scholarly articles focused just on 
sentences as the basic unit of analysis. To this end, ontologies and vocabularies were 
created (Constantin et al., 2016; Pertsas & Constantopoulos, 2017; Soldatova & 
King, 2006; Teufel et al., 1999), corpora were annotated (Fisas et al., 2016; Liakata 
et al., 2010), and machine learning methods were applied (Liakata et al., 2012). Like 
NLPCONTRIBUTIONGRAPH, these prior sentence annotations were thematically-based, 
ranging from fine-grained rhetorical themes modeled after scholarly article 
sections (Fisas et al., 2016; Liakata et al., 2010; Teufel, Carletta, & Moens, 1999; 
Teufel, Siddharthan, & Batchelor, 2009), to identifying scientific knowledge claim 
arguments (Teufel, Siddharthan, & Batchelor, 2009). Where the first kind of 
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structuring practically enabled highlighting sentences with fine-grained semantics 
within computer-based readers, the latter served citation summaries and sentiment 
analysis.

Following sentence-based annotations, the ensuing trend for structuring the 
scholarly record has the specific aim of bolstering search technology. Thus, it 
was steered towards scientific terminology mining and keyphrase extraction. 
Consequently, this led to the release of phrase-based annotated datasets in various 
domains including multidisciplinarily across STEM (Augenstein et al., 2017; 
D’Souza & Auer, 2020; Handschuh & QasemiZadeh, 2014; Luan et al., 2018), which 
facilitated machine learning system development for the automatic identification of 
scientific terms from scholarly articles (Ammar et al., 2017; Beltagy, Lo, & Cohan, 
2019; Brack et al., 2020; Luan, Ostendorf, & Hajishirzi, 2017).

While NLPCONTRIBUTIONGRAPH incorporates sentence and phrasal-unit data 
elements, it differs from all prior attempts to structure or semantify scholarly articles. 
To the best of our knowledge, no prior model has attempted gathering data elements 
over the theme of scholarly contributions. Closer to our work of adopting a thematic 
focus in practically leveraging knowledge graphs, increasingly, text mining initiatives 
are seeking out to structure recipes or formulaic semantic patterns as KGs (Kononova 
et al., 2019; Kulkarni et al., 2018; Kuniyoshi et al., 2020; Mysore et al., 2019). 
These efforts advocate for machine-interpretable documentation formats of wet 
lab protocols and inorganic materials synthesis reactions and procedures for faster 
computer-mediated analysis and predictions. Relatedly, the objective of NCG is to 
obtain machine-interpretable NLP scholarly contributions to foster the automatic 
generation of surveys.

3 The NLPCONTRIBUTIONGRAPH scheme: Preliminaries

The NCG scheme aims to build a scholarly KG assuming a bottom-up data-driven 
design. Thus, while not a fully ontologized model, it has one top-level layer 
predefined with a set of content category types for surface typing of the contribution 
knowledge that the graph represents. This follows the idea of content organization 
as scholarly article sections. However, in the NCG, the types are a predefined closed 
class set similar to the introduction, methods, results, and discussion (IMRAD) 
format prescribed for medical scientific writing (Huth, 1987; Sollaci & Pereira, 
2004). Next, we describe this knowledge systematization.

The NCG scheme has two levels of content typing as follows: 1) it has a root node 
called “Contribution.” By means of this node, an instantiated NCG can be attached 
to another KG. E.g. extending the ORKG by attaching an instantiated NCG’s 
“Contribution” node to it. 2) In the next level, it has 12 nodes referred to as IU. 
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Each scholarly article’s annotated contribution data elements are organized under 
three (mandatory) or more of the IU nodes. These nodes are briefly described next.

3.1 Twelve information unit nodes

Annotating structured contributions information from scholarly articles (see 
Section 4 for details), showed that, per article, its contribution-centered content 
could be organized as three or more different rhetorical categories inspired from 
scholarly article section names. Specifically, 12 different contribution content types 
were identified, a few of which were in common with the fine-grained rhetorical 
semantic classes annotations made for scholarly article sentences (Teufel, 
Siddharthan, & Batchelor, 2009). The 12 types are as follows.

i. RESEARCHPROBLEM determines the research challenge addressed by a 
contribution using the predicate has Research Problem. By definition, it is the focus 
of the research investigation; in other words, the issue for which the solution must 
be obtained. It is typically found in an article’s Title, Abstract, and in the first few 
paragraphs of the Introduction.

ii. APPROACH or iii. MODEL This is the contribution of the paper as the solution 
proposed for the research problem. The choice of the name, i.e. whether it is 
APPROACH or MODEL, depends on the paper’s content. As a guiding rule of thumb, 
it is called APPROACH when the solution is proposed as an abstraction, and is called 
MODEL if the solution is proposed in practical implementation terms. Further, in the 
paper, the solution may not always be introduced as approach or model; in which 
case, the names have to be normalized to either APPROACH or MODEL. E.g. if the 
solution is introduced as “method” or “application,” this is normalized as APPROACH; 
on the other hand, if it is referred to as “system” or “architecture,” it is normalized 
to MODEL. In terms of the content captured, only the highlights of the solution are 
relevant in our contribution-focused model—in-depth details such as architectural 
figures or equations are not included. This information is found in the article’s 
Introduction section in the context of cue phrases such as “we take the approach,” 
“we propose the model,” “our system architecture,” or “the method proposed in this 
paper.” However, there are exceptions when the Introduction does not present an 
overview of the system, in which case we analyze the first few lines of the system 
description section itself in the article. The APPROACH or MODEL is connected to the 
Contribution root node via the predicate has—this is followed for the remaining 
nine units as well.

iv. CODE is a link to the software on open-source hosting platforms such as 
Github or Gitlab, or even on the author’s website. This information, when present, 
can generally be found in the Abstract or Introduction, and occasionally in the 
Methods or Conclusion sections.
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v. DATASET is sometimes included as a contribution information unit when it is 
a solution proposed in an NLP article. E.g. the SQuAD dataset that defines a 
Question Answering task.

vi. EXPERIMENTALSETUP or vii. HYPERPARAMETERS include hardware (e.g. GPU) 
and software (e.g. Tensorflow, Weka) details for implementing the machine 
learning solution; and variables that determine the network structure (e.g. number 
of hidden units) and how the machine learning model is optimized (e.g. learning 
rate, regularization) to the task objective. When details of the hardware are also 
given, it is called EXPERIMENTALSETUP; otherwise, HYPERPARAMETERS. This IU 
offers users better insights of the machine learning model. Further, it is only modeled 
when expressed in simple sentence constructs. When they have complex descriptions, 
it is not easily possible to structure the data. E.g. “machine translation” models 
which tend to be fairly complex with many parameters. Thus, the decision to model 
the experimental setup, seemingly a subjective decision at face value, over the 
course of several annotated articles, becomes apparent with better familiarity of the 
eligible sentence patterns.

viii. BASELINES are systems that the proposed APPROACH or MODEL is compared 
against. It structures information about which existing systems the proposed model 
is compared to.

ix. RESULTS are the main findings or outcomes reported in the article for the 
RESEARCHPROBLEM. This content is generally found toward the end of the article in 
the RESULTS, EXPERIMENTS, or TASKS sections. While the results are often highlighted 
in the Introduction, unlike the APPROACH or MODEL units, in this case, we annotate 
the dedicated, detailed section on RESULTS because results constitute a primary 
aspect of the contribution. 

Next, we discuss the 10th IU called TASKS which can either be encapsulated in 
the RESULTS IU or which encapsulates several RESULTS IU against different tasks.

x. TASKS in multi-task settings, i.e. when the solution is tested on more than 
one task, list all the experimented tasks. Similarly, if experimental datasets are 
listed, they can be interpreted as tasks since it is common in NLP for tasks to be 
defined over datasets. Each task listed in TASKS can include one or more of the 
EXPERIMENTALSETUP, HYPERPARAMETERS, and RESULTS as sub-information units.

xi. EXPERIMENTS is an encapsulating IU with one or more of the above five 
results-focused IUs. It can include a combination of EXPERIMENTALSETUP, lists of 
TASKS and their RESULTS, or can be a combination of APPROACH, EXPERIMENTALSETUP 
and RESULTS. It resembles the scholarly article sections “experiment” or 

 https://www.tensorflow.org/
 https://www.cs.waikato.ac.nz/ml/weka/
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“experiments.” Recently, more and more multitask systems are being developed, 
e.g. BERT (Devlin et al., 2018). Therefore, modeling EXPERIMENTALSETUP with 
TASKS and RESULTS is necessary for such systems since the experimental setup often 
changes per task producing a different set of results. Hence, this information unit 
encompassing two or more sub information units is part of the NCG scheme.

xii. ABLATIONANALYSIS is a type of RESULTS that shows in fine-grained detail the 
contribution of each component in multi-component systems proposed for NLP 
tasks as the APPROACH or MODEL. In some articles, an ablation study is conducted 
to evaluate the performance of a system by removing certain components, to 
understand the contribution of the component to the overall system. Therefore, this 
IU is used to model these results if they are expressed in a few sentences, similar 
to our modeling criteria for HYPERPARAMETERS.

This concludes the detailed description about the 12 top-level IU nodes in the 
NCG scheme. Of the 12, only three are mandatory for structuring contributions per 
scholarly article. They are: RESEARCHPROBLEM, APPROACH or MODEL, and RESULT—
the remaining may or may not be present based on the content of the article.

4 The NLPCONTRIBUTIONGRAPH scheme: Annotation exercise
4.1 Stage 1: Pilot annotations

The pilot annotation task (D’Souza & Auer, 2020) that resulted in the preliminary 
version of the NCG scheme was performed on a set of 50 NLP scholarly articles. 
This set of 50 articles constituted the trial dataset. Thus, the preliminary NCG 
scheme was defined over the trial dataset in a data-driven manner during the pilot 
annotation exercise.

There were two requirements decided at the outset of the annotation task. First 
and foremost, the graph model needed to be a robust representation for the diversity 
in NLP scholarly contributions. To facilitate this, a representative dataset of the 
NLP domain was needed so that unique aspects of contributions could be observed. 
Thus, the articles were uniformly chosen across five different NLP subfields: 
1. machine translation, 2. named entity extraction, 3. question answering, 4. relation 
classification, and 5. text classification.

The second design choice, regards the granularity of the data annotated in the 
NCG scheme. In the Related Work (Section 2), we saw that the sentential and 
phrasal granularity was used in prior work on structuring scholarly articles. Thus, 
inspired from this prior annotation science and also toward modeling KGs, the 

  These five tasks were randomly selected among the most popular NLP tasks on the paperswithcode.com 
leaderboard.
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following three different granularity levels were established. At the first level, 
sentences that capture information about an article’s contribution; at the second 
level, phrases about scientific knowledge terms and relation predicates identified 
from the selected contribution-information sentences; and, at the third level, toward 
building KGs, triples uniting the scientific terms and predicates as KG instances. 

Table 1 below illustrates two examples of modeling contribution-oriented 
sentences, phrases, and triples from a scholarly publications categorized under the 
RESULTS IU. Examples 1a and 2a, respectively, first show the sentences information 
granularity in the NCG scheme. These sentences discuss performance comparisons 
of the proposed model with existing scores. In general, for the RESULTS IU, similar 
sentences that discuss performance comparisons of the proposed system versus 
existing systems should be selected as NCG model instances. Next, as examples of 
the phrasal granularity, 1b and 2b reflect the scientific knowledge terms and 
predicates from the sentences 1a and 2a, respectively. These are selected such that 
they should be able to take one of three roles, i.e. subject, predicate, or object, in 
triples for building KGs. Linguistically, they span a diverse spectrum of types, i.e. 
they can be noun phrases or verb phrases or adjectival phrases, etc. Further, the 
types are not related to the triple roles. Consider from 1b, the verb phrase “adding 
features” or the noun phrase “neural networks” can be either subject or object, 
whereas the phrase “computed by” which is the beginning part of a verb phrase is 
a predicate indicating a relation. Last, 1c and 2c illustrates the arrangement of the 
phrases as subject-predicate-object KG triples. Note, however, the order of the 
annotation steps need not be the same as the examples. At the least, we imagine 
sentences necessarily are first in the annotation task order. Following which, the 
annotator can perform the triples annotation first and later break their structure into 
phrases or the reverse. In the reverse case, they would make implicit triples 
considerations. In this context, one might wonder why include the phrases data 
element at all as part of the NCG scheme. We do this to enable flexibility in problem 
formulation for machine learning and, more concretely, to enable a clearer evaluation 
scenario since it could be that a machine learner may not be very accurate in forming 
triples but is better at identifying phrases.

We refer the reader to our prior work (D’Souza & Auer, 2020) for additional 
details regarding the pilot annotation task itself.

4.2 Stage 2: Adjudication annotations

We carried out a two-stage annotation cycle over the trial dataset to finalize the 
NCG scheme. The first stage was the pilot annotation cycle with a brief overview 
provided in the earlier section (Section 4.1). The second stage was the adjudication 
cycle during which the graph model was finalized and the gold-standard article-wise 
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graph data were obtained. A gap of two weeks separated the pilot and adjudication 
stages. Since the model development and annotation exercise was performed by a 
single annotator—an NLP domain specialist—, the stages needed to be sufficiently 
apart in time to control for the decision-making thought process from the pilot stage 
influencing adjudication. Nonetheless, the second stage was mere adjudication, 
therefore was non-blind. This meant that the annotator has access to the pilot 
annotations when re-annotating the data. Our adjudication objective was not to 
arrive at a new model that significantly differed from the model in the pilot stage, 
but it was to normalize that model itself. In other words, by adjudications, we 
merely sought to refine the quality of the scheme. Given the complex nature of this 
annotation task (cf. annotation evaluations in Section 5), and the need to design 
a model within a realistic timeframe, our annotation procedure is well-suited. 
Conversely, adopting a different annotation procedure, i.e. perhaps a blind second 
stage, might have resulted in a model with no consensus at all, since a consensus 
would have taken an unrealistic amount of time to arrive at—consider that since the 
NCG scheme is designed over the full-text of the scholarly articles its data 
consideration scope is wide despite the information constraint of the IUs. Further, 
using a different annotator for the adjudication stage than in the pilot stage could 
potentially result in a new model if the two annotators had different interpretations 
of contribution information—neither being incorrect, just different. This is a 
common phenomenon observed in the ontology engineering community where 
several ontologies exist under one knowledge theme but still modeling different 
worldviews. We also advocate for a blind, multi-stage, and multi-annotator annotation 
process for the NCG scheme, recognizing it as a potentially better annotation model 
since it can produce a well-defined set of annotation rules based on strict linguistic 

Table 1. Two examples illustrating the three different granularities for NLPCONTRIBUTIONGRAPH data instances 
(viz., a. sentences, b. phrases, and c. triples) modeled for the RESULT information unit from a scholarly article 
(Cho et al., 2014).

[1a. sentence 159] As expected, adding features computed by neural networks consistently improves the 
performance over the baseline performance.
[1b. phrases from sentence 159] {adding features, computed by, neural networks, improves the performance, 
over baseline performance}
[1c. triples from entities above] {(Contribution, has, Results), (Results, improves the performance, adding 
features), (adding features, computed by, neural networks), (Results, improves the performance, over baseline 
performance)}

[2a. sentence 160] The best performance was achieved when we used both CSLM and the phrase scores from 
the RNN Encoder – Decoder.
[2b. phrases from sentence 160] {best performance was achieved, used both CSLM and the phrase scores, 
from, RNN Encoder – Decoder}
[2c. triples from entities above] {(Contribution, has, Results), (Results, best performance was achieved, used 
both CSLM and the phrase scores), (used both CSLM and the phrase scores, from, RNN Encoder – Decoder)}
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patterns agreed upon by multiple views. However, this is relegated as future work 
with a stipulated time-frame of at least two years. On the other hand, our consensus-
oriented method is practically better suited as a first step toward designing complex 
graph-based models, in other words, to obtain the NCG scheme in a realistic 
timeframe.

There were two requirements decided at the outset of the adjudication annotation 
task. They were: 1) to normalize IUs further to be a smaller, but comprehensively 
representative, set of similar structured properties to facilitate succinct contribution 
comparisons across articles’ contribution graphs; and 2) to improve the phrasal 
boundary decisions made in the pilot stage focused on targeting precise scientific 
knowledge semantics within the annotated phrases. Otherwise, both the pilot and 
adjudication stages adopted the same annotation workflow as depicted in Figure 2. 

Figure 2. Functional workfl ow of the annotation process to obtain the NLPCONTRIBUTIONGRAPH data.

Let us elaborate on the two requirements: 1) normalizing IUs—we had 16 different 
IUs in the pilot stage. During the course of the adjudication stage annotations, they 
were normalized as the following nine IUs: RESEARCHPROBLEM, EXPERIMENTALSETUP, 
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HYPERPARAMETERS, RESULTS, TASKS, EXPERIMENTS, ABLATIONANALYSIS, BASELINES, 
and CODE were retained as is; the set MODEL, APPROACH, METHOD, ARCHITECTURE, 
SYSTEM, and APPLICATION was reduced to MODEL and APPROACH—in our second 
round of observations of the data, we identified references to METHOD, ARCHITECTURE, 
SYSTEM, and APPLICATION all pointed at an actual piece of software rather than a 
conceptual solution, thus they were normalized into a single MODEL IU, while 
APPROACH referred to the conceptual solution; and the OBJECTIVE IU was dropped 
since it was infrequent. Further, a DATASET IU was added, since in NLP papers they 
are sometimes described as a solution. 2) improving phrasal boundaries—this 
involved making smaller split decisions on phrases to convert very specific scientific 
knowledge elements into entities that could take on more generic roles and therefore 
were reusable in a KG. E.g. “models that use extensive sets of handcrafted features” 
split into the following three phrases “models,” “use,” and “extensive sets of 
handcrafted features.” This example is depicted in detail in Appendix 2.

4.2.1 The NCG Scheme’s five general annotation guidelines

Finally, five main annotation guidelines are prescribed for NCG.

1)  Sentences with contribution data are identified in various places in the paper 
including title, abstract, and full-text. Within the full-text, only the Introduction 
and Results sections are annotated. Sometimes, the first few sentences in the 
Methods section are annotated as well if method highlights are unspecified in 
the Introduction.

2) Only sentences that directly state the paper’s contribution are annotated.
3)  All relation predicates are annotated from the paper’s text, except the following 

three, i.e. has, name, and hasAcronym. “has” is used for connecting the IU 
nodes to the Contribution root node, and as a filler predicate if one is not 
found directly in the text. “name” is the filler predicate used to link the model 
name to the APPROACH or MODEL nodes. “hasAcronym” has a similar function 
to name, except applied only for acronyms of names.

4)  Past the IU level, for parent node names in the graph, the names of sections 
are preferred, which if challenging to annotate are identified in the running 
text (see Appendix 1 example).

5)  Repetitions of the scientific terms or predicates, which do not correspond to 
the actual information in the text, are not allowed when forming KG triples. 
See illustrated in Figure 3.
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Figure 3. Illustration of the annotation guideline 5 of forming triples without incorrect repetitions of the 
extracted phrases. This RESULTS IU is modeled from the research paper by (Wang et al., 2018). If the phrases 
“in terms of” and “F1 measure” were modeled by sentence word order, they would need to be reused twice 
under the “ACE datasets” and “GENIA dataset” scientifi c terms. To avoid this incorrect repetition, despite 
being at the end of the sentence, they are annotated at the top of the triples hierarchy.

5 The NLPCONTRIBUTIONGRAPH Scheme: Evaluating the 
annotations
5.1 Raw data and preprocessing tools

The trial dataset for designing the NCG scheme was derived from a collection 
downloaded from the publicly available leaderboard of tasks in artificial intelligence 
called https://paperswithcode.com/. The paperswithcode.com dataset predominantly 
contained articles in the Natural Language Processing and Computer Vision domains. 
To design the NCG scheme, we restricted ourselves just to its NLP papers. From 
the original collection of papers, we randomly selected 10 papers from each of the 
five different NLP subfields which resulted in a total of 50 papers. The five NLP 
subfields were: 1. machine translation, 2. named entity recognition, 3. question 
answering, 4. relation classification, and 5. text classification.

The raw data needed to undergo a two-step preprocessing to be ready for analysis. 
1) For pdf-to-text conversion of the scholarly articles, the GROBID parser (GROBID, 
2008) was applied; following which, 2) for plaintext pre-processing in terms of 
tokenization and sentence splitting, the Stanza toolkit (Qi et al., 2020) was used. 
The resulting pre-processed articles were then leveraged in the two-stage annotation 
cycle (see Section 4) to devise the NCG scheme.
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5.2 Annotated corpus statistics

The overall annotated corpus statistics for our trial dataset after the adjudication 
stage is depicted in Table 2. We see that, in each of the five subfields, approx. 40 
IUs were annotated on each of the subfield’s articles, i.e. on average four IUs per 
article per subfield since 10 articles were selected for each subfield. This implies 
that, on average, each article was annotated with more or less one additional IU 
beside the three (RESEARCHPROBLEM, APPROACH or MODEL, and RESULTS) deemed 
mandatory. Further, in the annotated data, per subfield, we see at the sentence 
element level, that a very small fraction (< 0.1%) of the scholarly article sentences 
constituted contribution sentences (see Table row “avg ann Sentences”). In terms of 
tokens, < 0.3% of the overall tokens were annotated as scientific terms or predicates 
toward KG building (see Table row “avg ann Phrase Toks”). Finally, in terms of 
triples, approx. 600 triples were annotated per task, i.e. nearly 60 triples per article 
per task. Thus, overall, while not much data is annotated per article (approx. 16 
sentences and 90 phrases per article—see Table rows “ann Sentences” and “ann 
Phrases” for the total counts), the task challenge is selecting the pertinent contribution-
focused information given the wide range of the available candidate data.

Next we highlight a few differences between the five subfields in our dataset. In 
Table 2, we see that machine translation (MT) had the most annotated sentences. 
This can be attributed to the observation that generally MT articles tend to be longer 
descriptively and particularly in terms of models settings compared to the other four 
subfields. Further, relation classification (RC) had the highest proportion of 
contribution sentences constituting its articles. With 0.1 this still indicates a low 
proportion reflecting the fact that contribution information is contained in relatively 
few sentences. Text classification (TC) had the highest number of annotated phrases 
despite not being among the tasks with the highest numbers of annotated sentences. 
This implies that the number of annotated sentences is not directly related to the 
number of annotated phrases for the tasks in our data. But this understandably is 
not the same concerning the correlation between the number of phrases and triples, 
wherein the number of phrases and triples are directly related.

Table 3 depicts the final annotated corpus statistics in terms of the information 
units. We make the following key observations: RESULTS has the most number of 
triples; RESEARCHPROBLEM is modeled for all articles; and EXPERIMENTS has the 
highest triples-to-papers ratio. We see that EXPERIMENTS is annotated only in three 
articles yet contains a high number of triples. This can be attributed to the fact that 
this particular IU can also encapsulate other IUs such as EXPERIMENTALSETUP, 
TASKS, and RESULTS (cf. Section 3.1). This is different from the other IUs that have 
no other IU encapsulation, with TASKS as an exception.
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Table 3. Annotated corpus statistics for the 12 Information Units in the NLPCONTRIBUTIONGRAPH scheme.

Information Unit No. of triples No. of papers Ratio of triples to papers

EXPERIMENTS 168  3 56
TASKS 277  8 34.63
EXPERIMENTALSETUP 300 16 18.75
MODEL 561 32 17.53
HYPERPARAMETERS 254 15 16.93
RESULTS 688 42 16.38
APPROACH 283 18 15.72
BASELINES 148 10 14.8
ABLATIONANALYSIS 155 13 11.92
DATASET   8  1 8
RESEARCHPROBLEM 169 50 3.38
CODE   9  9 1

5.3 Intra-Annotation agreement measures

We now compute the intra-annotation agreement measures between the first and 
the second stage versions of the dataset annotations across all three data elements 
in the NCG scheme including its top-level information units. Our evaluation metrics 
are the standard precision, recall, and F1-score.

Table 4 depicts the results. With these scores, we quantitatively observe the 
degree of changes between the two annotation stages treating the second stage as 
reference gold-standard. Between the two stages, the F1-scores of the annotation 
changes were: information units 79.64%, sentences 67.92%, phrases 41.82%, and 
triples 22.31%. We conclude that the interpretation of annotations related to the 
top-level organization of scholarly contributions did not change significantly (at 
76.64% F1-score). Even the decision of the annotator about the sentences containing 
contribution-centered information showed a low degree of change (at 67.92% 

Table 2. Annotated corpus characteristics for our trial dataset containing a total of 50 NLP articles 
using the NLPCONTRIBUTIONGRAPH model. “ann” stands for annotated; and IU for information unit. The 50 
articles are uniformly distributed across five different NLP subfields characterized at sentence and token-level 
granularities as follows—machine translation (MT): 2,596 total sentences, 9,581 total overall tokens; named 
entity recognition (NER): 2,295 sentences, 8,703 overall tokens; question answering (QA): 2,511 sentences, 
10,305 overall tokens; relation classification (RC): 1,937 sentences, 10,020 overall tokens; text classification 
(TC): 2,071 sentences, 8,345 overall tokens.

MT NER QA RC TC Overall

total IUs  38  43  44  45  46 216
ann Sentences 209 157 176 194 164 900
avg ann Sentences 0.081 0.068 0.07 0.1 0.079 -
ann Phrases 956 770 960 978 1038 4,702
avg Toks per Phrase 2.81 2.87 2.76 2.91 2.7 -
avg ann Phrase Toks 0.28 0.25 0.26 0.28 0.34 -
ann Triples 590 504 619 620 647 2,980
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F1-score). However, the comparison of the fine-grained organization of the 
contribution-focused information, as phrases or triples, obtained low F1-socres. 
Finally, from the results, we see that our pipelined annotation task is presented with 
the general disadvantage of pipelined systems, wherein the performances in later 
annotation stages is limited by performances in earlier annotation stages.

In light of the low intra-annotator agreement obtained at the phrasal and triples 
information granularities, a natural question may arise: is our proposed model valid 
at all? We claim validity on the following basis. 1) Since the data was annotated 
by a single person, there is a data modeling uniformity in their decisions arising 
from the fact that it was made by the same person. Thus, the annotated data in any 
stage consistently models the annotator decisions in that stage. For instance, 
regarding the sentences, major discrepancy arose between the pilot and the 
adjudication stages from decisions such as selecting titles as contribution sentence 
candidates, wherein in the first annotation stage, titles were not annotated, but were 
uniformly selected to be annotated in the adjudication stage. 2) Further, as shown 
in the “avg ann Sentences” row in Table 2, since roughly only 8% of the article 
sentences were contribution sentences, an expected consequence of this task is 
indeed a high amount of variance in the sentence selection decisions. Such a 
discrepancy can only be resolved with further annotation stages. With reference to 
our earlier example, since titles were uniformly established as contribution sentence 
candidates in the second annotation round, in a third round we would have much 
higher modeling decision scores. 3) Finally, our annotation task has a pipelined 
nature. Thus, sentence modeling discrepancies are magnified in the later annotation 
stages, i.e. for phrases or triples annotations. This explains a major proportion of 
the low agreement scores in the second annotation round for phrases and triples 
since new phrases (and triples) had to be annotated for the new added sentences.

Observing the task-specific intra-annotation measures in rows 1 to 5, we find that 
question answering (QA) and text classification (TC) have the highest scores 
reflecting fewer changes made in their annotations than the other tasks, albeit at 
decreasing levels across the data elements. 

Generally, one may wonder why triples formation is challenging given a set of 
scientific term and predicate phrases indicated by its lowest F1-score per task and 
overall. There are two reasons: a) the phrases were significantly changed in the 
second stage (see Phrases F1-scores as < 50%), which in turn impacted the triple 
formation; and b) often the triples can be formed in more than one way. In the 
adjudication process, it was established for the triples to strictly conform to order 
of appearance of phrases in the text, which in the first stage was not consistently 
followed.
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Table 4. Intra-Annotation Evaluation Results. The NLPCONTRIBUTIONGRAPH scheme pilot stage annotations 
evaluated against the adjudicated gold-standard annotations made on the trial dataset.

Tasks
Information Units Sentences Phrases Triples

P R F1 P R F1 P R F1 P R F1

1 MT 66.66 73.68 70.0 66.67 54.55 60.0 37.47 30.96 33.91 19.73 17.46 18.53
2 NER 79.55 81.40 80.46 60.89 69.43 64.88 44.09 42.60 43.34 22.34 21.63 21.98
3 QA 93.18 93.18 93.18 67.96 79.55 73.30 54.04 45.21 49.23 37.50 32.0 34.52
4 RC 70.21 73.33 71.74 64.64 60.31 62.40 35.31 29.24 32.0 12.59 11.45 11.99
5 TC 86.67 84.78 85.71 75.44 78.66 77.01 54.77 45.38 49.63 27.41 22.41 24.66
Cum. micro 78.83 80.65 79.73 67.25 67.63 67.44 45.36 38.83 41.84 23.76 20.97 22.28

macro 78.8 80.49 79.64 67.33 68.51 67.92 45.2 38.91 41.82 23.87 20.95 22.31

6 The NLPCONTRIBUTIONGRAPH Scheme: Practical use case

The NCG scheme was designed to structure NLP contributions thereby generating 
a contributions-centric KG. Such data will ease the information processing load for 
researchers who presently invest a large share of their time in surveying their field 
by reading full-text articles. The rationale for designing such a scheme was the 
availability of scholarly KGs, such as the ORKG (Jaradeh et al., 2019), that are 
equipped with features to automatically generate tabulated comparisons of various 
approaches addressing a certain research problem on their common properties and 
values (Oelen et al., 2020). We integrate some of our articles’ structured contributions 
into the Open Research Knowledge Graph (ORKG). Tapping into the ORKG’s 
contributions comparison generator feature over our structured data, we demonstrate 
how automatically generated tabulated surveys can be obtained given scholarly 
contribution KGs. Such an information processing tool can easily assist the researcher 
in their day-to-day task of keeping track of research progress, potentially reducing 
their cognitive effort expended from weeks or months to a matter of just minutes.

In the following subsections, we first describe how an article’s contribution data 
modeled by NCG is integrated in the ORKG, and then illustrate the comparison 
feature.

6.1 Leveraging the Open Research Knowledge Graph framework

The ORKG comprises structured descriptions of research contributions per 
article. The user can enter the relevant data about their papers via the framework 
online at https://orkg.org. In Figure 4 below, we depict our annotated triples in plain 
text format for the RESULTS IU capturing just the results contribution aspect of 
a paper. Note that this data can alternatively be represented in JSON format (as in 
Figure 3 shown earlier in this paper). 
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Figure 4. Annotated data from the paper “Sentence similarity learning by lexical decomposition and composition” 
under the RESULTS Information Unit by the NLPCONTRIBUTIONGRAPH scheme.

With the help of the ORKG paper editor interface, we add a paper to the ORKG 
including its bibliographic information, the RESULTS IU data (Figure 4), and the 
RESEARCHPROBLEM IU data. This paper view in the ORKG is depicted in Figure 5 
below. In the figure, while the data values for RESEARCHPROBLEM IU in the NCG 
scheme is directly visible, the data for the RESULTS is not. This is due to the paper-
view showing only the top-level node. To access deeper levels of the structured data, 
one would need to click on the Results text link in orange. Such a branch traversal 
starting at Results until the last node is depicted in Figure 6 as a four-part series.

With this we have described how the structured contributions data of individual 
papers are represented in the ORKG. Next, we showcase the ORKG feature for 
generating comparisons.

6.2 Automated NLP contribution comparisons

The ORKG has a feature to generate and publish surveys in the form of tabulated 
comparisons over articles’ knowledge graph nodes (Oelen et al., 2020). To 
demonstrate this feature, we entered our data for the RESULTS IUs of four papers 
including the one depicted in Figure 5 in the ORKG. Applying then the ORKG 
survey feature on the four structured articles contributions aggregates their 
semantified graph nodes in a tabulated comparison across them. This is depicted in 
Figure 7. This computation aligns closely with the notion of traditional survey 
articles, except it is automated and operates on machine-actionable knowledge 
elements. With such an aggregate view over common contribution properties it is 
easier for users to ingest the essential details of the articles in a matter of minutes 
in a single view, a feature that is even more advantageous when a larger number of 
articles is compared. Given that the data is directly extracted from the text it is 
amenable to further processing for better knowledge representation quality (e.g. 
“Outperforming,” “Outperforms,” and “Significantly outperforms” can be normalized 
as a single predicate). 
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Figure 5. An Open Research Knowledge Graph paper view. The NLPCONTRIBUTIONGRAPH scheme is 
employed to model the RESEARCHPROBLEM and the RESULTS information units of the paper.

Thus we have demonstrated how structured contributions from the NCG scheme 
address the massive scholarly knowledge content ingestion problem.

8 Conclusions and future directions
We have discussed the NCG scheme for structuring research contributions in NLP 

articles as structured KGs. We have described the process of leveraging the NCG 
scheme to annotate contributions in our trial dataset of 50 NLP articles in two stages 
which helped us obtain the NCG annotation guidelines and improve data quality. 
Further, we demonstrated how such structured data is poignant in the face of growing 
volumes of scholarly content to help alleviate the scholarly knowledge content 
ingestion problem. Our annotated dataset is publicly available here: https://github.
com/ncg-task/trial-data.
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As future directions, to realize a full-fledged KG in the context of the NCG 
scheme, there are a few IE modules that would need to be improved or added. 
This includes (1) improving the PDF parser (see Appendix 3 for challenges); (2) 
incorporating an entity and relation linking and normalization module; (3) merging 
phrases from the unstructured text with known ontologies (e.g. MEX (Esteves 
et al., 2015)) to align resources and thus ensure data interoperability and reusability; 
and (4) modeling inter-domain knowledge.
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Figure 7. A NLPCONTRIBUTIONGRAPH Scheme Data Integration Use Case in the Open Research Knowledge 
Graph Digital Library. An automatically generated survey from a part of a knowledge graph of scholarly 
contributions over four articles using the NLPCONTRIBUTIONGRAPH scheme proposed in this work. This 
comparison was customized in the Open Research Knowledge Graph framework to focus only on the RESULTS 
information unit (the comparison is accessible online here https://www.orkg.org/orkg/c/kM2tUq).



Special Issue on “Extraction and Evaluation of Knowledge Entities from Scientific Documents” Vol. 6 No. 3, 2021

28

Research Paper

Journal of Data and 
Information Science

References
A reintroduction to our Knowledge Graph and knowledge panels. (2020). https://blog.google/

products/search/about-knowledge-graph-and-knoswledge-panels/
Ammar, W., Peters, M.E., Bhagavatula, C., & Power, R. (2017). The AI2 system at SemEval-2017 

Task 10 (ScienceIE): Semi-supervised end-to-end entity and relation extraction. SemEval@
ACL.

Aryani, A., Poblet, M., Unsworth, K., Wang, J., Evans, B., Devaraju, A., Hausstein, B., Klas, C.-P., 
Zapilko, B., & Kaplun, S. (2018). A Research Graph dataset for connecting research data 
repositories using RD-Switchboard. Scientific Data, 5, 180099.

Auer, S. (2018). Towards an Open Research Knowledge Graph (Version 1) [Computer software]. 
Zenodo. https://doi.org/10.5281/zenodo.1157185

Augenstein, I., Das, M., Riedel, S., Vikraman, L., & McCallum, A. (2017). SemEval 2017 Task 10: 
ScienceIE—Extracting Keyphrases and Relations from Scientific Publications. SemEval@
ACL.

Baas, J., Schotten, M., Plume, A., Côté, G., & Karimi, R. (2020). Scopus as a curated, high-quality 
bibliometric data source for academic research in quantitative science studies. Quantitative 
Science Studies, 1(1), 377–386.

Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A pretrained language model for scientific text. 
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing 
and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), 3606–3611.

Birkle, C., Pendlebury, D.A., Schnell, J., & Adams, J. (2020). Web of Science as a data source for 
research on scientific and scholarly activity. Quantitative Science Studies, 1(1), 363–376.

Brack, A., D’Souza, J., Hoppe, A., Auer, S., & Ewerth, R. (2020). Domain-independent extraction 
of scientific concepts from research articles. European Conference on Information Retrieval, 
251–266.

Burton, A., Koers, H., Manghi, P., La Bruzzo, S., Aryani, A., Diepenbroek, M., & Schindler, U. 
(2017). The data-literature interlinking service: Towards a common infrastructure for 
sharing data-article links. Program: electronic library and information systems, 51(1), 75–100. 
https://doi.org/10.1108/PROG-06-2016-0048

Buscaldi, D., Dessì, D., Motta, E., Osborne, F., & Reforgiato Recupero, D. (2019). Mining 
scholarly data for fine-grained knowledge graph construction. CEUR Workshop Proceedings, 
2377, 21–30.

Camacho-Collados, J., & Pilehvar, M.T. (2017). On the role of text preprocessing in neural network 
architectures: An evaluation study on text categorization and sentiment analysis. ArXiv 
Preprint ArXiv:1707.01780.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, 
Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine 
translation. ArXiv:1406.1078.

Cimiano, P., Mädche, A., Staab, S., & Völker, J. (2009). Ontology learning. In Handbook on 
ontologies (pp. 245–267). Springer.

Constantin, A., Peroni, S., Pettifer, S., Shotton, D., & Vitali, F. (2016). The document components 
ontology (DoCO). Semantic Web, 7(2), 167–181.



29

Jennifer D’Souza and Sören Auer
Research Paper

Journal of Data and 
Information Science

 Sentence, Phrase, and Triple Annotations to Build a Knowledge Graph of 
Natural Language Processing Contributions—A Trial Dataset

http://www.jdis.org
https://www.degruyter.com/view/j/jdis

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional 
transformers for language understanding. ArXiv:1810.04805.

D’Souza, J., & Auer, S. (2020). NLPContributions: An Annotation Scheme for Machine Reading 
of Scholarly Contributions in Natural Language Processing Literature. In C. Zhang, P. Mayr, 
W. Lu, & Y. Zhang (Eds.), Proceedings of the 1st Workshop on Extraction and Evaluation 
of Knowledge Entities from Scientific Documents co-located with the ACM/IEEE Joint 
Conference on Digital Libraries in 2020, EEKE@JCDL 2020, Virtual Event, China, August 
1st, 2020 (Vol. 2658, pp. 16–27). CEUR-WS.org. http://ceur-ws.org/Vol-2658/paper2.pdf

D’Souza, J., Hoppe, A., Brack, A., Jaradeh, M.Y., Auer, S., & Ewerth, R. (2020). The STEM-ECR 
Dataset: Grounding Scientific Entity References in STEM Scholarly Content to Authoritative 
Encyclopedic and Lexicographic Sources. LREC, 2192–2203.

Esteves, D., Moussallem, D., Neto, C.B., Soru, T., Usbeck, R., Ackermann, M., & Lehmann, J. 
(2015). MEX vocabulary: A lightweight interchange format for machine learning experiments. 
Proceedings of the 11th International Conference on Semantic Systems, 169–176.

Fisas, B., Ronzano, F., & Saggion, H. (2016). A Multi-Layered Annotated Corpus of Scientific 
Papers. LREC.

Fricke, S. (2018). Semantic scholar. Journal of the Medical Library Association: JMLA, 106(1), 
145.

Ghaddar, A., & Langlais, P. (2018). Robust lexical features for improved neural network named-
entity recognition. ArXiv:1806.03489.

GROBID. (2008). GitHub. https://github.com/kermitt2/grobid
Handschuh, S., & QasemiZadeh, B. (2014). The ACL RD-TEC: a dataset for benchmarking 

terminology extraction and classification in computational linguistics. COLING 2014: 4th 
International Workshop on Computational Terminology.

Hendricks, G., Tkaczyk, D., Lin, J., & Feeney, P. (2020). Crossref: The sustainable source of 
community-owned scholarly metadata. Quantitative Science Studies, 1(1), 414–427.

Huth, E.J. (1987). Structured abstracts for papers reporting clinical trials. American College of 
Physicians.

Jaradeh, M.Y., Oelen, A., Farfar, K.E., Prinz, M., D’Souza, J., Kismihók, G., Stocker, M., & Auer, 
S. (2019). Open Research Knowledge Graph: Next Generation Infrastructure for Semantic 
Scholarly Knowledge. KCAP, 243–246.

Jiang, M., D’Souza, J., Auer, S., & Downie, J.S. (2020). Targeting Precision: A Hybrid Scientific 
Relation Extraction Pipeline for Improved Scholarly Knowledge Organization. Proceedings 
of the Association for Information Science and Technology, 57(1).

Jinha, A.E. (2010). Article 50 million: An estimate of the number of scholarly articles in existence. 
Learned Publishing, 23(3), 258–263.

Johnson, R., Watkinson, A., & Mabe, M. (2018). The STM report. An Overview of Scientific and 
Scholarly Publishing. 5th Edition October.

Kononova, O., Huo, H., He, T., Rong, Z., Botari, T., Sun, W., Tshitoyan, V., & Ceder, G. (2019). 
Text-mined dataset of inorganic materials synthesis recipes. Scientific Data, 6(1), 1–11.

Kulkarni, C., Xu, W., Ritter, A., & Machiraju, R. (2018). An Annotated Corpus for Machine 
Reading of Instructions in Wet Lab Protocols. NAACL: HLT, Volume 2 (Short Papers), 
97–106. https://doi.org/10.18653/v1/N18-2016



Special Issue on “Extraction and Evaluation of Knowledge Entities from Scientific Documents” Vol. 6 No. 3, 2021

30

Research Paper

Journal of Data and 
Information Science

Kuniyoshi, F., Makino, K., Ozawa, J., & Miwa, M. (2020). Annotating and Extracting Synthesis 
Process of All-Solid-State Batteries from Scientific Literature. LREC, 1941–1950.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016). Neural 
architectures for named entity recognition. ArXiv Preprint ArXiv:1603.01360.

Landhuis, E. (2016). Scientific literature: Information overload. Nature, 535(7612), 457–458.
Liakata, M., Saha, S., Dobnik, S., Batchelor, C., & Rebholz-Schuhmann, D. (2012). Automatic 

recognition of conceptualization zones in scientific articles and two life science applications. 
Bioinformatics, 28(7), 991–1000.

Liakata, M., Teufel, S., Siddharthan, A., & Batchelor, C.R. (2010). Corpora for the Conceptualisation 
and Zoning of Scientific Papers. LREC.

Lin, D.K., & Pantel, P. (2002). Concept discovery from text. COLING 2002: The 19th International 
Conference on Computational Linguistics.

Luan, Y., He, L., Ostendorf, M., & Hajishirzi, H. (2018). Multi-Task Identification of Entities, 
Relations, and Coreference for Scientific Knowledge Graph Construction. EMNLP.

Luan, Y., Ostendorf, M., & Hajishirzi, H. (2017). Scientific information extraction with 
semi-supervised neural tagging. ArXiv:1708.06075.

Mysore, S., Jensen, Z., Kim, E., Huang, K., Chang, H.-S., Strubell, E., Flanigan, J., McCallum, A., 
& Olivetti, E. (2019). The Materials Science Procedural Text Corpus: Annotating Materials 
Synthesis Procedures with Shallow Semantic Structures. Proceedings of the 13th Linguistic 
Annotation Workshop, 56–64.

Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., & Taylor, J. (2019). Industry-scale 
knowledge graphs: Lessons and challenges. Queue, 17(2), 48–75.

Oelen, A., Jaradeh, M.Y., Farfar, K.E., Stocker, M., & Auer, S. (2019). Comparing research 
contributions in a scholarly knowledge graph. CEUR Workshop Proceedings 2526 (2019), 
2526, 21–26.

Oelen, A., Jaradeh, M.Y., Stocker, M., & Auer, S. (2020). Generate FAIR Literature Surveys with 
Scholarly Knowledge Graphs. Proceedings of the ACM/IEEE Joint Conference on Digital 
Libraries in 2020, 97–106. https://doi.org/10.1145/3383583.3398520

Pertsas, V., & Constantopoulos, P. (2017). Scholarly Ontology: Modelling scholarly practices. 
International Journal on Digital Libraries, 18(3), 173–190.

Qi, P., Zhang, Y.H., Zhang, Y.H., Bolton, J., & Manning, C.D. (2020). Stanza: A Python Natural 
Language Processing Toolkit for Many Human Languages. Proceedings of the 58th Annual 
Meeting of the Association for Computational Linguistics: System Demonstrations. https://
nlp.stanford.edu/pubs/qi2020stanza.pdf

Soldatova, L.N., & King, R.D. (2006). An ontology of scientific experiments. Journal of the Royal 
Society, Interface, 3 11, 795–803.

Sollaci, L.B., & Pereira, M.G. (2004). The introduction, methods, results, and discussion (IMRAD) 
structure: A fifty-year survey. Journal of the Medical Library Association, 92(3), 364.

Teufel, S., Carletta, J., & Moens, M. (1999). An annotation scheme for discourse-level argumentation 
in research articles. Proceedings of the Ninth Conference on European Chapter of ACL, 
110–117.

Teufel, S., Siddharthan, A., & Batchelor, C. (2009). Towards discipline-independent argumentative 
zoning: Evidence from chemistry and computational linguistics. EMNLP: Volume 3, 1493–
1502.



31

Jennifer D’Souza and Sören Auer
Research Paper

Journal of Data and 
Information Science

 Sentence, Phrase, and Triple Annotations to Build a Knowledge Graph of 
Natural Language Processing Contributions—A Trial Dataset

http://www.jdis.org
https://www.degruyter.com/view/j/jdis

Vogt, L., D’Souza, J., Stocker, M., & Auer, S. (2020). Toward representing research contributions 
in scholarly knowledge graphs using knowledge graph cells. Proceedings of the ACM/IEEE 
Joint Conference on Digital Libraries in 2020, 107–116.

Vrandečić, D., & Krötzsch, M. (2014). Wikidata: A free collaborative knowledgebase. Communi-
cations of the ACM, 57(10), 78–85.

Wang, B.L., Lu, W., Wang, Y., & Jin, H.X. (2018). A neural transition-based model for nested 
mention recognition. ArXiv:1810.01808.

Wang, K.S., Shen, Z.H., Huang, C.Y., Wu, C.-H., Dong, Y.X., & Kanakia, A. (2020). Microsoft 
academic graph: When experts are not enough. Quantitative Science Studies, 1(1), 396–413.

Wilkinson, M.D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, 
N., Boiten, J.-W., da Silva Santos, L.B., Bourne, P.E., & others. (2016). The FAIR Guiding 
Principles for scientific data management and stewardship. Scientific Data, 3(1), 1–9.

Zhou, J., Cao, Y., Wang, X.G., Li, P., & Xu, W. (2016). Deep recurrent models with fast-forward 
connections for neural machine translation. Transactions of the Association for Computational 
Linguistics, 4, 371–383.

This is an open access article licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/4.0/).



Special Issue on “Extraction and Evaluation of Knowledge Entities from Scientific Documents” Vol. 6 No. 3, 2021

32

Research Paper

Journal of Data and 
Information Science

Appendix

1. NLPCONTRIBUTIONGRAPH: Parent Node Names

While the node names for the top two levels of the NLPCONTRIBUTIONGRAPH 
graph data annotations are predefined, the remaining node names are unspecified 
and are left as data-driven decisions. Higher up in the graph, in particular, they are 
often selected as the names from titles of sections and subsections in the article. 
Sometimes, however, they are also selected from the running text. In this case the 
phrase has to serve the name of a conceptual reference for an idea described more 
in detail. In Figure 8 we illustrate this with an example.

Figure 8. Illustration of a parent node name called ‘character-level LSTM’ serving a conceptual reference 
selected from the article’s running text as opposed to the section names. The fi gure is part of the contribution 
from the article (B. Wang et al., 2018). Essentially, for such encapsulation when it exists, coreference is 
applied for the child-node nesting (consider the coreference between ‘we incorporate a character-level LSTM 
to capture’ in sentence 1 and ‘this character-level component can also help’ in sentence 2).

2. Improved Phrasal Granularity during Adjudication

Between the pilot and adjudication stages, the data quality was far improved in 
various aspects. One of these aspects included modeling a more consistent phrasal 
granularity, as the second data element in the NLPCONTRIBUTIONGRAPH data model. 
This is comparatively illustrated between data from the pilot and adjudication stages 
in Figure 9.
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(a) Pilot stage annotations

(b) Adjudication stage annotations

Figure 9. Figures (a) and (b) depicts the modeling of part of a Results information unit from a scholarly 
article (Ghaddar & Langlais, 2018) in the pilot and the adjudication stages, respectively.
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3. Scanned PDF Extraction . . . garbage in garbage out

The Grobid (GROBID, 2008) parser, while a state-of-the-art tool, produces noise 
in its parsed plain-text. For instance, while it retains no citations, tables, or figures 
in the parsed output, it does retain captions. This becomes a source of noise as often 
caption text is intermingled within the section text. Further, if the parser could not 
decode symbols, including math symbols such as α, β, or ε or formulae, they are 
simply a “?” in the parsed plain text. Also in many cases, entire paragraphs of the 
original paper content are lost, in which case such information, even if relevant, 
cannot be modeled by NLPCONTRIBUTIONGRAPH. E.g. in “Deep Recurrent Models 
with Fast-Forward Connections for Neural Machine Translation (Zhou et al., 2016),” 
a full page of Results information content is not present in the plaintext parsed 
output and hence our annotations do not include the results written in the missing 
task. Finally, the parsed text can also be produced out of order. E.g. in reference 
paper (Camacho-Collados & Pilehvar, 2017), the section header “Experiment 1: 
Preprocessing effect” is seen sentence 94 in the plaintext, however, its following 
sentence in the original text is seen as sentence 79.

Overall, the parsing function tends to be noisy around tables, figures, and 
footnotes. In which case entire sections of content is not returned, or is noisy with 
intermingled captions, or out of sequence.


