2,632 research outputs found

    Copula-based multivariate input modeling

    Get PDF
    In this survey, we review the copula-based input models that are well suited to provide multivariate input-modeling support for stochastic simulations with dependent inputs. Specifically, we consider the situation in which the dependence between pairs of simulation input random variables is measured by tail dependence (i.e., the amount of dependence in the tails of a bivariate distribution) and review the techniques to construct copula-based input models representing positive tail dependencies. We complement the review with the parameter estimation from multivariate input data and the random-vector generation from the estimated input model with the purpose of driving the simulation. © 2012 Elsevier Ltd

    Open TURNS: An industrial software for uncertainty quantification in simulation

    Full text link
    The needs to assess robust performances for complex systems and to answer tighter regulatory processes (security, safety, environmental control, and health impacts, etc.) have led to the emergence of a new industrial simulation challenge: to take uncertainties into account when dealing with complex numerical simulation frameworks. Therefore, a generic methodology has emerged from the joint effort of several industrial companies and academic institutions. EDF R&D, Airbus Group and Phimeca Engineering started a collaboration at the beginning of 2005, joined by IMACS in 2014, for the development of an Open Source software platform dedicated to uncertainty propagation by probabilistic methods, named OpenTURNS for Open source Treatment of Uncertainty, Risk 'N Statistics. OpenTURNS addresses the specific industrial challenges attached to uncertainties, which are transparency, genericity, modularity and multi-accessibility. This paper focuses on OpenTURNS and presents its main features: openTURNS is an open source software under the LGPL license, that presents itself as a C++ library and a Python TUI, and which works under Linux and Windows environment. All the methodological tools are described in the different sections of this paper: uncertainty quantification, uncertainty propagation, sensitivity analysis and metamodeling. A section also explains the generic wrappers way to link openTURNS to any external code. The paper illustrates as much as possible the methodological tools on an educational example that simulates the height of a river and compares it to the height of a dyke that protects industrial facilities. At last, it gives an overview of the main developments planned for the next few years

    Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations

    Full text link
    We review recent progress in modeling credit risk for correlated assets. We start from the Merton model which default events and losses are derived from the asset values at maturity. To estimate the time development of the asset values, the stock prices are used whose correlations have a strong impact on the loss distribution, particularly on its tails. These correlations are non-stationary which also influences the tails. We account for the asset fluctuations by averaging over an ensemble of random matrices that models the truly existing set of measured correlation matrices. As a most welcome side effect, this approach drastically reduces the parameter dependence of the loss distribution, allowing us to obtain very explicit results which show quantitatively that the heavy tails prevail over diversification benefits even for small correlations. We calibrate our random matrix model with market data and show how it is capable of grasping different market situations. Furthermore, we present numerical simulations for concurrent portfolio risks, i.e., for the joint probability densities of losses for two portfolios. For the convenience of the reader, we give an introduction to the Wishart random matrix model.Comment: Review of a new random matrix approach to credit ris

    Price Calibration of basket default swap: Evidence from Japanese market

    Get PDF
    The aim of this paper is the price calibration of basket default swap from Japanese market data. The value of this instruments depend on the number of factors including credit rating of the obligors in the basket, recovery rates, intensity of default, basket size and the correlation of obligors in the basket. A fundamental part of the pricing framework is the estimation of the instantaneous default probabilities for each obligor. Because default probabilities depend on the credit quality of the considered obligor, well-calibrated credit curves are a main ingredient for constructing default times. The calibration of credit curves take into account internal information on credit migrations and default history. We refer to Japan Credit Rating Agency to obtain rating transition matrix and cumulative default rates. Default risk is often considered as a rare-event and then, many studies have shown that many distributions have fatter tails than those captured by the normal distribution. Subsequently, the choice of copula and the choice of procedures for rare-event simulation govern the pricing of basket credit derivatives. Joshi and Kainth (2004) introduced an Importance Sampling technique for rare-event that forces a predetermined number of defaults to occur on each path. We consider using Gaussian copula and t-student copula and study their impact on basket credit derivative prices. We will present an application of the Canonical Maximum Likelihood Method (CML) for calibrating t-student copula to Japanese market data.Basket Default Swaps, Credit Curve, Monte Carlo method, Gaussian copula, t-student copula, Japanese market data, CML, Importance Sampling

    Variational Bayes Estimation of Discrete-Margined Copula Models with Application to Time Series

    Full text link
    We propose a new variational Bayes estimator for high-dimensional copulas with discrete, or a combination of discrete and continuous, margins. The method is based on a variational approximation to a tractable augmented posterior, and is faster than previous likelihood-based approaches. We use it to estimate drawable vine copulas for univariate and multivariate Markov ordinal and mixed time series. These have dimension rTrT, where TT is the number of observations and rr is the number of series, and are difficult to estimate using previous methods. The vine pair-copulas are carefully selected to allow for heteroskedasticity, which is a feature of most ordinal time series data. When combined with flexible margins, the resulting time series models also allow for other common features of ordinal data, such as zero inflation, multiple modes and under- or over-dispersion. Using six example series, we illustrate both the flexibility of the time series copula models, and the efficacy of the variational Bayes estimator for copulas of up to 792 dimensions and 60 parameters. This far exceeds the size and complexity of copula models for discrete data that can be estimated using previous methods

    Copula based simulation procedures for pricing basket Credit Derivatives

    Get PDF
    This paper deals with the impact of structure of dependency and the choice of procedures for rare-event simulation on the pricing of multi-name credit derivatives such as nth to default swap and Collateralized Debt Obligations (CDO). The correlation between names defaulting has an effect on the value of the basket credit derivatives. We present a copula based simulation procedure for pricing basket default swaps and CDO under different structure of dependency and assessing the influence of different price drivers (correlation, hazard rates and recovery rates) on modelling portfolio losses. Gaussian copulas and Monte Carlo simulation is widely used to measure the default risk in basket credit derivatives. Default risk is often considered as a rare-event and then, many studies have shown that many distributions have fatter tails than those captured by the normal distribution. Subsequently, the choice of copula and the choice of procedures for rare-event simulation govern the pricing of basket credit derivatives. An alternative to the Gaussian copula is Clayton copula and t-student copula under importance sampling procedures for simulation which captures the dependence structure between the underlying variables at extreme values and certain values of the input random variables in a simulation have more impact on the parameter being estimated than others .Collateralized Debt Obligations, Basket Default Swaps, Monte Carlo method, One factor Gaussian copula, Clayton copula, t-student copula, importance sampling
    • …
    corecore