
MPRA
Munich Personal RePEc Archive

Copula based simulation procedures for
pricing basket Credit Derivatives

Fathi, Abid and Nader, Naifar

Faculty of Business and Economics, University of Sfax, UR:

MODESFI
”
Institute of the Higher Business Studies,

University of Sfax, UR: MODESFI,

March 2007

Online at http://mpra.ub.uni-muenchen.de/6014/

MPRA Paper No. 6014, posted 29. November 2007 / 09:17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6803904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/6014/


Copula based simulation procedures for pricing 

basket Credit Derivatives 

 
 

Fathi Abid* 

Faculty of Business and Economics, University of Sfax, UR: MODESFI, 

Sfax, Tunisia 

Nader Naifar¤

Institute of the Higher Business Studies, University of Sfax, UR: MODESFI, 

Sfax, Tunisia 

 

First version: March 2007 

 
Abstract 
 
This paper deals with the impact of structure of dependency and the choice of procedures for rare-
event simulation on the pricing of multi-name credit derivatives such as nth to default swap and 
Collateralized Debt Obligations (CDO). The correlation between names defaulting has an effect on the 
value of the basket credit derivatives. We present a copula based simulation procedure for pricing 
basket default swaps and CDO under different structure of dependency and assessing the influence of 
different price drivers (correlation, hazard rates and recovery rates) on modelling portfolio losses. 
Gaussian copulas and Monte Carlo simulation is widely used to measure the default risk in 
basket credit derivatives. Default risk is often considered as a rare-event and then, many studies 
have shown that many distributions have fatter tails than those captured by the normal distribution. 
Subsequently, the choice of copula and the choice of procedures for rare-event simulation govern the 
pricing of basket credit derivatives. An alternative to the Gaussian copula is Clayton copula and t-
student copula under importance sampling procedures for simulation which captures the dependence 
structure between the underlying variables at extreme values and certain values of the input random 
variables in a simulation have more impact on the parameter being estimated than others .  
 
Keywords: Collateralized Debt Obligations, Basket Default Swaps, Monte Carlo method,                         
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1. Introduction 
 
A credit derivative is an over-the-counter derivative designed to transfer credit risk from one party to 
another. By synthetically creating or eliminating credit exposures, they allow institutions to more 
effectively manage credit risks. Four of the most common credit derivatives are credit default swap, 
credit linked notes, total return swap and credit spread options. The dominant product in the credit 
derivatives market is the credit default swap. However, the last ten years or so has seen the growth of 
‘portfolio credit derivatives’ such as basket default swap and Collateralised Debt Obligation (CDO)1. 
These financial instruments have been used successfully by large financial institutions to diversify and 
reduce credit risk. Many empirical works has been done on single name credit derivative products. 
Hull, Predescu & White (2004) analyze the impact of credit rating announcements in the pricing of 
credit default swap. Norden & Weber (2004) analyze the empirical relationship between credit default 
swap, bond and stock markets. Ericsson, Jacobs & Oviedo (2004) investigate the relationship between 
theoretical determinants of default risk (firm leverage, volatility and the riskless interest rate) and 
actual market spread of credit default swap using linear regression. Abid & Naifar (2006 (a)) explain 
empirically the determinants of credit default swap rates using a linear regression. They find that credit 
rating, maturity, riskless interest rate, slope of the yield curve and volatility of equities explain more 
than 60% of the total level of credit default swap. 
 
Actually, more substantial empirical studies are devoted on structured credit derivatives instruments, 
in particular basket default swap and CDO. The main problem in the pricing of such instruments is 
modelling the structure of dependency of the default times. Defaults are rarely observed. Copulas can 
be introduced to model these correlations by using the correlations of corresponding default time. We 
know that Kendall’s tau remains invariant under monotone transformations. This is the foundation of 
modelling the correlation of credit events by using the correlation of underlying default time via 
copulas. Li (2000) present a Gaussian copula method for the pricing of first to default swap. Other 
studies of elliptical copulas with higher tail dependence, such as the t-copula, can be found in Mashal 
and Naldi (2002). The Marshall-Olkin copula is yet another class of copula functions, which stems 
from the multivariate compound Poisson process. In this model, individual defaults are constructed 
from a series of independent common shock. Previous work on the use of the Marshall-Olkin copula 
in the context of credit risk modelling includes Duffie and Pan (2001), Wong (2000), Lindskog and 
McNeil (2003).Hull & White (2004) develop two procedures to pricing tranches of CDO and nth to 
default swap. The first procedure involves calculating the probability distribution of the number of 
defaults by a time T and suited to the situation where companies have equal weight in the portfolio and 
recovery rates are assumed to be constant. The second involves calculating the probability distribution 
of the total loss from defaults by time T. Jobst (2002) propose a pricing model that draws expected 
loan loss of CDO based on parametric bootstrapping through extreme value theory under the impact of 
asymmetric information. Tavares et al. (2004) present a basket model to deal with the Gaussian copula 
smile. They combine the copula model (to model the default risk that is driven by the economy) with 
independent Poisson processes (to model the default risk that is driven by a particular sector and by 
the company in question).Hull and White (2005) introduce the technique of perfect copulas. Their 
copula model can be regarded as ‘perfect’ in that it hits the tranche quotes exactly. The hazard-rate-
path probability distribution is the only input about the underlying copula in order to value a CDO. 
Burtschell et al. (2005) employ the technique of the double Student-t copula model for the calibration 
of CDO. They find that this copula model fit better the features to the CDO market in comparison to 
other models like Gaussian, t-Student, stochastic correlation, Clayton and Marshall-Olkin copulas. 
Madan (2004) provide details for the pricing of nth to default contracts using the one factor Gaussian 
and the Clayton copulas. He model the marginal default time densities using Weibull and Frechet 

                                                 
1 According to SIFMATM, Global CDO issuance through the third quarter of 2006, at $322 billion, has exceeded 
full year 2005 issuance by 20%.  Issuance in the third quarter of 2006, at $117.8 billion, also exceeded issuance 
in the third quarter of last year by 30%. European Securitisation Forum (ESF) Forecasts Issuance to Grow to a 
New Record of €531 Billion in 2007, Led by residential mortgage-backed securities (RMBS), commercial 
mortgage-backed securities (CMBS) and CDO. Then, a 16.4 percent growth rate from the €456 billion issued in 
2006. 
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families and the joint densities are obtained using the method of copula. Verschuere (2006) present a 
factor approach combined with copula functions to price tranches of synthetic Collateralized Debt 
Obligation (CDO) having totally inhomogeneous collateral (the obligors in the CDO pool have 
different spreads and different notional). Sircar and Zariphopoulou (2006) study the impact of risk 
aversion on the valuation of basket credit derivatives. They use the technology of utility-indifference 
pricing in intensity based models of default risk.  
   
 In our paper, we analyse the impact of structure of dependency and the nature of simulation 
procedures on the pricing of multi-name credit derivatives such as nth to default swap and 
Collateralized Debt Obligations (CDO). To express dependencies between times of default, Gaussian, 
student and Clayton copulas have been considered. The copula function links the univariate margins 
with their full multivariate distribution. It presents a useful tool when modelling non Gaussian data 
since the Pearson’s correlation coefficient is adapted for linear dependence and normal distribution. 
One appealing feature of a copula function is that the margins do not depend on the choice of the 
dependency structure and then, we can model and estimate the structure of dependency and the 
margins separately.  
   
The remainder of this paper is organised as follows: section two describes some mathematical 
background about the concept of copula and its properties.  In section three, we present some tools for 
modelling joint default times. Section four and five present a copula based simulation procedures for 
pricing basket default swaps and CDO, assessing the influence of different price drivers (correlation, 
hazard rates and recovery rates) on modelling portfolio losses. Section six summarizes the findings 
and concludes. 
 
2. Stylised facts about Copula functions   
  
The most important problem in the pricing of basket credit derivatives and CDO tranches is the 
modelling of the joint default times. In this section, we will introduce the concept of a copula function. 
Copula was first used in survival analysis and actuarial sciences. Copula functions are getting more 
and more popular credit correlation modelling due to its simplicity and fast computation. Embrechts, 
et al (1999) clarified many issues concerning dependence and its relationship to correlation, especially 
in financial data such as market crashes, credit crises. According to Gennheimer (2002) there are 
several reasons why copulas are such an attractive tool for modelling dependence: 
1. They provide us with a powerful tool for building a large number of multivariate models and are 
extremely useful in the Monte Carlo simulation of dependent risk factors. 
2. They allow us to overcome the fallacies and dangers of approaches to dependence that focus only 
on correlation. 
3. They provide a way of studying scale-free measures of dependence. 
4. They express dependence on a quantile scale, which we will find is useful for describing the 
dependence of extreme outcomes. 
 
Frey & McNeil (2002) analyse default correlation and the pricing and hedging of credit sensitive 
instruments with copulas functions. Jouanin et al (2001) address the problem of incorporating default 
dependency in intensity-based credit risk models by using copulas functions to model the joint 
distribution of the default times. Abid & Naifar (2005, 2006(b)) study the impact of Stock returns 
volatility of reference entities on credit default swap rates using Archimedean copula.  
For n uniform random variables , the joint distribution function C is defined as: nuuu ...,,2,1
 

                           (2.1) 

With θ   is the dependence parameter. 
( ) [ ]nn2211n21 uU,...,uU,uUPr,u,...,u,uC ≤≤≤=θ

We present the following definition for the bivariate case: A copula function is the restriction to 
of a continuous bivariate distribution function whose margins are uniform on [ . A (bivariate) 

copula is a function 
[ ]21,0 ].1,0

[ ] [ 1,01,0: 2 → ]C  which satisfies the boundary conditions:        
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                              (
Similarly, copula satisfies the 2-increasing property:  
                                             ( )

2.2) 

( ) (

( ) ( ) ( ) ( ) [ ].1,0tfor  tt,1C1,tC and 0t,0C0,tC ∈====

) ( ) 0,,,, 112 11222 ≥+−− uCvuCvuC vuCv                                           (2.3) 
For all [ ]1,0in  v,v,u,u .vv and uu and 21212121 ≤≤  
A copula is symmetric if:                            
                              ( ) ( ) ( ) [ ]21,0in  v,u all C for  u,vCv,u = and is asymmetric otherwise.                 (2.4) 
 
Sklar (1959) shows the importance of copulas as a universal tool for studying multivariate 
distributions2. By definition, applying the cumulative distribution function (CDF) to a random variable 
(r.v.) results in a r.v. that is uniform on the interval [0, 1]. Let X a random variable with continuous 
distribution function FX, FX(X) is uniformly distributed on the interval [0,1]. This result is known as 
the probability integral transformation theorem and present many statistical procedures. With this 
result in hand, we may introduce the copula using basic statistical theory. In particular, the copula C 
for (X,Y) is just the joint distribution function for the random couple FX(X), FY(Y) provided FX and FY 
are continuous. 
The previous representation is called canonical representation of the distribution. Thus, copulas link 
joint distribution functions to their margins. Then, in continuous distribution, the problem of obtaining 
the joint distribution has reduced to selecting the appropriate copula. We can build multidimensional 
distributions with different marginals. 
Copula functions allow us to separate the structure of dependency between default times into two 
parts: the first part is the specification of the marginal distribution function (the distribution of default 
time of each obligor. The second part is the choice of the appropriate copula which describes the 
structure of dependency between default times. 
Numerous copulas can be found in the literature (see Nelson (1999) and Joe (1997)). The most 
commonly applied copula function (especially in finance modelling) is the Gaussian copula3. This 
could be justified by the fact that the multivariate normal distribution has two appealing 
characteristics: first, their marginal distributions are normal and second, it can be fully described by 
their marginal distribution and a variance-covariance matrix. For univariate margins F1,…,Fn which 
are Gaussians, the dependence structure among the margins is described by a unique normal copula 
function. Let n1 X,...,X be random variables which are standard normal distributed with 
means ,...,µµ , standard deviations ,...,n1 n1 σσ  and correlation matrixΣ . Then, the distribution 

function  of the random variables ( )n1 u,...,uCΣ { }n,...,1i ,U
i

ii
i ∈⎟⎟

⎠
⎜⎜
⎝ σ

Φ=
X ⎞⎛ µ−

is a Gaussian copula 

with correlation matrixΣ .  denotes the cumulative univariate standard normal distribution 
function.  
 

( ).Φ

The Gaussian copula can be written as: 
( )

     ( )
( )

( ) ( )
( )

∫∫
∞−

−

∞−
Σ νν⎟

⎠
⎞

⎜
⎝
⎛ µ−νΣµ−ν−

Σπ
=

n
1 u

n1
1T

2
nn1 d...d

2
1exp...

det2

1u,...,uC rrrr

                                                

−− ΦΦ 1
1 u

                         

(2.5) 
With 1−Φ is the inverse of the standard univariate Gaussian distribution function. 
By differentiating the precedent equation with respect to n1 u,...,u , we obtain the density of the 
Gaussian copula: 

 
2 The original definition of copula is given by Sklar (1959) and the Sklar’s theorem is considered as the most 
important theorem about copula functions. The problem of obtaining a joint distribution is reduced to selecting 
the appropriate copula. 
3 Credit Metrics TM and KMV model implicitly incorporate copula functions based on the multivariate Gaussian 
distribution of asset value process. 
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( ) ( ) ( )
⎟
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⎠

⎞
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⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ν

ν

−νν−
Σ

= ∑ −
Σ

n

1

1
n1n1

.

.

.
 1 ,...,

2
1exp

det
1u,...,uC ; With ( ) { .n1,...,i ,u i

1
i ∈Φ= }−ν  (2.6) 

The following algorithm generate random variates ( )n1 u,...,u  which are determination of correlated 
uniform variates on [0,1] from the Gaussian copula with the correlation matrixΣ : 

- Find the Cholesky decomposition4 A of the correlation matrixΣ , such that ;  TAA ⋅=Σ
- Simulate n independent standard normal random variates ( )Tn21 z,...,z,zZ = ; 
- Set ; ZAx ⋅=
- Set x back to an n-dimensional vector u of uniform variates on [ ]1,0 by computing ( )xu Φ= . 

The vector u is a random variate from the n-dimensional Gaussian copula C . Σ

 

 
 

Figure 1:1000 simulated standard uniform random variables under Gaussian copula  
 

 
If we use a Gaussian copula, we preserve the underlying distribution of the individual random 
variables but the joint distribution is like a multidimension Gaussian. This naturally assigns very little 
weight to the tails. In reality, we find that within the financial markets, tail events occur much more 
frequently. So we would like a joint distribution which has fatter tails but preserves the same (bell 
shaped, non-skewed) characteristics of the Gaussian, hence we use the t-Student copula.  

                                               ( ) ∫ ⎟
⎟
⎠
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⎞

⎜
⎝
⎛ +ν
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=
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−

ν

x 2
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dss1

2

2
1
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The t-student copula with the correlation matrixΣ  and ν  degrees of freedom is presented as follow: 
 

                                                

 
 
          (2.8) 

With: 
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( )( )
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1

T

,n1, dv...dvuvuv11k...u,...,uC
1
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1
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−
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−
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4 A symmetric and positive definite matrix can be efficiently decomposed into a lower and upper triangular 
matrix. For a given matrix, this is achieved by the LU decomposition which factorizes A=LU. If A satisfies the 
above criteria, one can decompose more efficiently into , where L (which can be seen as the ``matrix 
square root'' of A) is a 

TLLA =
lower triangular matrix with positive diagonal elements. L is called the Cholesky triangle. 
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2

2
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To simulate random variates from the t-Student copula  with the correlation matrix  and Σν,C Σ ν  
degrees of freedom, we can use the following algorithm: 

- Find the Cholesky decomposition A of the correlation matrixΣ , such that ;  TAA ⋅=Σ
- Simulate n independent standard normal random variates ( )Tn21 z,...,z,zZ = ; 
- simulate a random variate, s, from  distribution, independent of Z; 2

νχ
- Set ; ZAy ⋅=

- Set 
s

yx ν
= ; 

- Set x back to an n-dimensional vector u of uniform variates on [ ]1,0 by computing ( )xtu ν= . 
The vector u is a random variate from the n-dimensional t-Student copula . Σν,C

 
 

                               
 

Figure 2: 1000 samples from t-Student copula with degree of freedom equal to 7. 
 
In terms of the appropriate choice for the number of degrees of freedom, it is often necessary to carry 
out some statistical tests with historical data to ascertain how fat we require the tails to be, Galiani 
(2003) use an Exact Maximum Likelihood Method (EML). Other woks explain how to calibrate t-
student copula to real market data (Mashal and Zeevi (2003), Romano (2002), Meneguzzo and 
Vecchiato (2002)…). The difference between Gaussian copulas and the t-Student copulas can be 
described with the concept of tail dependence. If a bivariate copula ( )v,uC such as:   

 ( ) 0
u1

u2u,uC1lim U1u
>λ=

−
−+

→
,     (2.10) 

Then C has upper tail dependence with parameter Uλ . If: 

                                                              ( ) 0
u

u,uClim L0u
>λ=

→
                                                             (2.11) 

Then C has lower tail dependence with parameter Lλ . 
Numerous copulas can be found in the literature (see Nelson (1999) and Joe (1997)). The 
Archimedean copula has many families that are capable to present different structure of dependency 
and different methods are developed to estimates its parameters. We only need to find functions which 
will serve as generators and define the corresponding copula. Clayton copula is an example of 
Archimedean copula. This family proposed by Clayton (1978) is the following: 
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Let ( ) ( )
θ
−

=Φ
θ− 1tt  with [ ) { }0/,1 ∞−∈θ , then: 

                                                  ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−+= θ

−θ−θ−
θ 0,1vumaxv,uC

1
clayton                (2.12) 

If , then  and we can simplify the above expression:  0>θ ( ) ∞=φ 0

 ( ) ( ) θ
−θ−θ−

θ −+=
1

clayton 1vuv,uC   (2.13) 
With  expresses the degree of dependence among the marginal components.  θ
To illustrate the range of bivariate behaviour that can be represented by Clayton copula, consider the 
following figures: 
 

   
                                 

Figure 1: 1000 simulated standard uniform random variables under Clayton copula. 

The Clayton copula has lower tail dependence but not upper tail dependence. The contour generated 
by the Clayton copula implies fat tailed distribution. The contour or the level curves of a copula   are 
given by 

C
( ) ( ){ }tv,uC/Iv,u 2 =∈ . 

 
3. Modelling joint default times 
 
In this section, we present some mathematical background for modelling joint default times. We 
assume a probability space { }( )ΡℑℑΩ ≥ ,,, 0tt , whereΩ is the underlying probability space containing all 
possible events over a finite time horizon. ℑ  is a σ -field representing the collection of all events. 

 is a filtration that carries information with times and { } 0tt ≥ℑ Ρ  is a probability measure5. The pricing 
is assumed under no arbitrage and then, Ρ  is risk-neutral measure. 
Default time iτ for each obligor should be a random variable and the event of default should 
be known for everybody at any times because we assume a perfect market with a free flow of 
information. Default is a stopping time 

{ ni ,...,1= }

τ  with respect to the filtration:{ } 0  , ≥∀ℑ⊂< tt tτ . Let 
( ) ( )ttF ≤Ρ= τ  be the distribution function and ( )tf is the density function of stopping time, the hazard 

rate of h τ  or intensity process is defined such that we have for the probability of default until time (t 
+ ) given survival till t is given by:  t∆

                                                 
5 According to Bielecki et al (2005), the probability space is endowed with a filtration FH ∨=ℑ , where the 
filtration H carries information about evolutions of credit events, such as changes in credit ratings of perspective 
credit names and F is some reference filtration. 
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                                         ( ) ( )
( ) ( )

( ) ( )
t

t/tttPlim
dt

tdF
tF1

1
tF1

tfth
0 ∆

>τ∆+≤τ<
=×

−
=

−
=

→∆
   (3.1) 

 
With ( )tdtttdF >+≤<= ττ ,  , ( ) ( ) ( )tStPtF =>=− τ1 is called the survival function that gives the 
probability that a security will attain age t .the hazard rate function gives the instantaneous default 
probability for a security that has attained age t .The marginal survival distributions  is assumed 
to be smooth and strictly decreasing, this can be written as: 

( )ii tS

                                                                                                 (3.2) ( ) ( )
( )∫

=−=
−

t

0
i dssh

iiii etF1tS
 

 Then                                                                                                                     (3.3) ( )
( )∫−

−=

t

i dssh

ii etF 01

( ).ih is the default intensity process for entity i. The default times iτ are defined:  

                                                                                                             (3.4) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥≥= ∫
t

iii dssht
0

:0inf: θτ

Where iθ has an exponential distribution with unit intensity6. 
 
For a long time, finance and risk management treated dependence and correlation as basically 
equivalent. Based upon law of large number arguments, it was assumed that risk factors were normally 
distributed. This implies that the joint distribution function is determined by the vector of means and 
the covariance matrix. Effects regarding correlation are particularly strong for some of the most recent 
innovations in credit markets, namely single-tranche CDOs and basket default swap. Consequently, to 
value such a contract the joint distribution of default times iτ : 
                                                         ( ) ( )nnn ttPttF ≤≤= ττ ,...,,..., 111                                                  (3.5) 
The joint survival time distribution is given by: 
                                                         ( ) ( )nnn ttPttS >>= ττ ,...,,..., 111                                                   (3.6) 
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For deterministic intensities, this framework converges to Li (200) model .The times of default iτ  are 
defined as the first time the default countdown processes: 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−∫

=

t

i dssh

i et 0

)(

:λ reach the level of the trigger variables : iU
                                                                     ( ){ }iii Utt ≤≥= λτ :0inf:  (3.8) 
 
The choice of a dependence structure between default times drives the prices of basket default swaps 
and CDO tranches. Copulas functions allow us to separate the problem of modelling the default times 
into two parts: first, the specification of the marginal distribution functions and second, the choice of a 
suitable copula which describes the dependence structure between the default times. Then, the 
marginal distributions together with the choice of a suitable copula are sufficient to specify the full 
joint distribution of the default times. 
The benefits for using copulas to modelling joint default times:  
- Maintains input correlation matrix reasonably well.  
- Distribution-free approach.  

                                                 
6 The exponential distribution is used to model Poisson processes, which are situations in which an object 
initially in state A can change to state B with constant probability per unit time λ. The time at which the state 
actually changes is described by an exponential random variable with parameter λ 

 8

http://en.wikipedia.org/wiki/Poisson_process


- Can be employed in simulation procedures.  
- Allows for various dependence structures (including tail dependence).  
- Generates an exact joint distribution.  
 
4. Basket default Swaps spread 
 
The most common type of basket default swaps is the first-to-default swap (FTDS), where the seller 
compensates the buyer any loss of the principal and also, possibly, the accrued interest of the asset in 
the reference basket which defaults first. The main difference between (FTDS) and a credit default 
swap (CDS) is the event causing payout for the contract (in one case, it is the first default of any of a 
list of names and in the other is default of a single name). A nth to default basket default swap gives 
protection against the nth default in the underlyings pool of credits. We are going to present different 
pricing methodologies for this product.  

 
Regular Periodic premium till contract 

expiration or nth credit event occurs Protection 
Buyer 

Protection 
seller 

 
Figure 1: nth to Default Basket 

 
4.1. Pricing under Gaussian copula and t-student copulas using Monte Carlo simulations 
 
The pricing of nth to default basket default swap depends on the time the nth credit defaults. The default 
times of different obligors are connected to each other by a Gaussian or t-student copula. The marginal 
default times of all credits in the basket must be known.  
Suppose a basket of credit default swap with the following characteristics: 

 
Basket default swap 

Initial Par Value 
A  is the notional amount of the contract. The 

total value of the basket is  ∑=
=

N

1i
iAV

Number of obligors N 

Payment frequency 
δ =1 for annual payment frequency, iδ i 
δ =0.25 for quarterly payment frequency… 

Maturity date T 
Basket seniority 

 
n=1 for first to default basket, n=2 for second 

to default basket 
Fair price s 

Table 1: Basket default swap notations 
 
According to Galiani (2003), the risk neutral price of the nth to default basket swap is computed by 
equating the expected value of the discounted premium payment leg (fixed cash flow to be paid till 
contract expiration T or nth credit event occurs) with the expected value of the discounted default leg 
(contingent payment in case of default), under the equivalent martingale measure . Under this 
measure, the price processes of any tradeable security, discounted by the money market account, are 

-martingales with respect to some filtration.  

*Ρ

*Ρ

 

Reference entity 

Payment in case of nth Default

(Basket of names) 
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The premium legs are paid as long as the underlying credit has not defaulted until the maturity of the 
contract. The present value of the premium leg of the nth to default basket default swap can be 
computed as follows:                                          

                                                                     (4.1.1) ( ) ( ) { }
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑

=
>

K

i
tin ntpEE

1

I PL τδβ

Where ( ) the premium leg as function as the fair spread of the contract (f) as a fraction of is 
notional amount (A) in basis point, 

A.fp =
{ }k,...,1i ,t i ∈ are the payment dates either until T or until T<τ in 

case of default, is the frequency of payment and iδ ( )tβ is the discount factor. 

Let Let ( ) ( ) ( )ttF n
n ≤Ρ= τ*  be the distribution function of , then we can rewrite the premium leg as:                            

nτ

                                                               (4.1.2) ( ) ( ) ([∑
=

−=
K

i
i

n
n tFtpE

1

1PL δβ )]
 
The second part for pricing nth to default swap is the default leg [ ]nDLE . The default leg ban be 
expressed as the difference between the expected discounted default payment   and the 
expected discounted accrued premium

[ nDPE ]
[ ]nAPE . Then, [ ]nDLE = [ ]nDPE - [ ]nAPE . 

With:            

  [ ] ( ) ( ) { }⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Ι−= ∑

=
≤

N

j
T

nn
n nRAEDPE

1

1. ττβ

                                                                         (4.1.3) ( ) ( ) ( ) ( )∑ ∫
=

=−=
N

j

T
jn

n
nn dtFRA

th

1 0

 1 τβ

    We notice that is the distribution function of n( ) ( )tF jn
n

th = th basket default relative to the jth defaulter 
for allowing different recovery rates for the obligors.  

[ ] ( ) { }⎥
⎥
⎦
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⎢
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t
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1
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K
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t

t ii

i
i

i
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1 1

1

1

δβ∑ ∫
= −

−

−
−
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=  (4.1.4) 

 
The fair spread of the basket default swap is given as: 
                 

 
 
 
              (4.1.5) 

 

[ ]
[ ] [ ]

( ) ( ) ( ) ( )

( ) ( )[ ] ( ) ( ) ( )
 

1

1

1 1

1
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1
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ii

i
i

n

N

j

T
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n
nn

nn

n
i

i

th

dvFv
tt
tv

tFt

dtFR

APEPLE
DLE

s

δβδβ

τβ

Pricing a nth to default basket default swap under Gaussian and t-student copula using Monte Carlo 
simulations can be presented as the following steps: 
Step 1: simulate N-dimensional vector of correlated uniform random variates from a copula 
( or ) as described in § 2. ΣC Σν,C
Step 2: Translate the corresponding uniform variates into default time for each obligors. 
Step 4: Sort the credits with respect to their default time iτ and determine the nth default time  For 
first to default swap, we find the first default time . 

.nτ

ii

* min τ=τ
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Step 5: Based on specific realization of Determine the present value of the premium leg . nτ [ ]nPLE
Step 6: Determine the present value of the default leg [ ]nDLE . 
Step 7: Repeat all steps above until the required number of scenarios has been simulated and the 
sample average fair spread of the nth to default basket swap as described in the equation (4.1.5). 
 
To determine the impact of the structure of dependency via Gaussian and t-student copulas on the nth 

to default basket swap spread, a simulation study was performed for different baskets of different A 
50000 Monte Carlo simulations is performed.  
 
Basket default swap (BDS 1): Homogeneous baskets of five names, maturity date T=5, constant 
default intensities h=0.01; constant interest rate 5%, a deterministic recovery rate of 40%, δ =0.25 for 
quarterly payment frequency and correlation between each pair of entities rho=0.3 
 
Basket default swap (BDS 2): Homogeneous baskets of five names, maturity date T=5, constant 
default intensities h=0.01; constant interest rate 5%, a deterministic recovery rate of 40%, δ =0.25 for 
quarterly payment frequency and correlation between each pair of entities rho=0.6 
 
Basket default swap (BDS 3): Homogeneous baskets of 10 names, maturity date T=5, constant default 
intensities h= 0.05; constant interest rate 5%, a deterministic recovery rate of 40%, δ =0.25 for 
quarterly payment frequency and correlation between each pair of entities rho=0.5 
 

Fair price 
(Gaussian copula) 

 
Fair price 

(t-student copula 
First to 
default 

Second to 
default 

Third to 
default 

First to 
default 

Second 
to 

default 

Third to 
default 

(BDS 1) 446.7645 140.4528 52.8958 385.7386 153.3905 40.3990 
(BDS 2) 294.6252 138.3890 78.8875 302.1418 122.9784 93.5541 

(BDS 3) 1.1597e+003 690.5959 480.8674 1.7200e+003 810.5678 447.4202 

  Table 2: Basket default swap premiums(on basis points) 
 
We notice that the premium computed under Gaussian and t-student copulas are different. Burtschell 
et al (2005) find that Gaussian and t-student copulas lead to quite similar premium for first to default 
swap when they change the number of names in the basket. Similarly, the differences are minor when 
they change the rank of default 

 
  
 
 
 
 
 
 

 
Figure 2:  Gaussian copula spread of first default swap as function of correlation 

using Monte Carlo simulation. 
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4.2. Pricing under one factor Gaussian copula model 
 
In this section, we implement a one factor model approach first presented by Laurent and Gregory 
(2003), and Andersen, Sidenius and Basu (2003). The one factor Gaussian copula is the copula 
associated with multivariate normal random variables that display the correlation structure induced by 
linear dependence on a single common normally distributed factor. This model results in semi-
analytical expressions for the price of basket credit derivatives, avoiding the time consuming 
simulation step needed with the Monte Carlo method. In the semi-explicit approach, we must 
determine the probability  that a certain number of credits has defaulted at time t and the 
probability that at time t, credit i has defaulted as n

( )( mtNP = )
th credit in the basket. Given these probabilities, we 

can compute analytically the present value of the premium and default leg and then, the price of the nth 
basket default swap. 
Suppose that are marginally standard normal variates. In a one factor model we write: m1 V,...,V

                                                  (4.2.1) 

 
( ) i

2
iii a1CatV ε−+=

With C is a common factor for all firms and iε  is the error terms. C and iε  are independent standard 
normally distributed random variables and then, ( ) jiji aaV,Vcov =  and The term a( ) .1VVar i = i 
determines how strong Vi is linked to the evolution of the common factor C. 
The default of an obligor is triggered when ii KV ≤  with is the default barrier. iK
The link between the Vi and the default time iτ  is given via the marginal distribution of the default 
time:                                                     ( ) ( ) ( )iiii KVPtPtF ≤=≤τ=                                                  (4.2.2) 
             , with is the inverse cumulative distribution function. ( )[ tFK i

1
i

−Φ= ] 1−Φ
The conditional default probability that credit i defaults at time t conditional on C is : 

                                ( ) ( ) ( )[ ]
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−Φ
Φ=≤=

−

2
i

ii
1

iii
a1

CatF
C\KVPC\tp  (4.2.3) 

The times of default conditionally on C are independent. The probability of default joint is written as:  

                                          ( ) ( )[ ] ( )∫ ∏
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∞− =

−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
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1

n1 ,dccg
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catF
t,....,tF  (4.2.4) 

                                           ( ) ( )[ ] ( ) .dccg
a1

tFca
t,....,tS

n

1i 2
i

i
1

i
n1 ∫ ∏

∞+

∞− =

−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

Φ−
Φ=  (4.2.5) 

With ( )
π

=
−

2
ecg

2/c2

 represent the density function of C. 

The pricing of nth to default basket default swap involve the knowledge of risk neutral probability of 

nth default according to time:                                            (4.2.6) ( ) ( ) ( ,dccgc\tqt,...,t,tS
n

1i
in21 ∫ ∏=

+∞

∞− =
)

)With  is the survival function conditional to credit i. The number of default until time t is 

presented via the following process:          .                                                          (4.2.7) 

( C\tq i

( ) { }∑=
=

≤

n

1i
ti

ItN τ

The probability of nth to default in the basket following the one common factor can be written as: 
                                                  ( )[ ] ( )[ ] ( )∫ === cdcgc\ntNPntNP  (4.2.8) 
We must determine ( )[ ]C\ntNP = , with N is the total number of credits in the basket 

.  For , then no default in the basket. The conditional probability of not default can be 
{ N,...,1,0n = }

written as :  
Nn ≤ 0n =

 
     (4.2.9) ( )[ ] ( )∏

=

==
n

1i
i .C\tqC\0tNP
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The conditional probability of one default ,1n =  can be written as: 
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We use (4.2.9) and (4.2.1), then:  

                                            , (4.2.11) [ ] ( )[ ] (∑===
=

n

1i
i C\twC\0tNPC\1)t(NP )

 ( ) ( )
( )C\tq

C\tq1
C\tw

i

i
i

−
= . 

We repeat the same procedure to nth default in the basket, { }N,...,3,2n =  we can easily verify: 
[ ] ( )[ ] ( )∑=== )k(w,...,1wC\0tNPC\1)t(NP pp  

The nth survival function can be presented as follows:  ( ) ( ),tPtS nn >τ=  

 
( ) ( )[ ],ntNPtSn <=   

                                          (4.2.12) 

With  is the nnτ th default time. 

( ) ( )[ ]∑
−

=

==
1n

0j

n .jtNPtS

The premium legs are paid as long as the underlying credit has not defaulted until the maturity of the 
contract. The accrued premium payments are taken into account. We suppose that free risk interest rate 
and recovery rate are constant. The present value of the premium leg of the nth to default basket default 
swap can be computed as:  

                                                                                               (4.2.13)  ( ) ( ) { }⎥⎦
⎤

⎢⎣
⎡

∑=
=

>

I

1i tiinn nI tpEPLE τβδ

Where is the nnp th primium leg, { }I,...,1i ,t i ∈ are the payment dates of the premium leg, is the 

frequency of payment and β is the discount factor. We combine (4.2.12) and (4.2.13), we can 

rewrite the present value of the premium leg of the n

iδ

( )t
th to default basket default swap as: 

                                                                                 (4.2.14) [ ] ( ) ( )[∑ ∑ ==
=

−

=

I

1i

1n

0n
iiinn ntNPtpPLE βδ ]

The second part for pricing nth to default swap is the default leg [ ]nDLE . We suppose that the basket is 

composed by homogeneous credit with the same notional and then, the same recovery rate. The loss in 

case of default can be written as:  

                                    [ ] ( ) ( ) { }[ ] ( ) ( ),tdSt)R1(I R1EDLE
T

0

n
T

n
n n ∫ β−−=τβ−= ≤τ                                     (4.2.15) 

 With is the maturity date. The integration of the precedent equation can be written as: T

                                     [ ] ( ) ( ) ( ) ( ) ( )[ ]∫+−−= T
0

nn
n tdtSTST1R1DLE ββ    (4.2.16) 

 
Following the hypothesis of risk neutral probability and constant free risk interest (r) The loss in case 
of default can be written as:  

                                        , (4.2.17) [ ] ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
∫−−−= −−
T

0

rtnnrT
n dtetSrTSe1R1DLE
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The term of pricing a basket default swap (spread: S) can be computed by dividing the present value of 
the default leg  through the present value of the premium leg[ nDLE ] [ ]nPLE  : 

 

 

[ ]
[ ]n

n

PLE
DLE

s =

Suppose a basket default swap with 20 names with constant nominal amount and assuming correlation 
matrix with one factor 6.0a =  ( ρ=a ) and a recovery rate of R= 40%. We can find the ongoing 
premiums and see the effect of hazard rate. 
 
 nth to default h=0.01 h=0.04 h=0.06 h=0.08 

1 419.11 1313.2 1860.6 2410.9 

2 229.91 852.5 1219.5 1607.3 

3 159.88 648.5 943.3 1238.1 
4 118.38 511.1 779.5 1019 
5 87.49 406.6 659.8 872 

 
 
 
 
 
 

Table3: Spread of nth to default swap with n=20, correlation factor 6.0=a  
and recovery rate R=40%. 

 
Note that the effect of hazard rate is important for the pricing of the nth to default swap. For h=0.01, 
the spread of first to default swap is 419.11 basis point. However, for h=0.08, the spread of first to 
default swap is2410.9. Indeed, the highest spread always defaults first since the value of hazard rate 
reflect the intensity of default probability. 
 

                                         
                            

Figure 3: Spread of nth to default swap for different hazard rates. 
 
Figure 4 shows that spread of basket default swap decrease according to the number of defaults with 
different hazard rate. From the point of view of the protection seller, the higher the nth to default, the 
less likely the spread is to pay. Similarly, we notice that the level of spread increase when the hazard 
rate increase.  
Now, assuming hazard rate h=0.06 and a recovery rate of R= 40%. We can find the ongoing premiums 
and see the effect of correlation factor. 
 
 
 
 
 
 
 
 

Table 4: Spread of nth to default swap with n=20, h=0.06 and recovery rate R=40%. 

nth to default 0a =  1.0a =
 

3.0a =
 

6.0a =
 

1 8449.1 6130.5 3635.6 1860.6 

2 3695.2 2925.1 2004.2 1219.5 

3 2205.8 1817.3 1360.5 943.3 
4 1421.9 1219.9 993.8 779.5 
5 903.9 834.8 751.6 659.8 
 

 14



 

 
 

Figure 4: Spread of nth to default swap for different correlation factors. 
 

 
Figure 5:  one factor Gaussian copula spread of first default swap as function of correlation 

 
Similarly, Figure 5 shows that spread of basket default swap decrease according to the number of 
defaults with different correlation coefficient. However, we notice that the level of spread increase 
when the correlation coefficient increase.  

 
4.3. Pricing under one factor Clayton copula  
 
The structure of dependency via Clayton copula in credit risk analysis has been considered by many 
authors like Laurent and Gregory (2003), Madan et al (2004), Burtschell et al (2005). Let C any 
positive random variable with  be the marginal density. C is called the common factor. The 
conditional distribution function as conditionally independent given C is some distribution function 

 : 
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i
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The joint density of variables is given by: iX

           (4.3.2) ( ) ( ) ( ) ( )
( )( )

( ) ( )cdcfecdcfxGxxF

M

i
ii xGLnc

i
c
i

M

i
M ∫∫

∞∞

=

∑
===∏=

00
1

1
1,...,

                                                                                                                         (4.3.3) ( )( ⎟
⎠
⎞

⎜
⎝
⎛

∑−ψ=
=

M

1i
ii xGLn )

where  is the Laplace transform of C and . From (4.3.2), we can present the 

implied marginal densities: 
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                                                         ( )( )( )ii xGLn−ψ=        (4.3.4) 

Then: ( ) ( )( )ii
1 xF

ii exG
−ψ−=                              

Substituting (4.3.4) into (4.3.3),, we obtain: 

( ) (( )⎟
⎠
⎞

⎜
⎝
⎛
∑ψψ=
=

−M

1i
ii

1
M1 xFx,...,xF )  

A typical example is the Clayton copula where the variable C has a Gamma distribution with 

parameter
θ
1 , where θ . Then, we obtain: 0>
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⎟
⎠
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1
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( ) 1uu1 −=ψ θ−− . 

Then,                                                      ( ) θ
−

=

θ− ⎟
⎠
⎞

⎜
⎝
⎛
∑ +−=

1
M

1i
iM1 1Muu,...,uC         (4.3.6) 

 
The conditional default probability that credit i defaults at time t conditional on C is given by 
equation(4.2.3) in case of one factor Gaussian copula. In the one factor Clayton copula: 

 
                                       (4.3.7) 
 

The joint survival function on one factor Gaussian copula is given by (4.2.5). In the one factor 
Clayton copula: 

( ) ( )( )( )θ−−= tFCtp ii 1expC\

                                     ( ) ( )( ) dcCetpttS
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                        (4.3.8) 

 
 
 
 
                      

 Clayton
 18.0=θ

Gaussian 
Rho=0.3 

Clayton
36.0=θ

 

Gaussian
Rho=0.5

Clayton
66.0=θ  

  Gaussian 
Rho=0.7    

First to default 462.6 454.9 293.8241 287.8186 110.6611 92.6339 

                            Table 5: Spread of nth to default swap under one factor Clayton copula 
 

 

                                            
                      
                             Figure 6:  Spread of first default swap as function of theta (one factor Clayton copula) 
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4.4. Pricing under Optimised Monte Carlo simulations via Importance sampling 
 
Variance reduction has always been a central issue in Monte Carlo experiments. Importance sampling 
is a variance reduction technique that can be used in the Monte Carlo simulation. The idea behind 
Importance sampling is that certain values of the input random variables in a simulation have more 
impact on the parameter being estimated than others. If these "important" values are emphasized by 
sampling more frequently, then the estimator variance can be reduced.  
 
Joshi & Kainth (2004) apply importance sampling to the pricing of nth to default credit swaps within 
the Li model and obtain stable and sizeable speed ups. They show that Monte Carlo simulations in the 
Li model can be slow to converge and present procedures for accelerating the computation of prices 
and sensitivities to hazard rates. Glasserman &Li (2005) develop importance sampling (IS) procedures 
for rare-event simulation for credit risk measurement. They focus on the normal copula model 
originally associated with J.P. Morgan’s CreditMetrics system. Dependence between obligors is 
captured through a multivariate normal vector of latent variables; a particular obligor defaults if its 
associated latent variable crosses some threshold. Glassserman &Juneja (2006) have considered the 
problem of simultaneous estimation of the probabilities of multiple rare events. Successful 
applications of importance sampling for rare event simulation typically focus on the probability of a 
single rare event. As a way of demonstrating the effectiveness of an importance sampling technique, 
the probability of interest is often embedded in a sequence of probabilities decreasing to zero. They 
shows that Importance sampling based on exponential twisting produces aymptotically efficient 
estimates of rare event probabilities in a wide range of problems. 
 
According to Milicia (2006), Importance Sampling is a change of probability measure which takes as 
from the original probability measure to a new, biased, one which better suits our purposes 
Assume we want to estimate by simulation the probability p of an event ( )tX ≥  where X is a random 
variable with probability density function ( )xf . Importance sampling is concerned with the 
determination of an alternate density function ( )xf Θ  , usually referred to as a biasing density, for the 
simulation experiment. This density allows to the above event to occur more frequently, so the 
sequence lengths δ gets smaller for a given estimator variance: 

 
  
                                            (4.4.1) 

 

( ) ( ) ( )
( )

( ) ( ) ( )( )∫ ≥=≥=≥= ΘΘ
Θ

XLtXEdxxf
xf

xftxtXEp

                                                                       ( ) ( )
( )xf
xfxL

Θ
=                                                    (4.4.2) 

( )xL  is the the Radon-Nikodym derivative or likelihood ratio of the change of measure. The 
Importance sampling estimator is then: 
 

                                                    ( ) (∑ ≥=
=

K

1i
iiIS XLtX

K
1p )  (4.4.3) 

Where  Θf~Xi

 

In order to identify successful IS techniques, the variance ratio
2
IS

2
MC

σ
σ , and this can be interpreted as the 

speed-up factor by which the Importance sampling estimator achieves the same precision as the Monte 
Carlo estimator. 
Joshi and Kainth (2004) explain the implementation difficulties of Li (2000) model. For a short team 
deal, many Monte Carlo paths result in a zero or constant pay-off. Then, they sample more intensively 
the areas where the pay-off is rapidly changing. For basket credit derivative, this means ensuring that 
every path has enough defaults to result in a non-trivial pay-off and achieving a reasonable distribution 
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within that area.  Subsequently, they achieve this by redefining the probability measure, and weighting 
the pay-off’s value to compensate for the adjustment.  
Assume a basket default swap of size N, The Joshi and Kainth method first determines whether a 
particular asset defaults within the life of the swap, and, if a default is to occur, it then determines the 
time of the default in the interval [0; T]. Only the default probabilities are changed7. 
 
Let default indicator variables ( TIY ii )≤= τ , (i=1,…,N) be the indicator variables for defaults which 
occur within the lifetime of the contract. Conditional default probabilities are then given by ( )TFP 11 =  
and ( ) ( 1i1i1i1ii ,...,/TF,...,/1YPP −− === )ττττ , i=2,…N. 
The importance sampling probabilities are defined as: 

N
np1 = , 
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Joshi and Kainth (2004) algorithm can be presented as: 
  
Step1: draw a N-dimentional vector U uniform variates 

Step2: Let 
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Step 3: Calculate the weight (likelihood ratio): 
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Once N1,...,ττ have been generated, we evaluate ( )N1,...,V ττ and return the weighted 
estimate ( L ,...,V N1 )ττ  with the weight for the path. N21 L...LLL =

To implement this algorithm, we must sample from the conditional default time distribution in 
(4.4.6). Let be the positive definite matrix, let W'AA ⋅=∑ ZA ⋅= , then W .Then 
conditioning on 

( )( iii F )τ1−Φ=

iττ ,...,1  is equivalent to conditioning on  iZZ ,...,1

                                                 
7 Chen and Glasserman (2006) show that the importance sampling probabilities used by Joshi and Kainth (2004) 
may be interpreted as follows: Consider an urn initially containing n black balls and N-n white balls. Balls are 
drawn from the urn at random, without replacement. If j < n of the first i-1 balls are black, then the probability 
that the ith draw produces a black ball is (n-j)/(N-i+1). All n black balls will eventually be drawn. 
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Milicia (2006) adopt the Importance Sampling method8 to other elliptical copula like t-student 

copula. Let ZA
s
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446.7645 

(0.0084788) 
385.7386 

(0.008478) 
438.11 

(0.08478) 
439.36 

(0.000612) 
  

          Table 6: Spread of First to default swap under Monte Carlo and Importance sampling 
 
We notice that the spread of first to default swap change with the structure of dependency and the 
simulation techniques. Then, the choice of copula and the choice of procedures for rare-event 
simulation govern, also, the pricing of basket credit derivatives. 
 
5. Collateralized debt obligation spread 
 
Collateralized debt obligation (CDO) refers to securitization9 of pools of assets. A CDO cashflow 
structure allocates interest income and principal repayments from a collateral pool of different debt 
instruments to a prioritized collection (tranches) of CDO securities. Following the classification of 
Tvakoli (2003), a CDO is backed by portfolios of assets that may include a combination of bonds, 
loans, securitised receivables, asset-backed securities, tranches of other CDO’s, or credit derivatives 
referencing any of the former. Some market practitioners define a CDO as being backed by a portfolio 
including only bonds. A Collateralized loan obligation (CLO) is a type of CDO that is backed by a 
portfolio of loans. A Collateralized bond obligation (CBO) is a type of CDO that is backed by a 
portfolio of bonds issued by a variety of corporate or sovereign obligors. The development of 
structured credit derivatives leads to the emergence of synthetic Collaterized Debt Obligations which 
transfer the risk of a pool of single-name Credit Default Swaps. This realizes an exposure to a variety 
of names. 
 

                                                 
8 We use the Matlab code for Importance Sampling as implemented in the paper of Milicia (2006).  An 
electronic version of the article and the corresponding Matlab code are available online at 
http://www.brics.dk/~milicia/libraryGM.htm 
9 According to Tvakoli (2003), securitization has been a means for banks to reduce the size of their balance 
sheets and to reduce the risk on their balance sheets. This allowed banks to do more business and allowed 
investors accsess to diversified pools of assets to which they otherwise not have had access.  
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                                                         Figure 7: CDO 
 
Figure 6 illustrate an example of a simple CDO structure with three tranches: equity, mezzanine and 
senior. Suppose that the total CDO notional is 100 millions and during the lifetime of CDO some debts 
in the collateral portfolio might default. At maturity, if the total default loss is less than 10 millions, 
only the equity tranche is affected. If the total losse is between 10 and 30 millions, the equity tranche 
does not get the principal back and the mezzanine gets only part of it. If the loss is more than 30 
millions than the equity and mezzanine do not get anything back and senior tranche gets is left. 
From an economic perspective, CDO structures thus create custom exposures that investor’s desire 
and cannot achieve in any other way. However, CDO address some important market imperfections. 
First, banks and certain other financial institutions have regulatory capital requirements that make it 
valuable for them to securitize and sell some portion of their assets, reducing the amount of 
(expensive) regulatory capital that they must hold. Second, individual bonds or loans my be illiquid, 
leading to a reduction in their market values. Securitization may improve liquidity, and thereby raise 
the total valuation to the issuer of the CDO structure. Third, adverse selection10 can be mitigated by 
securitization of assets in a CDO. The seller achieves a higher total valuation (for what is sold and 
what is retained) by designing the CDO structure so as to concentrate the “lemon’s premium”11 into 
small subordinate tranches, leaving the large senior tranch relatively immune to the effects of adverse 
selection.According to Duffie & Gârleanu (2001), the effect of adverse selection can be discovered in 
the transfer of bank loans or junk bonds. There is an informational asymmetry between the potentially 
better-informed seller of such assets and the potentially uninformed buyer, so there is a price reduction 
sometimes called a lemon’s premium. 
 
 There are a number of ingredients involved in pricing individual tranches: default probability, 
recovery rate and default correlation. The first two are self-explanatory. Correlation, however, deals 
with the distribution of defaults throughout a portfolio and the likelihood of a single default causing a 
succession of defaults. Mahadevan and Schwartz (2001) identify three broad types of CDO pricing 
methodologies:  rating methodologies that infer a credit rating for the CDO from the ratings of its 
constituent parts and the relationships between them12which is then used to price the CDO off 
similarly rated bonds and CDOs.  Market value methodologies that essentially equate the CDO price to 
the sum of the market values of the constituent parts (Duffie & Gârleanu (2001), Mashal (2002)…). 
Finally, Cash flow methodologies that involve discounting back simulated future cash flows.  
 

                                                 
10 There may be a significant amount of private information regarding the bank loan. An investor may be 
concerned about being “picked off” when trading such instruments.  
11 The reduction in price due to adverse selection is sometimes called a “lemon’s premium”. 
12 For example the process used by Moody’s, they calculate “diversity scores” by which the analysis of a 
portfolio of correlated assets is effectively simplified into an analysis of a portfolio of uncorrelated assets. 
 

 20



5.1. Pricing under Gaussian and t-student copula using Monte Carlo simulations 
Consider an homogeneous CDO with n obligors with nominal amount and recovery rate with i= 
1,2,…,n, (assumed deterministic), maturity T years and we assume constant risk free interest rate. The 

total value of the portfolio is and 

iA iR

∑=
=

n

1i
iT AV ( ) iii A R1L −= will denote the loss given default for the 

credit. Let be the default time of the name and be the counting process which 

jumps from 0 to 1 at default time of name i. let 

thi iτ
thi ( ) { }∑=

=
≤τ

n

1i
ti i

ItN

( )tL will denote the cumulative loss on the collateral 
portfolio at time t:  
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The tranche [a,b] suffers a loss at time t if ( ) TT V%btLV%a ≤< , where and are respectively 
lower and upper bound. Suppose that and b , then, the tranche loss :  
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Using Monte Carlo simulation, the estimation of tranche loss becomes a straightforward task. 
According to Peixoto (2004), Pricing a CDO using Monte Carlo simulation involves creating sample 
paths of correlated default times. These default times are used to calculate the payments on two legs 
and value each leg. The first is the present value of tranche losses triggered by credit events during the 
CDO lifetime and is called default leg [DL] and the second is the present value of the premium 
payments weighted by the outstanding capital (original tranche amount minus accumulated losses) and 
is called premium leg [PL]. The fair spread of CDO can be computed by dividing the present value of 
the default leg  through the present value of the premium leg[DLE [ ]PLE  : 

                                                                         [ ]
[ ]PLE
DLES                                                                 (5.1.3) =

The Kth default leg can be computed as:  
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k
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Where r is the free risk interest rate and  { }k
N

k
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k
1 ,...,, τττ  the sequence of default times with Kth 

iteration of a Monte Carlo simulation. The accumulated loss is given by:    
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The premium leg is paid over the outstanding capital in the tranche. If during the lifetime of the CDO 
the tranche is wiped out, there are no more premium payments: 

                                    ( )[ ]{ }∑ −ℑ−δ=
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j
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j
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Where are the premium payment dates with frequency{ w1 t,...,t } jδ .  
Table 3 presents fair spread of an homogeneous CDO with Monte Carlo simulation. Standard errors of 
estimates are less than 1 basis point. 
 

Tranche Spread (basis point) 
0% à 10% (Equity) 2952,4 

10% à 30% (Mezzanine) 779.3024 
30% à 100 % (Senior) 43.4713 

Table 8: Fair spread of an homogeneous CDO with ,06.0h =  recovery rate R=0.4, 
correlation coefficient  rho=0.4,  50,000  iterations and quarterly spread payment. 
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Similarly to the basket default swap, we use t-student copulas to take into account the occurrence of 
joint extreme events among obligors. 
 

Tranche Spread (basis point) 
0% à 10% (Equity) 3172.895 

10% à 30% (Mezzanine) 762.065 
30% à 100 % (Senior) 30.210 

Table 9: Fair spread of an homogeneous CDO with ,06.0=h  recovery rate R=0.4, 
correlation coefficient  rho=0.4,  50,000  iterations and Degree of freedom(DoF= 10) 

 
Equity tranche prices appear to be higher when computed through the t-copulas, with the opposite 
verified for the Senior tranche. Mezzanine tranches seem not to be particularly affected by the copula 
function. 

The principal payment and interest income are allocated to the notes according to the following rule: 
Senior CDO notes are paid before mezzanine and lower subordinated notes are paid, with any residual 
cash flow, to an equity tranche. Therefore, equity tranche offers a larger spread than the more senior 
notes because is the first to be affected by a default in the portfolio. The price sensitivity with respect 
to price driving factors such as correlation, recovery rate, and the credit-worthiness of the underlying 
portfolio is examined. The following table present spread of CDO with different borns (a% and b%) 

 
Tranche Spread (basis point) 

0% à 5% (Equity) 4438.5 
5% à 15% (Mezzanine) 1705.5 
15% à 100 % (Senior) 130.4230 

 
Table10: Fair spread of an homogeneous CDO with ,06.0h =  recovery rate R=0.4, 

correlation coefficient  rho=0.4,  50,000  iterations and quarterly spread payment. 
 
When we change the upper and the lower boundary of each trench, the CDO’s spread change also. In 
fact, when we change the boundary of Equity tranch of (0%-10%) to (0%-5%), we note that the 
CDO’s spread increase (2952,4 to 4438.5) because the expected loss in case of default incre for all the 
equity tranche.. The same argument for Mezzanine and Senior tranche. 
Now, we study the sensitivity of CDO’s spread to recovery rate. We assume that all other variables are 
constant. 
 

Tranche Spread (basis point), R=0.1 Spread (basis point), R=0.7 
0% à 10% (Equity) 3860.6 1830.4 

10% à 30% (Mezzanine) 1237 191.5912 
30% à 100 % (Senior) 161.5789 9.5762e-004 

          
Table 11: Fair spread of an homogeneous CDO with ,06.0h =  recovery rate, 

                 correlation coefficient  rho=0.4,  50,000  iterations and quarterly spread payment. 
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Figure 8: Fair spread of an homogeneous CDO with correlation coefficient  rho=0.4,   
50,000  iterations and quarterly spread payment. 

 
Currently, we study the sensitivity of CDO’s spread to correlation coefficient13. We assume that all 
other variables are constant. 
 

Tranche Spread (basis point),  rho=0.3 Spread (basis point),  rho=0.7 
0% à 10% (Equity) 3.4904e+003 1.7873e+003 

10% à 30% (Mezzanine) 760.2878 776.2190 
30% à 100 % (Senior) 27.1457 104.2831 

 
Table 12: Fair spread of an homogeneous CDO with ,06.0h =  recovery rate R=0.4 

and  50,000  iterations and quarterly spread payment. 
 

           
 

Figure 9: Fair spread of an homogeneous CDO with recovery rate R=0.4,   
50,000  iterations and quarterly spread payment. 

Unfortunately when correlations are implied from all of the tranche prices observed in the market, 
each tranche has its own individual correlation which is different from the others. The value of the 
lowest tranches of a CDO, say an equity tranche, increases as the correlation between defaults falls, 
and decreases as default correlation rises. According to Gibson (2004), the effect of correlation on 
CDO tranches is intuitive. The more the defaults within a portfolio become correlated, the more the 
portfolio behaves like a single credit.  A higher correlation of defaults implies a greater likelihood that 
losses will wipe out the equity and mezzanine tranches and inflict losses on the senior tranche. 
According to Rachev (2006), the value of the equity tranche rises as correlation rises. Equity tranche 
                                                 
13 CDO tranches are quoted in the market, they incorporate a correlation calculation. For example, a junior 
mezzanine tranche (6%–9% of loss) might be quoted at a bid offer of 75/95bp, with a 16.5% correlation. An 
equity tranche, however, might be seen as 1,400/1,600bp with a 25% correlation on the bid and a 20% 
correlation on the offer. 

 23



investors gain more in a scenario with very few defaults than they lose from a scenario with many 
defaults (they are only exposed to the first few defaults). Mezzanine tranches are subject to both 
effects, which can broadly cancel each other out and make mezzanine tranches less sensitive to 
correlation. The relationship is the other way round for the most senior tranches: as correlation 
decreases, value decreases because the probability of a large number of defaults decreases.  

As option premiums translate into a volatility smile through the Black & Scholes formula, CDO 
spreads generate a correlation smile. Turc & Very (2004) use the beta model to imply a correlation 
from the market spreads of CDO tranches. They present a bootstraping technique as a means for 
incorporating the smile into CDO prices and hedges. 

Tavares et al (2004) explain the difference on the behaviour of the correlation for each tranches firstly, 
by the supply and demand argument that investors are vervous of the risk inherent in equity tranches 
while Mezzanine tranches are extremely popular with investors. Sellers of protection on senior 
tranches seem to require a minimum coupon irresepective of subordination. Secondly, the Gaussian 
copula loss distribution underestimates the perceived chances of a very low or very high number of 
defaults whilst significantly over-estimating the chances of observing a few defaults. They proposed a 
new method named “Composed basket model” while it attemts to rationalise how market participants 
allocate the risk.  

Finally, we present the relationship between expected loss and recovery rate.  In the Monte Carlo 
simulations, the losses as well as the tranche notional are computed for every scenario individually and 
the value of CDO tranches is the average of the present values. We use a Gaussian copula to model the 
dependence structure in the portfolio. Following Galiani (2003), the pricing of CDO tranches with 
Monte Carlo method can be presented as the following steps: 
Step 1: simulate correlated N(0,1) random variables, i =1,…n. iv
Step 2: Find Ui’s such that  and( )ii vU Φ= Φ is the cumulative normal distribution function. 

Step 3: Find the default times by s'τ
λ

−
=τ iUln

, i =1,…,n. 

Step 4: Given the simulated default times, we can compute the value of losses at maturity for [a,b] 
tranche . [ ]b,aLT

Step 5: Repeat all steps above until the required number of scenarios has been simulated (m=50000 
iterations in our example). The estimator of expected loss can be computed as the average for every 

scenario individually:  ( )[ ] ( ).TL
m
1TLE

m

1K

k
b,ab,a ∑=

=
 

 
Tranche Expected loss given 

default (%) with R=0.4 
Expected loss given 

default (%) with R=0.1 
Expected loss given 

default (%) with R=0.7 
0% à 10% (Equity) 81.3169 87.0294 70.3784 

10% à 30% (Mezzanine) 32.6471 52.4393 17.8161 
30% à 100 % (Senior) 1.3022 4.7677 0.1222 

 
Table 13 : Expected loss tranche with h=0.06, correlation coefficient  rho=0.3 and 50.000 iterations. 

According to Tables 9, 10 and 11 we notice that the expected losses of equity tranches is higher than 
the mezzanine and senior tranche because the risk is higher. The equity note is also called the first loss 
position because it is the first to be affected by a default in the portfolio. Also, we notice the 
dependence of the expected loss given default and recovery rates for a fixed correlation. Table 14 
shows that for recovery rate R=0.1, we obtain the expected losses of equity tranches is 87.0294%.The 
expected losses of equity tranches of the same CDO but with recovery rate R=0.7 

Figure 9 shows the relationship between expected loss tranche and recovery rate for different 
correlation coefficient. Notice that the expected loss for equity tranche is larger meaning that 
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Mezzanine and senior tranches get less affected by the losses. This can be observed where the senior 
expected loss gets close to zero at high recovery rates.  

        

Figure 10: The relationship between Expected loss tranche and recovery rate.  
 
Others extensions can be done with stochastic recovery rates. Garcia et al (2004) analyzes the effect of 
stochastic recoveries on individual ratings. They develop a Monte Carlo simulation model that 
generates credit events with both constant and stochastic recovery rates. They shown that non-constant 
recovery rates can have a significant impact on binomial  expansion technique (BET) ratings, 
particularly for mezzanine tranches of CDOs with noninvestment- grade underlying collateral pools. 
 
5.3. Pricing under One factor Gaussian copula method 
 
The current standard for pricing CDO is the one-factor Gaussian copula. The market-standard version 
of this copula is characterized by a single parameter to summarize all correlations among default 
times. These individual default variables of the homogeneous portfolio are dependent on one 
systematic risk factor which results both in a complexity reduction due to the factor-model and also in 
conditionally independent defaults, whose properties simplify computations. For modelling purpose, 
the conditional default probability that credit i defaults at time t conditional on C (equation (4.2.3)), is 
the only inputs which include all model specification. The one-factor structure of this model implies 
that, conditional on the realization of the common factor, the m individual credits are independent. 
When pricing a standard CDO, this conditional independence greatly facilitates the calculation of the 
conditional loss distribution of the tranche. 
 

 
 

Tranche Spread on basis point 
0% à 10% (Equity) 3628.1 

10% à 30% (Mezzanine) 757.6 
30% à 100 % (Senior) 46.91 

 
 
 
 
 

Table 14: Fair spread of homogenous CDO with h=0.06, correlation factor of Gaussian copula 6.0a =   
recovery rate R=0.4. 

 
For the pricing of CDO, a one-factor Gaussian copula model with constant and equal pairwise 
correlations, default intensities and recovery rates for all assets in the reference portfolio has become 
the standard market model. Some drawbaks in the applicability of the one factor Gaussian model are 
enumerated by Gregory and Laurent (2004). They present an extension to the Gaussian one-factor 
copula model that allows a clustered correlation structure by specifying inter and intra sector 
correlation. Additionally they introduce dependence between recovery rates and default events which 
leads to an improved modeling of the smile. Hull and White (2005) argue that the market‘s focus on 
implied correlations is misplaced. Andersen and Sidenius (2005) extend the one factor Gaussian 
copula in order to match the “correlation smiles” in the CDO market. Instead of equation (4.2.1), the 

latent variables are given by: ( ) ( ) ⎟
⎠
⎞⎜

⎝
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Bernoulli random variables, ai and determine how strong Viβ i is linked to the evolution of the 
common factor C ( ( )1a0 ii ≤≤β≤ . Subsequently, there two states: one corresponding to a high 

correlation and the other to a low correlation: ( ) ( )( ) ( )( ) i
2

iiiiiiii B1aB1CB1aBtV εβ−+−+β−+= . 
They focus on a stochastic correlation Gaussian model which ai is linked to the evolution of the 
common factor C with probability p and iβ  with probability (1- p).  
Others extension of the one factor Gaussian copula is the one factor t-student copula and double t-
copula. In the t-Student approach, the random vector V follows a t-student distribution with degrees 
of freedom. In the Double t-copula, C and 

ν

iε are independent random variables following t-student 
distribution with respectively ν and degrees of freedom (Hull and White (2004), Burtschell et al 
(2005)).  

'ν

 
 
6. Conclusion 
The aims of this paper is is to assess the importance of the dependence structure and the choice of 
simulations procedures regarding the valuation on the of multi-name credit derivatives such as basket 
default swaps and CDO tranches. The key idea of modelling correlated default is the usage of copulas 
functions. The valuation models are set up with Gaussian, Clayton and Student t- copulas. Two 
different methods for valuation are described: The first is the standard Monte Carlo method for 
simulating the default times, with which multi-name credit derivatives can be priced. The advantage of 
Monte-Carlo is its simplicity and generality. Its main drawbacks, however, are the quality of the 
convergence, especially when one computes sensitivities. A good convergence is particularly hard to 
achieve for credit products since default events are usually rare, and probabilities in the tail of the 
distribution are difficult to estimate. On the other hand, the direct implementation in closed form is 
very accurate but is less trivial to implement; it is also very expensive computationally. Indeed, this 
method is based on enumerating the 2n default configurations of the basket and computing the 
probability of each configuration. This algorithm explodes exponentially as the number of credits 
increases. 
 In the second approach the correlation structure is simplified by a factor copula approach. This 
approach enables us to provide semi-explicit expressions that reduce the computational times 
compared with Monte Carlo simulations techniques. We investigate the influence of different price 
drivers (correlation, hazard rates and recovery rates) on basket credit derivatives modelling portfolio 
losses and basket credit derivatives spreads.  
Furthermore, the Gaussian distribution has thin tails compared to other distributions. As we are 
concerned of default events that are by nature tail events, we use distributions with fat tails such as the 
t-student and Clayton distribution. Similarly, the choice of procedures for rare-event simulation 
governs the pricing of basket credit derivatives. Joshi and Kainth (2004) shows that For baskets of 
high-quality credits or short-maturity swaps, Monte Carlo simulation produces few paths with n or 
more defaults; nearly all paths simply return a value of 0. Then, they introduce Importance Sampling 
methods that forces all paths to produce at least n defaults. An alternative to the Monte Carlo 
simulation is Clayton copula and t-student copula under importance sampling procedures for 
simulation which captures the dependence structure between the underlying variables at extreme 
values and certain values of the input random variables in a simulation have more impact on the 
parameter being estimated than others. 
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Appendix 
Some Matlab codes used in the paper 

 
function y1 = Gaussrnd(rho,N); 
% This function generates random numbers from Gaussian copula as presented in Figure 1. 
% rho = the Gaussian copula correlation matrix 
% N = number of random numbers to be generated 
% y1 = random numbers from Gaussian copula, N by 2 matrix 
if N == 0 
y1=[]; 
else 
   A = chol(rho); 
   z = randn(N,2)*A; 
   u = cdf('Normal', z(:,1),0,1); 
   v = cdf('Normal', z(:,2),0,1); 
y1 = [u v]; 
end 
 
 
function y2 = Claytonrnd(Theta, N); 
% This function generates random numbers from Clayton copula as presented in Figure 1. 
% input: 
% Theta: the Clayton copula parameter with [ ) { }0/,1Theta ∞−∈  
% N = number of random numbers to be generated 
% output: 
% y = random numbers from Clayton copula, n by 2 matrix 
if N== 0 
   y2=[]; 
else 
   y2 = NaN*ones(N,2); 
   q = rand(N,1); 
   u = rand(N,1); 
   v = ((q.^(-Theta/(1+Theta))-1).*u.^(-Theta)+1).^(-1/Theta); 
   y2 = [u v]; 
end 
 
function y3 = studrnd(rho, Dof, N); 
% This function generates random numbers from Student’s t copula as presented in Figure 2. 
% rho = the correlation matrix 
% Dof: degrees of freedom 
% N = number of random numbers to be generated 
% y3 = random numbers from Student’s t copula, N by 2 matrix 
if N == 0 
y3=[]; 
else 
   A = chol(rho); 
   z=randn(N,1); 
   s=chi2rnd(Dof); 
   Azy ' ⋅=

    ( ) ( )( ) ;yssqrt/Dofsqrtx ⋅=
y3 = tcdf(x,Dof); 
end 
 
 
function[Fairspread]=Gaussn2dMc[N,n2d,rho,T,r,R,h] 
%  inputs:   
% h: Default intensity for all obligors (assumed deterministic) 
% N= number of obligors on the basket default swap (basket size) 
% k: number to default in the basket default swap eg k=1 for first to default swap 
% runs: number of Monte Carlo simulations 
% rho: correlation matrix between obligors 
% T: maturity of credit default swap, typical maturity is three, five and ten years. 
% r: risk free interest rate (assumed deterministic) 
% R: recovery rate 
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% delta: day count fraction on year eg delta=0.25  quarterly period 
% ntimesubsteps=10; %no. of sub timesubsteps within each delta for integration 
% outpout: 
% Fairspread: return fair spread of nth to default swap as described in § 4.1 
 
n=T/delta %time steps for indexing preminum payments eg. T=5, delta=0.25, n=5/0.25=20 
dt=delta; 
dt2=dt/ntimesubsteps; 
 
%%%%%%%%%%%%%%%Simulation of default times%%%%%%%%%%%%%%%%%%%% 
mu=zeros(N,1); 
sig=ones(N,N)*rho + (1-rho)*eye(N); 
%%%%%%%%%%%%%%% Simulation of default times via Gaussian copula  %%%%%%%%%%%%%% 
matrix=mvnrnd(mu,sig,runs); 
defTime=-log(cdf('Normal',matrix,0,1))/h; 
%%%%%%%%%%%%%%% Simulation of default times via t-student copula  %%%%%%%%%%%%%% 
%CorMat=(eye(N)-eye(N)*rho) + ones(N,N)*rho; 
%A=chol(CorMat); %CorMat=A'*A here 
%z=randn(scenarios,N); 
%s = chi2rnd(DoF,1,N); 
%y=z*A; 
%x=repmat((sqrt(DoF)./sqrt(s)),scenarios,1).*y; 
%u=tcdf(x,DoF); 
%defTime = -log(u) ./ repmat(h,scenarios,N); 
%%%%%%% %%%%%%%%% The value of premium leg %%%%%%%%%%%%%%%%%%% 
t=dt; 
PL=0; %Expected value of average Premium leg payments 
for i=1:n, 
 %find probability of survival of kth default until each indexing period 
 B=exp(-r*t); %B is the discount factor at time t 
               SurvivalProb=1-sum(sum(defTime<t,2)>=k,1)/size(defTime,1); 
 PL=PL+delta*B*SurvivalProb; 
 t=t+(T/n); 
end 
PL 
%%%%%%%%%%%%% The value of default leg %%%%%%%%%%%%%%%%%%%%%%% 
DP=0; %Expected value of average default leg payments 
kdefaultTime=sort(defTime,2); 
kdefaultTime=kdefaultTime(:,k); %default time for each scenario 
DPvec=(1-Recovery_rate)*exp(-r*kdefaultTime).*(kdefaultTime<T); 
DP=sum(DPvec)/scenarios 
 
%%%%%%%%%%%% The value of accrued premium leg %%%%%%%%%%%%%%% 
AP=0; %Expected value of average Accrued premium 
t=0; 
for i=1:n, 
 curt=t; 
 for ti=1:ntimesubsteps, 
  %find probability that k th default happened  
  %between ti and ti+1 
  DefaultsVec=(kdefaultTime>(curt)) & (kdefaultTime<=(curt+dt2)); 
  ProbOfDefault=sum(DefaultsVec)/scenarios; 
  curt=curt+dt2/2; 
  B=exp(-r*curt); 
  AP=AP+(curt-t)*B*ProbOfDefault; 
  curt=curt+dt2/2; 
 end 
 t=t+dt; 
end 
AP 
spread=10000*DP/(PL+AP) 
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