2,273 research outputs found

    Measuring the variability in supply chains with the peakedness

    Get PDF
    This paper introduces a novel way to measure the variability of order flows in supply chains, the peakedness. The peakedness can be used to measure the variability assuming the order flow is a general point pro- cess. We show basic properties of the peakedness, and demonstrate its computation from real-time continuous demand processes, and cumulative demand collected at fixed time intervals as well. We also show that the peakedness can be used to characterize demand, forecast, and inventory variables, to effectively manage the variability. Our results hold for both single stage and multistage inventory systems, and can further be extended to a tree-structured supply chain with a single supplier and multiple retailers. Furthermore, the peakedness can be applied to study traditional inventory problems such as quantifying bullwhip effects and determining safety stock levels. Finally, a numerical study based on real life Belgian supermarket data verifies the effectiveness of the peakedness for measuring the order flow variability, as well as estimating the bullwhip effects.variability, peakedness, supply chain

    Demand Leveling by Supply Chain Collaboration

    Get PDF

    The value of coordination in a two echelon supply chain: Sharing information, policies and parameters.

    Get PDF
    We study a coordination scheme in a two echelon supply chain. It involves sharing details of replenishment rules, lead-times, demand patterns and tuning the replenishment rules to exploit the supply chain's cost structure. We examine four different coordination strategies; naĂŻve operation, local optimisation, global optimisation and altruistic behaviour on behalf of the retailer. We assume the retailer and the manufacturer use the Order-Up-To policy to determine replenishment orders and end consumers demand is a stationary i.i.d. random variable. We derive the variance of the retailer's order rate and inventory levels and the variance of the manufacturer's order rate and inventory levels. We initially assume that costs in the supply chain are directly proportional to these variances (and later the standard deviations) and investigate the options available to the supply chain members for minimising costs. Our results show that if the retailer takes responsibility for supply chain cost reduction and acts altruistically by dampening his order variability, then the performance enhancement is robust to both the actual costs in the supply chain and to a naĂŻve or uncooperative manufacturer. Superior performance is achievable if firms coordinate their actions and if they find ways to re-allocate the supply chain gain.Bullwhip; Global optimisation; Inventory variance; Local optimisation; Supply chains; Studies; Coordination; Supply chain; IT; Replenishment rule; Rules; Demand; Patterns; Cost; Structure; Strategy; Retailer; Policy; Order; Variance; Inventory; Costs; Options; Variability; Performance; Performance enhancement; Firms;

    Dampening variability by using smoothing replenishment rules.

    Get PDF
    A major cause of supply chain deficiencies is the bullwhip effect which can be substantial even over a single echelon. This effect refers to the tendency of the variance of the replenishment orders to increase as it moves up a supply chain. Supply chain managers experience this variance amplification in both inventory levels and replenishment orders. As a result, companies face shortages or bloated inventories, run-away transportation and warehousing costs and major production adjustment costs. In this article we analyse a major cause of the bullwhip effect and suggest a remedy. We focus on a smoothing replenishment rule that is able to reduce the bullwhip effect across a single echelon. In general, dampening variability in orders may have a negative impact on customer service due to inventory variance increases. We therefore quantify the variance of the net stock and compute the required safety stock as a function of the smoothing required. Our analysis shows that bullwhip can be satisfactorily managed without unduly increasing stock levels to maintain target fill rates.Bullwhip effect; Companies; Cost; Costs; Impact; Inventory; Managers; Order; Replenishment rule; Rules; Safety stock; Supply chain; Supply chain management; Variability; Variance; Variance reduction;

    A smoothing replenishment policy with endogenous lead times.

    Get PDF
    We consider a two echelon supply chain consisting of a single retailer and a single manufacturer. Inventory control policies at the retailer level often transmit customer demand variability to the manufacturer, sometimes even in an amplified form (known as the bullwhip effect). When the manufacturer produces in a make-to-order fashion though, he prefers a smooth order pattern. But dampening the variability in orders inflates the retailer's safety stock due to the increased variance of the retailers inventory levels. We can turn this issue of conflicting objectives into a win-win situation for both supply chain echelons when we treat the lead time as an endogenous variable. A less variable order pattern generates shorter and less variable (production/replenishment) lead times, introducing a compensating effect on the retailer's safety stock. We show that by including endogenous lead times, the order pattern can be smoothed to a considerable extent without increasing stock levels.Bullwhip effect; Demand; endogenous lead times; Fashion; Inventory; Inventory control; Markov processes; Order; Policy; Queueing; Research; Safety stock; Smoothing; Supply chain; Supply chain management; Time; Variability; Variance;

    A Critical Evaluation Of Empirical Non-Linear Control System And System Dynamics Modeling Theories For Mitigating Risks Arising From Bullwhip Effect

    Get PDF
    Bullwhip effect is a threat observed in multi-echelon supply chains, which is one of the prominent indicators of inefficiencies in a supply chain. Primarily, bullwhip effect occurs as a result of disruptions in information and materials flow, lead-time delays, lack of coordination, and panic stocking amidst visibility into local risk factors. When bullwhip effect occurs, the demand variations entering the supply chain from the customer end amplifies gradually as it flows upstream towards the supplier ends. This may cause unused inventory and may later lead to wastage and obsolescence. Bullwhip effect can be curbed through many approaches. This study has focused on control theory approach that promotes small-scale control behaviors throughout the supply chain to dampen the bullwhip tidal waves. The approach investigated in this research is a combination of control system modeling and systems dynamics modeling, which is not researched adequately by bullwhip academics. Based on the investigations, a six-step approach for reducing Bullwhip effect is proposed in this research and illustrated with examples. The six-step approach comprises of first-level multi-echelon survey to derive the initial system dynamics model, second-level survey to collect primary data for all the variables and relationships formed, principal component analysis and Cronbach Alpha / split-half testing for reliability, verification, and validity testing and exploring the best optimal construct using structural equation modeling, and finally, applying controllers to the optimal systems dynamics model through interpretive analysis of the model

    A forecast-driven tactical planning model for a serial manufacturing system

    Get PDF
    We examine tactical planning for a serial manufacturing system that produces a product family with many process steps and low volumes. The system is subject to uncertainty in demand, in the supply of raw materials, and in yield at specific process steps. A multi-period forecast gets updated each period, and demand uncertainty is realised in terms of forecast errors. The objective of the system is to satisfy demand at a high service level with minimal operating costs. The primary means for handling the system uncertainty are inventory and production flexibility: each process step can work overtime. We model the trade-offs associated with these tactics, by building a dynamic programming model that allows us to optimise the placement of decoupling buffers across the line, as well as to determine the optimal policies for production smoothing and inventory replenishment. We test the model using both data from a real factory as well as hypothetical data. We find that the model results confirm our intuition as to how these tactics address the trade-offs; based on these tests, we develop a set of managerial insights on the application of these operating tactics. Moreover, we validate the model by comparing its outputs to that from a detailed factory simulation

    Mitigating the Bullwhip Effect and Enhancing Supply Chain Performance through Demand Information Sharing: An ARENA Simulation Study

    Get PDF
    The supply chain is a network of organizations that collaborate and leverage their resources to deliver products or services to end-customers. In today's globalized and competitive market, organizations must specialize and form partnerships to gain a competitive edge. To thrive in their respective industries, organizations need to prioritize supply chain coordination, as it is integral to their business processes.   Supply chain management focuses on the collaboration of organizations within the supply chain. However, when each echelon member optimizes their goals without considering the network's impact, it leads to suboptimal performance and inefficiencies. This phenomenon is known as the Bullwhip effect, where order variability increases as it moves upstream in the supply chain. The lack of coordination, unincorporated material and information flows, and absence of ordering rules contribute to poor supply chain dynamics. To improve supply chain performance, it is crucial to align organizational activities. Previous research has proposed solutions to mitigate the Bullwhip effect, which has been a topic of intense study for many decades. This research aims to investigate the causes and mitigations of the Bullwhip effect based on existing research. Additionally, the paper utilizes ARENA simulation to examine the impact of sharing end-customer demand information. As far as we are aware, no study has been conducted to deeply simulate the bullwhip effect using the ARENA simulation. Previous studies have investigated this phenomenon, but without delving into its intricacies. The simulation results offer potential strategies to mitigate the Bullwhip effect through demand information sharing. Keywords: Supply Chain Management, Bullwhip effect, Inventory management, ARENA simulation, Information sharing, forecasting technique, Demand variability. DOI: 10.7176/JESD/14-14-07 Publication date:August 31st 202
    • …
    corecore