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Abstract

We consider a two echelon supply chain: a single retailer holds a finished goods inventory to meet

an i.i.d. customer demand, and a single manufacturer produces the retailer’s replenishment orders

on a make-to-order basis. In this setting the retailer’s order decision has a direct impact on the man-

ufacturer’s production. It is a well known phenomenon that inventory control policies at the retailer

level often propagate customer demand variability towards the manufacturer, sometimes even in an

amplified form (known as the bullwhip effect). The manufacturer however prefers to smooth produc-

tion, and thus he prefers a smooth order pattern from the retailer. At first sight a decrease in order

variability comes at the cost of an increased variance of the retailer’s inventory levels, inflating the

retailer’s safety stock requirements. However, integrating the impact of the retailer’s order decision

on the manufacturer’s production leads to new insights. A smooth order pattern generates shorter

and less variable (production/replenishment) lead times, introducing a compensating effect on the

retailer’s safety stock. We show that by including the impact of the order decision on lead times, the

order pattern can be smoothed to a considerable extent without increasing stock levels. This leads

to a situation where both parties are better off.

Keywords: inventory control, queueing, Markov processes, supply chain management

1 Introduction

Lee et al. (1997a; 1997b) describe a problem frequently encountered in supply chains, called the bull-
whip effect : demand variability increases as one moves up the supply chain. This distorted information
throughout the supply chain can lead to inefficiencies: excessive inventory investment, poor customer ser-
vice, lost revenues, misguided capacity plans, ineffective transportation and missed production schedules
(Lee et al., 1997a).

Even when demand variability is not amplified but merely transmitted to the upstream echelons,
this order variability can have large upstream cost repercussions. In a make-to-order supply chain, the
upstream manufacturer – pursuing smooth production – prefers minimal variability in the replenish-
ment orders from the (downstream) retailer. Balakrishnan et al. (2004) emphasize the opportunities
to reduce supply chain costs by dampening upstream demand variability. This has led to the creation
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of new replenishment rules that are able to generate smooth order patterns, which we call “smoothing
replenishment rules”. Smoothing is a well-known method to reduce variability. A number of produc-
tion level smoothing rules were developed in the 1950’s and 1960’s (Cf. Magee, 1956; Magee, 1958; Si-
mon, 1952; Vassian, 1955; Deziel and Eilon, 1967). The more recent work on smoothing replenishment
rules can be found in Dejonckheere et al. (2003), Balakrishnan et al. (2004) and Disney et al. (2006).

The production-smoothing model has also received a lot of attention in the macro-economic litera-
ture. Early theoretical investigations of optimal inventory and production behavior established that if
production costs are convex, then it is optimal for a firm to only partially adjust output in response to a
change in its inventory position. This resulted in the production-smoothing hypothesis, where we would
expect to observe sales more variable than output. Among others, Blinder (1986), Blanchard (1983),
West (1986), Miron and Zeldes (1988), Fair (1989), Krane and Braun (1991), and more recently Allen
(1997) are all concerned with the question of whether production is smoothed relative to sales.

We have to be careful not to focus only on one side of the production smoothing “coin”. The
manufacturer does benefit from smooth production, but retailers, driven by the goal of reducing inventory
(holding and shortage/backlog) costs, prefer to use replenishment policies that chase demand rather
than dampen consumer demand variability. Dampening variability in orders may have a negative impact
on the retailer’s customer service due to inventory variance increases (Bertrand, 1986; Dejonckheere
et al., 2002; Disney and Towill, 2003). Inventory acts as a buffer, absorbing increases or decreases in
demand while production remains relatively steady (Buffa and Miller, 1979). This leads to a tension
between the retailer’s and manufacturer’s preferred order variability.

However, we can model a two stage make-to-order supply chain as a production-inventory system,
where the retailer’s inventory replenishment lead times are endogenously determined by the manufac-
turer’s production facility. In this framework the choice of the retailer’s replenishment policy (amplifying
or dampening customer demand variability in the replenishment orders) determines the arrival process
at the manufacturer’s production queue and as such it affects the distribution of the production lead
times. We expect that a smooth order pattern gives rise to shorter and less variable lead times due to
the laws of factory physics (Hopp and Spearman, 2001). This may exercise a compensating effect on the
retailer’s safety stock.

In this paper we consider an inventory control policy that is able to dampen the upstream demand
variability by generating a smooth order pattern. Moreover we integrate the impact of this order decision
on the manufacturer’s production system. We develop a procedure to estimate the lead time distribution
given the explicit order pattern generated by our smoothing replenishment rule. We then focus on the
resulting impact of order smoothing on the safety stock requirements to provide a given service level.
Many papers on the control of production-inventory systems explicitly include the replenishment delay
in their models, for example Axsäter (1976), Towill (1982), Riddalls and Bennett (2002), and Warburton
(2004b), but the replenishment delay always remains fixed, independent of the replenishment policy.
To the best of our knowledge we think that an integrated production and inventory analysis of order
smoothing has yet to be investigated.

The remainder of the paper is organized as follows. Our research model and its assumptions are
presented in the next section. In section 3 we describe the retailer’s inventory control policy and we
compare the standard base-stock replenishment policy with a smoothing replenishment rule. Section 4
analyses the manufacturer’s production system and discusses the procedure to estimate the lead time
distribution using matrix analytic methods. In section 5 we combine both supply chain echelons by
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aggregating the inventory and production subsystems into a production/inventory model and we analyse
the impact on customer service and safety stock. Numerical results are presented in section 6 and
section 7 concludes.

2 Model description

We consider a two echelon supply chain with a single retailer and a single manufacturer. Every period,
the retailer observes customer demand. If there is enough on-hand inventory available, the demand
is immediately satisfied. If not, the shortage is backlogged. To maintain an appropriate amount of
inventory on hand, the retailer places a replenishment order with the manufacturer at the end of every
period.

The manufacturer does not hold a finished goods inventory but produces the retailer’s orders on a
make-to-order basis. The manufacturer’s production system is characterized by a single server queueing
model that sequentially processes the orders which require stochastic unit processing times. Once the
complete replenishment order is produced, it replenishes the retailer’s inventory. The time from the
period an order is placed to the period that it replenishes the retailer’s inventory, is the replenishment
lead time Tp. The queueing process at the manufacturer implies that the retailer’s replenishment lead
times are stochastic and correlated with the order quantity. A schematic of the model is shown in figure 1.

Figure 1: A two stage make-to-order supply chain

Assumptions

• The sequence of events in a period is as follows. The retailer first receives goods from the man-
ufacturer, then he observes and satisfies customer demand and finally, he places a replenishment
order with the manufacturer.

• Customer demand Dt is independently and identically distributed (i.i.d.) over time according to
an arbitrary, finite, discrete distribution.

• The order quantity Ot is determined by the retailer’s replenishment policy. The retailer’s replenish-
ment rule defines the variability in the orders placed on the manufacturer. In section 3 we discuss
how we can control this upstream demand variability.

• The replenishment orders are processed by a single server on a first-come-first-served basis. This ex-
cludes the possibility of order crossovers. When the server is busy, they join a queue of unprocessed
orders.
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• The service times of a single item are i.i.d. according to a phase type (PH) distribution. We
provide an algorithm to match the first two moments of an arbitrary distribution to a 2 phase PH
distribution in the appendix. To ensure stability (of the queue), we assume that the utilization of
the production facility (average batch production time divided by average batch interarrival time)
is strictly smaller than one.

• The time from the moment the order arrives at the production queue to the point that the pro-
duction of the entire batch is finished, is the production lead time or response time that we denote
by Tr. Note that the production lead time is not necessarily an integer number of periods. Since
in our inventory model events occur on a discrete time basis with a time unit equal to one period,
the replenishment lead time, denoted by Tp, has to be expressed in terms of an integer number
of periods. We therefore rely on the sequence of events. In our sequence of events, the retailer is
always able to satisfy demand after the receipt of products from the manufacturer (see figure 2).

Figure 2: Sequence of events in a period: 1. receive order, 2. satisfy customer demand, 3. place order

For instance, suppose that the retailer places an order at the end of period t, and it turns out that
the production lead time is 0.8 periods. This order quantity will be added to the inventory in the
next period t + 1, and can be used to satisfy demand in period t + 1. Therefore the replenishment
lead time is 0 periods. An order Ot with a production lead time of 1.4 periods is added to the
inventory in period t + 2 and can be used to satisfy demand Dt+2. Consequently we will treat
the 1.4 period production lead time as an integer 1 period replenishment lead time. Hence, we
round the response time Tr down to the nearest integer Tp (i.e., setting Tp = bTrc) to obtain the
(discrete) replenishment lead time.

3 Inventory control policy

There are many different types of replenishment policies, of which two are commonly used: the periodic
review, order-up-to policy and the continuous review, reorder point, order quantity model. Given the
common practice in retailing to replenish inventories frequently (e.g. daily) and the tendency of manu-
facturers to produce to demand, we will focus our analysis on periodic review, base-stock or order-up-to
replenishment policies.

3.1 Standard base-stock replenishment policy

The standard periodic review base-stock replenishment policy is the (R,S) replenishment policy (Silver
et al., 1998). At the end of every review period R, the retailer tracks his inventory position IPt, which
is the sum of the inventory on hand (that is, items immediately available to meet demand) and the
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inventory on order (that is, items ordered but not yet arrived due to the lead time) minus the backlog
(that is, demand that could not be fulfilled and still has to be delivered). A replenishment order is then
placed to raise the inventory position to an order-up-to or base-stock level St, which determines the order
quantity Ot:

Ot = St − IPt. (1)

The base-stock level St is the inventory required to ensure a given customer service. Orders are
placed every R periods, and after an order is placed, it takes Tp periods for the replenishment to arrive
(with Tp being the stochastic replenishment lead time). Hence the risk period (the time between placing
a replenishment order until receiving the subsequent replenishment order) is equal to the review period
plus the replenishment lead time R + Tp. The base-stock level covers the forecasted demand during the
risk period plus a buffer or safety stock SS to meet unexpected fluctuations in demand during this risk
period. As customer demand is i.i.d., the best possible demand forecast is the average of all previous
demands, E(D), so that

St = [E (Tp) + R] · E (D) + SS (2)

remains constant over time, or ∀t : St = S, with S a constant. Note that, when forecasting the
i.i.d. customer demand with e.g. the moving average or exponential smoothing forecasting technique, the
order-up-to level St varies over time, or is adaptive (Kim et al., 2005).

Placing a replenishment order every period t, the inventory position IPt at the end of period t equals
last period’s inventory position (which is raised up to the base-stock level St−1) minus the observed
customer demand Dt. Hence, similar to Chen et al. (2000a), we can rewrite (1) as

Ot = St − (St−1 −Dt), (3)

and substituting (2) into (3) we see that the order pattern is equal to the demand pattern:

Ot = Dt. (4)

Consequently the standard base-stock policy generates orders whose variability is equal to the vari-
ability of customer demand. Thus, when customer demand is wildly fluctuating, this replenishment rule
sends a highly variable order pattern to the manufacturer, which may impose high capacity and inven-
tory costs on the manufacturer. The manufacturer not only prefers a leveled production schedule, the
smoothed demand also allows him to minimize his raw materials inventory cost. Therefore we discuss a
smoothing replenishment policy that is able to reduce the variability of the orders transmitted upstream
in the next section.

3.2 Smoothing replenishment policy

In this section we describe two ways to develop a replenishment rule that dampens the upstream demand
variability. We show that they both come down to the same result under the assumptions of the model
considered in this paper. The first approach stems from linear control theory and introduces a propor-
tional controller into the standard base-stock policy. The second approach originates from Balakrishnan
et al. (2004) who propose to set the order quantity equal to a convex combination of previous demand
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realisations in order to dampen the upstream demand variability.
We start with the linear control theory approach. Forrester (1961) and Magee (1958) propose not

to recover the entire deficit between the base-stock level and the inventory position in one time period
(contrary to what happens in (1)), but instead order only a fraction β of the inventory deficit:

Ot = β · (S − IPt) . (5)

Forrester (1961) refers to 1/β as the “adjustment time” and hence explicitly acknowledges that the deficit
recovery should be spread out over time. This particular replenishment policy is recently used by, among
others, Dejonckheere et al. (2003), Warburton (2004a; 2004b), Disney et al. (2006).

When customer demand is i.i.d., we forecast lead time demand with its average and consequently
always order up to the same base stock level S, so that S is constant over time. This means that

Ot −Ot−1 = β · (S − IPt)− β · (S − IPt−1)

= β · (IPt−1 − IPt) .

The inventory position IPt is monitored after customer demand Dt is satisfied and before replenishment
order Ot is placed. Hence

IPt = IPt−1 + Ot−1 −Dt,

so that we obtain

Ot −Ot−1 = β · (Dt −Ot−1) ,

or

Ot = (1− β) ·Ot−1 + β ·Dt. (6)

The ordering quantity is a weighted combination of the previous order quantity and the last observed
customer demand. Moreover, as in Eqn. (4), we do not need the lead time distribution to make our order
decision, although the base-stock level S in (5) does depend upon the lead time.

It is notable that the replenishment rule described by (6) is exactly the same as the exponential
smoothing policy proposed by Balakrishnan et al. (2004) to decrease order variability. Balakrishnan
et al. (2004) set the order quantity equal to a convex combination of previous demand realisations:

Ot =
∞∑

k=0

βkDt−k. (7)

Setting βk = β(1− β)k gives a similar result to Eqn. (6). The authors of this paper and Balakrishnan et
al. independently came to the same conclusion.

From Eqn. (6) we can determine the variability in orders created by our smoothing rule:

V ar(O) = (1− β)2 V ar(O) + β2V ar(D) + 2β (1− β) covar(Ot−1, Dt)

= (1− β)2 V ar(O) + β2V ar(D),
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and we obtain

V ar(O) =
β

2− β
V ar(D). (8)

If we do not smooth, i.e. if β = 1, these expressions reduce to the standard base-stock policy, where
Ot = Dt : we chase sales and thus the variability in orders equals the customer demand variability. For
1 < β < 2 we amplify the demand variability in the replenishment orders (known as the bullwhip effect)
and for 0 < β < 1 we are able to dampen the demand variability and generate a smooth replenishment
pattern.

With this generalised replenishment policy we can clearly reduce the variance transmitted upstream
by decreasing β. Under a fixed lead time assumption such a smoothing policy is justified when production
(or ordering) and holding costs are convex or when there is a cost of changing the level of production
(Veinott, 1966). When the production capacity is fixed and lead times result from a single server
queueing system (as in the model described in this paper), this replenishment rule enables us to smooth
the manufacturer’s production, resulting in shorter order-to-delivery times and more balanced, peak
shaving, production schedules, which is beneficial for the manufacturer.

Besides the benefits realised through a smoother planning, the manufacturer also realises cost savings
on its own raw material and/or component inventories. Hosoda and Disney (2005) show that if one
faces a first order autoregressive demand pattern such as Eqn. (6) and adopts the optimal base-stock
policy (with minimum mean squared error forecasting), the inventory variance declines as β decreases,
reducing the safety stock requirements. Balakrishnan et al. (2004) state that this replenishment rule
serves to provide advanced order information to the manufacturer. The retailer’s replenishment orders
are not statistically independent, because from (6) we can derive that corr (Ot, Ot−x) = (1− β)x, and
the dependence between successive orders creates an opportunity for the manufacturer to use information
embedded in past retailer orders.

Since order smoothing leads to a number of cost savings for the manufacturer, it seems to be a
dominating operations strategy. We have to be careful not to focus only on one side of the production
smoothing “coin” however. In developing a replenishment rule one has to consider the impact on the
inventory variance as well. The manufacturer does benefit from smooth production, but dampening
variability in orders may have a negative impact on the retailer’s customer service due to inventory
variance increases (Bertrand, 1986; Dejonckheere et al., 2002; Disney and Towill, 2003).

Disney et al. (2006) quantify the variance of the net stock and compute the required safety stock as
a function of the smoothing intensity. Their main conclusion is that when customer demand is i.i.d.,
order smoothing comes at a price: in order to guarantee the same fill rate, more investment in safety
stock is required. As a consequence, retailers, driven by the goal of reducing inventory (holding and
shortage/backlog) costs, prefer to use replenishment policies that chase demand rather than dampen
consumer demand variability.

However, the manufacturer produces on a make-to-order base and (production/replenishment) lead
times are determined by the manufacturer’s queueing model. This implies that the retailer’s order pattern
determines the arrival process at the queue and as such it affects the distribution of the lead times. We
expect that a smooth order pattern gives rise to shorter and less variable lead times due to the laws of
factory physics (Hopp and Spearman, 2001). This in turn exercises a downward effect on the retailer’s
inventory level, which may compensate the increase in inventory variance. The impact of the smoothing
decision on lead time reduction is the topic of the next section.
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4 The impact of order variance dampening on lead times

4.1 Interaction between the retailer’s inventory policy and the manufac-

turer’s queueing system

Most inventory models proposed in the literature take the replenishment lead time Tp as a fixed constant
or as an exogenous variable with a given probability distribution. However, the replenishment orders do
in fact load the production facilities. The nature of this loading process relative to the available capacity
and the variability it creates are the primary determinants of lead times in the facility (Karmarkar, 1993).
Therefore the inventory control system should work with a lead time which is a good estimate of the real
lead time, depending on the production load, the interarrival rate of orders, and the variability of the
production system (Hopp and Spearman, 2001). Zipkin (2000, p.246) states: “to understand the overall
inventory system, we need to understand the supply system. For this purpose we can and do apply the
results of queueing theory”.

Figure 3: Interaction between retailer’s inventory system and manufacturer’s production system

In this paper we explicitly model the two stage supply chain described in section 2 as a production-
inventory system, where the retailer’s inventory replenishment lead times are endogenously determined
by the manufacturer’s queueing model. It is essential to extend pure inventory systems with exogenous
lead times to production-inventory systems with endogenous lead times. After all, inventory influences
production by initiating orders, and production influences inventory by completing and delivering orders
to inventory. In figure 3 the interaction between the retailer’s inventory system and the manufacturer’s
production system is illustrated: the retailer’s replenishment policy generates orders that constitute the
arrival process at the manufacturer’s production queue. The time until the order is produced (sojourn
time in the production system), is the time to replenish the order. These production/replenishment lead
times are load-dependent and affected by the current size of the order queue with the production system.
The replenishment lead time in turn is a prime determinant in setting the safety stock requirements at
the inventory system. In Boute et al. (2004) it is shown that ignoring endogenous lead times may lead
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to seriously underestimated customer service levels and/or excessive inventory holdings.
By analysing the characteristics of the replenishment orders, we implicitly analyse the characteristics

of the production orders that arrive to the production queue (Van Nyen et al., 2005). In a periodic review
base-stock policy, the arrival pattern consists of batch arrivals with a fixed interarrival time (equal to the
review period, R = 1) and with variable batch sizes. The supply system is a bulk queue (Chaudry and
Templeton, 1983), which tends to be difficult to analyse. Moreover as we can see from Eqn. (6), the batch
sizes generated by our smoothing rule are not i.i.d., rather they are autocorrelated. Queueing models
with such arrival patterns can be solved with matrix analytic methods (MAM’s). These methods are
popular as modeling tools because they can be used to construct and analyse a wide class of stochastic
models. They are applied in several areas, of which the performance analysis of telecommunication
systems is one of the most notable (Latouche and Ramaswami, 1999).

4.2 Estimation of the manufacturer’s production lead times

To estimate the lead time distribution we develop a discrete time queueing model. The arrival process
consists of batch arrivals with a fixed interarrival time (1 period) and with autocorrelated batch sizes.
The service times of a single item, denoted by M , are stochastic and i.i.d. according to a phase type
(PH) distribution. The key idea behind PH distributions is to exploit the Markovian structure of the
distribution to simplify the queueing analysis. Moreover, any general discrete distribution can be ap-
proximated in sufficient detail by means of a PH distribution (Horváth and Telek, 2002), since the class
of discrete PH distributions is a versatile set that is dense within the set of all discrete distributions on
the nonnegative integers (Neuts, 1989; Latouche and Ramaswami, 1999; Bobbio et al., 2003).

The computational complexity of our algorithm to compute the lead time distribution increases with
the number of phases of the PH distributed service process. Therefore we want the service process to
be PH distributed with as few phases as possible. Since the lead time is expressed as an integer number
of periods and the interarrival time is equal to one base period, we have the freedom to choose the time
unit U of the queueing system in an appropriate manner (Bobbio et al., 2004b). When the time unit U

is chosen as half of the mean service time of a single item, i.e., U = E(M)/2, Boute et al. (2004) are
able to match the first two moments of the single unit service times, E(M) and V ar(M), by means of
a PH distribution with only 2 phases. We provide this PH fitting procedure in the appendix. The PH
distribution is characterized by the pair (T, α), where T is a 2 × 2 substochastic matrix and α a 1 × 2
stochastic vector.

When we choose U to be the time unit of our queueing system, this implies that orders placed every
period arrive at the queue at time epochs 0, d, 2d, . . ., where d × U = 1. The order size at these time
epochs evolves as a Markovian process with state space {x : 1 ≤ x ≤ mD}, where mD is the maximum
demand, i.e., mD is the smallest integer such that Pr[D > mD] = 0. Indeed, according to Eqn. (6), the
order size generated by our smoothing rule at time td is determined as

Otd = (1− β)O(t−1)d + βD, (9)

where D is the customer demand random variable. Eqn. (9) evolves as a Markovian process, since
the probability of order quantity Otd can be determined given the value of the previous order quantity
O(t−1)d. Using induction on t we have E (Otd) = E (D).

The order size that results from (9) can be a real number. However, because only an integer number
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of items can be produced, the actual batch size passed to the manufacturer at time t has size O∗
td:

O∗td =





Otd if Otd ∈ N,

dOtde with probability Otd − bOtdc if Otd 6∈ N,

bOtdc with probability dOtde −Otd if Otd 6∈ N,

(10)

such that the batch size O∗
td is an integer number. Doing so, the expected value E[O∗td] = E[Otd] = E[D].

Suppose for instance that the replenishment rule generates an order quantity of 5.8. Since 5.8 is not an
integer, we round this to 5 units with a probability of 0.20 and to 6 units with a probability of 0.80. This
(integer) number of units constitutes the batch size that has to be produced by the manufacturer.

In order to estimate the lead time distribution we start by defining the following additional random
variables:

• tn : the time of the n-th observation point, which we define as the n-th time epoch during which
the server is busy,

• a(n) : the arrival time of the order in service at time tn,

• Bn : the age of the order in service at time tn, defined as the duration (expressed in the time unit
of the queueing model, i.e., U) of the time interval [an, tn),

• Cn : the number of items part of the order in service that still need to start or complete service at
time tn,

• Sn : the service phase at time tn.

All events such as arrivals, transfers from the waiting line to the server and service completions are
assumed to occur at instants immediately after the discrete time epochs. This implies that the age of
an order in service at some time epoch tn is at least 1.

Then, (Bn, Oa(n), Cn, Sn) forms a discrete time Markov process on the state space N0 × {(x, c) : 1 ≤
x ≤ mD, c ∈ {1, 2, . . . , dxe}}×{1, 2}, because Bn is a positive integer, Oa(n) (the original order quantity of
the order in service) is a real number between 1 and mD, Cn ≤ dOa(n)e and the PH service has two phases.
We keep track of the original order quantity Oa(n) instead of the rounded batch size O∗a(n), because it
allows us to determine the order size of the next batch arrival precisely (see Eqn. (9)). Since this original
order quantity is a real number, the Markov process (Bn, Oa(n), Cn, Sn) has a continuous state space.
Due to its continuous state space, it is very hard to find the steady state vector of this Markov process.
Therefore, instead of keeping track of Oa(n) in an exact manner, we will round it in a probabilistic way
to the nearest multiple of 1/g, where g ≥ 1 is an integer termed the granularity of the system. Clearly,
the larger g, the better the approximation. As a result, we obtain a Markov chain (Bn, Og

a(n), Cn, Sn)
on the discrete state space N0 × {(x, c) : x ∈ {1, 1 + 1/g, 1 + 2/g, . . . ,mD}, c ∈ {1, 2, . . . , dxe}} × {1, 2}.
The quantity Og

a(n) evolves as follows. Let

Oc
td = (1− β)Og

(t−1)d + βD,

then the random variable Og
td is determined as:

Og
td =





Oc
td if Oc

td ∈ Sg,

dOc
tdeg with probability (Oc

td − bOc
tdcg) · g if Oc

td 6∈ Sg,

bOc
tdcg with probability (dOc

tdeg −Oc
td) · g if Oc

td 6∈ Sg,

(11)
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where Sg = {1, 1 + 1/g, 1 + 2/g, . . . , mD} and dxeg (bxcg) is the smallest (largest) element in Sg that is
larger (smaller) than x. Using induction on t, we have E(Og

td) = E(Otd) = E(D) for all g. As a result
from Eqn. (11), the conditional probabilities Pr[Og

td = q′|Og
(t−1)d = q] for q, q′ ∈ Sg, which we denote as

pg(q, q′), can be computed as:

pg(q, q′) =
∑

i≥1

Pr[D = i]
{

1{q′−1/g<β̄q+βi<q′}
(
(β̄q + βi)− bβ̄q + βicg

) · g+

1{β̄q+βi=q′} + 1{q′<β̄q+βi<q′+1/g}
(d(β̄q + βi)eg − (β̄q + βi)

) · g
}

, (12)

where β̄ = (1− β) and 1{A} is 1 if the event A is true and 0 otherwise.
Let us have a look at the evolution of the Markov chain (Bn, Og

a(n), Cn, Sn). At each transition step,
there are three possibilities. First, the current item in production stays in service and the phase of the
service process may change. Second, the current item in service finishes production, and a new item of
the same batch enters production. Third, the current item in service finishes production and when this
is the last item of the batch, the complete batch is produced. The order quantity of the new batch that
is taken in production is given by pg(q, q′) according to Eqn. (12), and the batch size is equal to dq′e, bq′c
or q′ according to Eqn. (10), such that the batch size is an integer number of units.

Let (Pg)(a,q,r,s),(a′,q′,r′,s′) be the transition probabilities of the Markov chain (Bn, Og
a(n), Cn, Sn).

These probabilities are then given by

(Pg)(a,q,r,s),(a′,q′,r′,s′) =



Ts,s′ a′ = a + 1, q′ = q, r′ = r,

tsαs′ a′ = a + 1, q′ = q, r′ = r − 1 ≥ 1,

tsαs′pg(q, q′)(dq′e − q′) a′ = max(a− d + 1, 1), r′ = bq′c, q′ 6∈ N, r = 1,

tsαs′pg(q, q′)(q′ − bq′c) a′ = max(a− d + 1, 1), r′ = dq′e, q′ 6∈ N, r = 1,

tsαs′pg(q, q′) a′ = max(a− d + 1, 1), r′ = q′ ∈ N, r = 1,

0 else,

(13)

with t = (e− Te) denoting the probability that the current unit in service finishes production. As a
consequence, we have the following form for the transition matrix Pg of (Bn, Og

a(n), Cn, Sn):

Pg =




Ad A0 0 . . . 0 0 . . .

Ad 0 A0 . . . 0 0 . . .
...

...
. . . . . .

...
...

. . .

Ad 0 0 . . . A0 0 . . .

0 Ad 0 . . . 0 A0
. . .

...
...

. . . . . .
...

. . . . . .




, (14)

where A0 and Ad are square matrices of dimension mtot, with mtot the number of elements in the set
{(x, c) : x ∈ {1, 1+1/g, 1+2/g, . . . ,mD}, c ∈ {1, 2, . . . , dxe}}×{1, 2}, i.e., mtot = g(mD+1)mD−2(g−1).
The matrices A0 represent the probabilities that the service of the batch continues and are given by the
first two equations of (13), while the matrices Ad represent the probabilities that the service of the batch
finishes and are given by the 3rd, 4th and 5th equation of (13).

The MC characterized by Eqn. (14) is of the GI/M/1 type (Neuts, 1981). From an operational point
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of view it is clear that the proposed queueing system is stable if and only if its utilization ρ is strictly
smaller than one, or equivalently if the average production time of a batch order is strictly smaller than
the average inter-arrival time of a batch order. Since we have chosen the time unit of our queueing
model such that the average production time of a single unit is equal to 2, and the average batch order
size is equal to the average demand E(D), the average production time of a batch order is 2E(D). The
inter-arrival time of an order is one (review) period, or, when we express it in the time unit of our
queueing model, equal to d time units. Hence the stability condition can be rephrased as 2E(D) < d.
This condition is not restrictive as a system with a load ρ > 1 leads to infinite lead times as the demand
is greater than the production capacity.

For an ergodic MC of the GI/M/1 type, one computes the steady state vector π of Pg, that is,
πPg = π and πe = 1, as follows:

π1 = π1(I −Rd)(I −R)−1Ad, (15)

πi = π1R
i−1, (16)

where π = (π1, π2, . . .) and πi is a 1 × mtot vector, for all i > 0. The vector π1 is normalized as
π1(I −R)−1e = 1 and the mtot ×mtot rate matrix R is the smallest nonnegative solution to the matrix
equation R = A0 + RdAd and can be numerically solved with a variety of algorithms, e.g., Neuts (1981),
Ramaswami (1988), Alfa et al. (2002).

Having obtained the steady state vector π = (π1, π2, . . .), we can obtain the response time using
the following observation: The probability that an order has a response time of a time units can be
calculated as the expected number of orders with an age of a time units that complete their service at an
arbitrary time instant, divided by the expected number of orders that get completed during an arbitrary
time instant (that is, 1/d for a queue with ρ < 1). As such, denoting Tr as the response time (expressed
in the time unit U) we have

Pr[Tr = a] = dρ
∑
q,s

(πa)(q,1,s)(t)s, (17)

where (πa)(q,r,s) represents the steady state probability of being in state (a, q, r, s). Notice, to make sure
that an order completes its service, the number of remaining customers requiring service cannot be more
than one.

We chose the time unit U of our queueing system as half of the mean production time of a single
item (i.e., E(M)/2). Thus, if we want to express the lead time in terms of the number of periods needed
to deliver the order to the retailer, we still need to make the following conversion:

Pr[Tp = i] =
∑

j

Pr[Tr = j] · 1{dj/de=i}, (18)

where 1{A} is 1 if the event A is true and 0 otherwise. Note that this conversion at the same time rounds
the (possibly fractional) response time Tr to the discrete replenishment lead time Tp expressed in an
integer number of periods.
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5 Impact of the smoothing replenishment rule on safety stock

When demand is probabilistic, there is a definite chance of not being able to satisfy some of the demand
directly out of stock. Therefore, a buffer or safety stock is required to meet unexpected fluctuations in
demand. The goal is to reduce inventory without diminishing the level of service provided to customers.
When the retailer faces (and satisfies) a variable customer demand, but replenishes through a smooth
order pattern, this comes at the cost of an increase in its inventory variability. As a consequence, in order
to provide the same service level a larger safety stock will be needed than the traditional standard base-
stock replenishment policy where orders have the same variability as customer demand (Dejonckheere
et al., 2002; Disney and Towill, 2003; Disney et al., 2006).

However, since we include the impact of the order decision on production, a smooth order pattern
generates shorter and less variable lead times. This introduces a compensating effect on the required
safety stock. The aim is to find values for the smoothing parameter 0 < β < 1 where the decrease in lead
times compensates the increase in inventory variance. In that case we can smooth production without
having to increase inventory levels to provide the same customer service.

Similar to Graves (1999) and Disney et al. (2006), we characterize the inventory random variable and
use it to find the safety stock requirements for the system. In Graves (1999) and Disney et al. (2006) the
inventory control system operates with fixed lead times. Hence it is known exactly when a replenishment
order is received in inventory. In this environment the retailer’s inventory is replenished every period
with the order that was placed tp + 1 periods ago (with tp the fixed lead time).

In our model however, the inventory is controlled by stochastic lead times. As a consequence the
inventory is not necessarily replenished every period and we do not know when exactly a replenishment
occurs. Moreover, the queueing analysis implies that it takes a longer time to produce (and consequently
replenish) a larger order quantity. Hence the order quantity and its replenishment lead time are un-
doubtedly correlated, affecting the inventory distribution. Therefore the analysis is more involved. We
refer to Song and Zipkin (1996), Song et al. (1999), Song and Yao (2002) and Lu et al. (2003) where the
same problem is encountered.

In this section we first describe how to determine the optimal base-stock level S that is required to
meet a target service level, and then we explain how to find the corresponding safety stock SS.

5.1 Determination of optimal base-stock level

We study the fill rate, which is a popular metric of customer service. It measures the proportion of the
demand that can immediately be delivered from the inventory on hand (Zipkin, 2000):

Fill rate = 1− expected number of backorders
expected demand

.

To calculate the fill rate, we monitor the inventory on hand after customer demand is observed and we
retain the number of shortages when a stock-out occurs. To do so, we observe the system at the end of
every period t, after customer demand Dt is satisfied and after replenishment order Ot has been placed
with the manufacturer (and before a possible order delivery occurs at the retailer in period t + 1), and
we characterize the inventory random variable. At that time there may be k ≥ 0 orders waiting in the
production queue and there is always 1 order in service (since the observation moment is immediately
after an order placement) which is placed k periods ago (Ot−k). Although k is a function of t, we write
k as opposed to k(t) to simplify the notation.
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The inventory on hand or net stock NSt is equal to the initial inventory on hand plus all replenishment
orders received in inventory minus total observed customer demand. At the time instant we observe the
system, the order Ot−k is currently in service. Hence, the orders placed more than k periods ago, i.e.,
Ot−i, i ≥ k + 1, are already delivered in inventory, while customer demand is satisfied up to the current
period t. For convenience, we define the demand Dt, and hence the order quantity Ot, to be zero for
t ≤ 0, in which case the initial inventory level is equal to the base-stock level S. Hence we can write:

NSt = S +
t∑

i=k+1

Ot−i −
t∑

i=0

Dt−i. (19)

After backward substitution of Eqn. (6) or directly using Eqn. (7) we find that the order quantity is
a convex combination of previous demand realisations (Balakrishnan et al., 2004):

Ot−i =
t−i∑

j=0

β (1− β)j
Dt−i−j . (20)

Substituting (20) into (19) results in an expression for the net stock in function of customer demand
only:

NSt = S +
t∑

i=k+1

t−i∑

j=0

β (1− β)j
Dt−i−j −

t∑

i=0

Dt−i

= S −
k∑

i=0

Dt−i +
t∑

i=k+1




t−i∑

j=0

β (1− β)j
Dt−i−j −Dt−i




= S −
k∑

i=0

Dt−i −
t∑

i=k+1


1−

i−(k+1)∑

j=0

β (1− β)j


Dt−i

= S −
k∑

i=0

Dt−i −
t∑

i=k+1

(1− β)i−k
Dt−i. (21)

We need to determine the steady state distribution NS of the net stock random variable NSt char-
acterized by (21). As S is a constant (for a given β), we focus on the steady state distribution Z of
Zt = S −NSt:

Zt =
k∑

i=0

Dt−i +
t∑

i=k+1

(1− β)i−k
Dt−i. (22)

Some care must be taken when evaluating (22) as the value of Dt−k influences the age k of the order
in service: the larger the demand size, the larger the order size and consequently the longer it takes to
produce the order. Moreover, since the order quantity is also affected by previously realised customer
demand (see (20)), the demand terms Dt−i, i = k + 1, ..., t also influence the order’s age k. Since k

determines the number of demand terms in the summation terms in Eqn. (22), there is correlation
between the different terms that make up Zt.

At first sight the correlation between the different terms of Zt seems to necessitate some kind of
approximation. However, the Markov chain (Bn, Og

a(n), Cn, Sn) used to determine the lead time distribu-
tion, retains the age k of the order in service (here denoted by Bn) and the order quantity Ot−k (rounded
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to the nearest multiple of 1/g with g the granularity, here denoted by Og
a(n)). According to (20) the

order quantity Ot−k is equal to

Ot−k =
t∑

i=k

β (1− β)i−k
Dt−i. (23)

Dividing (23) by β and substituting into (22) gives

Zt =
k−1∑

i=0

Dt−i +
Ot−k

β
, (24)

where both the order quantity Ot−k and the age k of the order in service1 are measures that can be
obtained from the Markov chain (Bn, Og

a(n), Cn, Sn). Denote by B(b) and O(b) the steady state random
variables of the age of the order in service and the original size of the order in service, provided that
the server is busy, respectively. The joint distribution (B(b), O(b)) is then available via the steady state
vector π by summing the appropriate terms.

We are now able to compute the steady state probabilities Z of Zt. We distinguish between two
cases: At the moment of observation, the replenishment order Ot finds k > 0 orders pending at the
manufacturer’s queue, or it finds the queue empty, k = 0. Let the random variable Ft equal 0 if the order
Ot finds the (manufacturer’s) queue empty and there was no service completion at the order placement
time, and 1 otherwise. First, consider the case where a new order finds k > 0 orders pending at the
manufacturer:

Pr [Z = s, F = 1] = lim
t→∞

Pr[Zt = s, Ft = 1]

=
∑

k>0

Pr[B(b) = dk, O(b) = q]ρd · Pr[Dk∗ = s− q/β]. (25)

Indeed, Pr[B(b) = dk, O(b) = q]ρd is the joint probability that a new order finds k orders at the man-
ufacturer with the original size of the one in service equaling q (the factor ρ drops the busy condition,
while dividing by 1/d conditions the probability on an arrival event). Now, Pr[Dk∗ = s− q/β] gives the
probability that the total demand that was taken from the inventory during the last k periods equals
s− q/β due to Eqn. (24), where Dk∗ denotes the k-fold convolution of the demand D.

Second, we focus on the case where a new order finds the queue idle (Ft = 0):

Pr [Z = s, F = 0] = lim
t→∞

Pr[Zt = s, Ft = 0]

=
d−1∑
a=1

∑

q∈Sg

Pr[Tr = a, Og = q] · pg(q, sβ). (26)

Recall, Pr[Tr = a] is the probability that an arbitrary order has a response time of a time units.
An arbitrary tagged order will find the queue empty upon arrival if the previous order (which is just as
arbitrary) has a response time of less than d time units, since d is the interarrival time of the orders.
The joint probability Pr[Tr = a,Og = q] = Pr[Og = q|Tr = a] · Pr[Tr = a] gives the probability that the
order preceding the tagged one has a size q and its lead time equals a time units. Multiplying this with

1Recall that the time unit U of our queueing analysis is equal to 1/d periods. Hence k periods corresponds to kd time
units.
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pg(q, sβ) thus gives us the probability that the tagged order finds the queue empty upon arrival and has
size sβ. Recall that pg(q, sβ) represents the conditional probability that the new order quantity equals
sβ, given the previous order quantity q (see Eqn. (12)). The probabilities Pr[Tr = a,Og = q] can be
retrieved from the steady state vector π as

Pr[Tr = a,Og = q] =
∑

s

(πa)(q,1,s)(ts). (27)

The steady state probabilities of the net stock Pr[NS = k] = limt→∞ Pr[NSt = k] can then be
computed from Eqns. (25-26):

Pr[NS = k] = Pr[Z = S − k, F = 0] + Pr[Z = S − k, F = 1], (28)

for k ≤ S − 1 (as the minimum size of an order is at least one). The probability of a stock-out is given
by

Pr[NS < 0] = Pr [Z > S] , (29)

and the average number of shortages when a stock-out occurs is given by

E
(
NS−

)
= E

(
[Z − S]+

)
, (30)

where x+ := max {0, x}. Finally, the fill rate can then be calculated as

Fill rate = 1−
E

(
[Z − S]+

)

E(D)
. (31)

In practice, decision makers often have to find the minimal base-stock level that is required to achieve
a given fill rate. From (31) we can compute the minimal base-stock level S that is required such that
an imposed fill rate is met. In the next subsection we will describe how to find the corresponding safety
stock SS given this base-stock level S.

5.2 Determination of corresponding safety stock

To determine the base-stock level, we observed the system after customer demand is satisfied and after
a replenishment order is placed. However, in order to find the safety stock requirements, we characterize
the inventory random variable at time instants just before a replenishment occurs. Indeed, by definition
the safety stock is the average level of the net stock just before a replenishment arrives (Silver et al., 1998).

Suppose that the n′th replenishment order (i.e., the order placed at the end of period n) is to be
delivered in period n + tp + 1. We monitor the inventory on hand just before this replenishment occurs
and denote this time instant by n∗. At the time instant just before replenishment n occurs, the orders
placed before period n are delivered in inventory and due to the sequence of events (satisfy demand after
receipt of the orders) customer demand is satisfied up to period n + tp. Then, the net stock or inventory
on hand NSn∗ is equal to

NSn∗ = S +
n−1∑

k=1

Ok −
n+tp∑

k=1

Dk. (32)
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Similar to (20) we can write the order quantity as a convex combination of previous demand realisa-
tions:

Ok =
k∑

j=1

β (1− β)k−j
Dj , (33)

and substituting (33) into (32) results in a result similar to Eqn. (21):

NSn∗ = S −
n+tp∑

k=n

Dk −
n−1∑

k=1

(1− β)n−k
Dk. (34)

Note that Eqns (21) and (34) are different however. In Eqn. (34) the age of the order in service (tp
periods) does represent the replenishment lead time, since the order will be delivered immediately after
the observed time instant. The value of tp is consequently a realisation of the lead time variable Tp. In
Eqn. (21) the age of the order in service (k periods) does not necessarily represent the lead time however,
since it is possible that the order in service does not finish production within the next period, and hence
the order in service will not replenish the inventory in the next period.

Eqn. (34) monitors the net stock at time instants just before a replenishment occurs. By definition
the expected value of this expression represents the safety stock:

SS ≡ E (NSn∗) = S − E

(
n+tp∑

k=n

Dk

)
− E

(
n−1∑

k=1

(1− β)n−k
Dk

)
. (35)

Since tp is a realisation of the lead time distribution Tp, we obtain an elegant result for the safety stock
that can be used to determine the safety stock SS given a base-stock level S:

SS = S − [E (Tp) + 1] · E(D)− (1− β)
β

· E(D). (36)

6 Numerical experiments

To illustrate our findings, we set up a numerical experiment where the retailer daily observes a random
discrete customer demand between 1 and 20 units with an average E(D) = 10.5. We assume three
different demand patterns, each with a different variability: a symmetric bell shaped demand distribution
with variability V ar(D) = 11.99 (case 1), a uniform demand pattern with variability V ar(D) = 33.25
(case 2), and finally a symmetric U-shaped demand pattern with variability V ar(D) = 56.59 (case 3).
We acknowledge that this last demand pattern is somewhat artificial and rarely observed in reality,
but it provides a good illustration of a wildly fluctuating customer demand. The (discrete) probability
distributions of the three demand patterns are shown in figure 4.

The retailer satisfies this daily customer demand from its inventory on hand and replenishes according
to the smoothing rule discussed in section 3.2. We assume that the manufacturer’s production operates 10
hours per day and the service time of a single unit is PH distributed with an average E(M) = 48 minutes
and a coefficient of variation cv(M) = 1. Hence the average production load is (10.5×48)/(60×10) = 0.84.

The retailer has to determine the parameter β to control its inventory. When he sets β = 1, the
retailer places orders equal to demand and hence the customer demand variability is fully transmitted
to the manufacturer. With the procedure described in section 4.2, we can compute the lead times that
result from the manufacturer’s production system corresponding to this order decision. We provide the

17



0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

D

P
r(

D
)

 

 
case 1
case 2
case 3

Figure 4: Three customer demand patterns with different demand variability

first two moments of this lead time distribution in table 1.
Suppose first that we treat the lead time to be an exogenous variable with the probability distribution

that results from the queueing analysis corresponding to this order pattern, i.e., we assume lead times
to be stochastic, but we arbitrarily assign a lead time to an order quantity. This means that we do
not take the correlation between the order quantity and its production (replenishment) lead time into
account, or equivalently, we ignore the correlation between Ot−k and k in Eqn. (24). The safety stock
that is required to maintain a 98% fill rate can then be calculated directly via Eqn. (21) and is provided
in table 1 (second last column).

When the retailer chooses to smooth its orders with a parameter β = 0.4, the upstream demand
variability is considerably dampened. In figures 5(a)-5(c) we plot the order pattern resulting from this
smoothing decision together with the observed customer demand pattern. Recall that when β 6= 1, the
order pattern is correlated, while customer demand is i.i.d..

This smoothing decision leads to an increase in inventory variance, since inventory absorbs the vari-
ability in demand while the replenishments are relatively steady. When we would not consider the impact
of this dampened order variability on lead time reduction, a higher safety stock has to be kept in order
to maintain the same fill rate. As an example, we take the same exogenous lead time distribution as in
the case where β = 1. In this case smoothing with β = 0.4 indeed leads to an increased safety stock
(see table 1, second last column): the manufacturer can smooth its production, but at the expense of an
increase in the retailer’s inventory.

Working with exogenous lead times is however incomplete. First of all, we may not simply ignore
the correlation between the order quantity and its lead time. It undoubtedly takes a longer time to
produce an order with a large batch size. Including the correlation between Ot−k and k in Eqn. (24)
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Figure 5: Customer demand patterns and corresponding order patterns when β = 0.4
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β V ar(O) E(Tp) V ar(Tp)
SS

Exogenous LT
SS

Endogenous LT
1 11.99 0.6365 0.4823 7.7195 19.9971

Case 1 0.4 2.9975 0.6365 0.4823 8.4890
0.4 2.9975 0.5336 0.4163 19.7157
1 33.25 1.0233 1.1255 17.2655 40.5134

Case 2 0.4 8.3125 1.0233 1.1255 18.5879
0.4 8.3125 0.7814 0.9044 40.0613
1 56.69 1.4626 2.2351 25.7532 65.6799

Case 3 0.4 14.1475 1.4626 2.2351 28.1991
0.4 14.1475 1.0886 1.8114 64.6523

Table 1: Comparison of no order smoothing and order smoothing with exogenous and endogenous lead
times

is indispensable for a correct representation of the model. When we compute the safety stock required
to meet a 98% fill rate with endogenous lead times (with the analysis described throughout section 5)
for β = 1, we obtain different results (see table 1, last column). Using exogenous lead times seriously
underestimates the required safety stock, consequently customer service will dramatically degrade.

Second, when the retailer smoothes its orders, he sends a less variable arrival pattern to the man-
ufacturer’s queue (see figures 5(a)-5(c)), which inevitably results in different lead times. We therefore
have to include the impact of this decreased order variability on production (queueing). Indeed, when
we estimate the lead time distribution when we send a smooth order pattern with β = 0.4 to the manu-
facturer’s production (we used a granularity equal to 8), we observe that order smoothing leads to lower
and less variable lead times (see table 1). This introduces a compensating effect on the safety stock SS.
In the last column of table 1 we observe that the safety stock for β = 0.4 (computed with endogenous
lead times) is even slightly lower than when we do not smooth the orders (β = 1).

In figure 6 we show the effect of order smoothing on the retailer’s safety stock when the smoothing
parameter varies from β = 0.2 to β = 1. When we include the effect of order smoothing on production, the
safety stock is a U-shaped function of the smoothing intensity. We can smooth the replenishment orders
to some extent while decreasing the safety stock. However, as of a certain point (around β = 0.5) the
safety stock increases exponentially. When β approaches zero, the lead time reduction cannot compensate
the increase in inventory variability anymore and the safety stock exceeds the safety stock that is required
when the orders are not smoothed (β = 1).

These results imply that the retailer can dampen the upstream demand variability without having to
increase its safety stock to maintain customer service at the same target level. Moreover, the retailer can
even decrease its safety stock when he smoothes its orders. This is clearly a better situation for both the
retailer and the manufacturer. The manufacturer receives a less variable order pattern and the retailer
can decrease his safety stock while maintaining the same fill rate, so that the cooperative surplus is
realised. This Pareto-improving policy may require contractual arrangements between the supply chain
partners so that the lead time reduction is effectively implemented (Tsay et al., 1999).

7 Conclusions

Disney and Towill (2003) question “to what extent can production rates be smoothed in order to minimise
production adaptation costs without adversely increasing inventory costs”. This is an important trade-off
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Figure 6: Safety stocks required to ensure a 98% fill rate for 3 demand patterns with different variability

because if a perfectly level production rate is used then large inventory deviations are found and hence
large inventory costs are incurred. Conversely, if inventory deviations are minimised (by “passing on
orders”), highly variable production schedules are generated and hence production adaptation costs are
incurred. We have shown that by including the impact of the order decision on production, we can turn
this conflicting situation into a situation where both parties are better off. A smooth order pattern gives
rise to shorter and less variable (production/replenishment) lead times. This introduces a compensating
effect on the retailer’s inventory level. In this paper we showed that we can smooth the order pattern
to a considerable extent without increasing stock levels. This may motivate the retailer to generate a
smooth ordering pattern, resulting in a better situation for both supply chain echelons.
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Appendix: Matching the first two moments of an arbitrary dis-

tribution to a 2 phase discrete PH distribution

In this section we provide the procedure to fit the first two moments of the single unit service time,
E (M) and V ar(M), to a 2 phase PH distribution, as developed by Boute et al. (2004). We assume that
E (M) ≥ 2 is an integer; this condition is not necessary, but allows some simplification in the fitting
procedure. By definition, a discrete PH distribution is the distribution of the number of steps prior to
final absorption in an absorbing Markov chain (Nelson, 1995). A PH distribution X is characterized by
the triple (n, T, α), where n > 0 is an integer, referred to as the number of phases of the distribution
or the number of transient states in an absorbing Markov chain, T is an n × n substochastic matrix,
delineating the transition probabilities between the transient states and α is a stochastic 1 × n vector,
which defines the probabilities αi that the process is started in the transient state i. The transition
probabilities between the transient states and the absorbing state are given by t, which is an n × 1
substochastic vector equal to (e− Te), where e is a n× 1 column vector with all its entries equal to one.
Hence the probability that k steps are taken prior to absorption is given by

Pr[X = k] = αT k−1t, (37)

where k > 0. Its mean and variance obey the following equations:

E (X) = α(I − T )−1e, (38)

V ar(X) = α(I − T )−1
(
2(I − T )−1 + (1− E (X))I

)
e, (39)

with I an n × n identity matrix. In order to match the mean single unit service time E (M) and
its variance V ar(M), we need to find a PH distribution characterized by a triple (n, T, α) such that
E (M) = E (X) and V ar(M) = V ar(X). Moreover, since the algorithm used to compute the lead time
distribution speeds up with a smaller n, we want a representation (n, T, α) that fits the two first moments
with n as small as possible (including higher moments will lead to a higher number of phases).

Denote cv2 (M) as the squared coefficient of variation, that is, cv2 (M) = V ar(M)/ [E (M)]2. By
applying a theorem by Telek (2000, Theorem 1) and the fact that E (M) is an integer, we find that the
minimum number of phases needed to match E (M) and V ar(M) equals

n = max
(

2,

⌈
E (M)

E (M) · cv2 (M) + 1

⌉)
. (40)

Since the lead time is expressed as an integer number of periods and the interarrival time is equal to
one base period, we have the freedom to choose the time unit U of the queueing system in an appropriate
manner (Bobbio et al., 2004b). When we choose the time unit of our queueing system U equal to half of
the mean single unit production time, i.e., U = E (M) /2, and denote E (MU ) and V ar(MU ) as the mean
and variance of the production time expressed as multiples of U , then by definition we find E (MU ) = 2
and V ar (MU ) = 4V ar(M)/ [E (M)]2, implying that cv2(MU ) = cv2(M). Consequently, we only need
n = 2 phases, because

n = max
(

2,

⌈
2

1 + 2cv2 (M)

⌉)
= 2. (41)

Meaning, we can always match the two first moments of the service process of a single item using a 2
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state PH distribution.
Next, we choose the 1 × 2 vector α and the 2 × 2 matrix T as follows. These choices are motivated

by a variety of results when matching continuous time PH distributions (Telek and Heindl, 2002; Bobbio
et al., 2004a):

α = (δ, 1− δ), (42)

T =

[
1− p1 p1

0 1− p2

]
. (43)

This leaves us with 3 parameters: δ, p1 and p2, and two equations: E (MU ) = E (X) and V ar (MU ) =
V ar(X). Therefore, we add an additional constraint which demands that the stationary vector of the
matrix (T + tα) is the uniform vector (1/2, 1/2). This constraint implies that the probability that the PH
Markov process is in phase i is equal for each phase i = 1, 2, and hence equal to 1/2. As a consequence
the average sojourn time in phase i equals E (MU ) /2.

Due to (42-43) the PH Markov process starts in phase 1 with probability δ and every time slot it
may depart from phase 1 with probability p1. Hence the time in phase 1 is geometrically distributed
with an average of δ/p1. The PH process subsequently passes to phase 2 and departs from phase 2 with
probability p2. Hence the average time in phase i = 2 equals 1/p2. Setting E (MU ) = E (X) poses the
following conditions on δ, p1 and p2:

p1 = 2δ/E (MU ) ,

p2 = 2/E (MU ) . (44)

Since E(MU ) = 2, we find that p2 = 1 and 0 ≤ p1 = δ.
Thus, it remains to determine δ, with 0 ≤ δ ≤ 1, based on the remaining condition V ar (MU ) =

V ar(X). Therefore, we define the generating function G(z) =
∑

k P [X = k]zk of the PH distribution X

characterized by (42-43). Recall that a discrete PH distribution denotes the distribution of the number
of steps prior to final absorption in an absorbing Markov chain. Due to the special structure of (42-43),
the process always passes through phase 2 and runs through phase 1 with probability δ. The time that
the process spends in phase i = 1, 2 is geometrically distributed and independent of the time that the
process spends in phase j, j 6= i. Since the generating function of a geometric distribution is a well known
result and equal to

GGEO(z) =
pz

1− (1− p)z
,

we find that the generating function G(z) =
∑

k P [X = k]zk of the PH distribution X is then given by

G(z) =
{

δ

(
p1z

1− (1− p1)z

)
+ (1− δ)

}(
p2z

1− (1− p2)z

)
. (45)

The condition V ar (MU ) = V ar(X) can then be rephrased as

V ar(MU ) =
d2G(z)

dz2

∣∣∣∣
z=1

+ E (MU ) (1− E (MU )). (46)
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Some careful calculations show that this equation is solved by setting δ equal to:

0 ≤ δ =
2E (MU )

2E (MU ) + 2(2− E (MU ) + 2 cv2 (MU ) E (MU ))
≤ 1, (47)

or

0 ≤ δ =
1

1 + 2cv2
M

≤ 1, (48)

where the first and last inequality in Eqns. (47-48) is due to Eqn. (40).
In conclusion, the PH distribution fitted to the mean service time of a single item E(M) and its

variance V ar(M) is characterized by

n = 2, (49)

α = (
1

1 + 2cv2
M

, 1− 1
1 + 2cv2

M

), (50)

T =

[
1− 1

1+2cv2
M

1
1+2cv2

M

0 0

]
. (51)
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