4,254 research outputs found

    Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks

    Get PDF
    In the last decade, distribution systems are experiencing a drastic transformation with the advent of new technologies. In fact, distribution networks are no longer passive systems, considering the current integration rates of new agents such as distributed generation, electrical vehicles and energy storage, which are greatly influencing the way these systems are operated. In addition, the intrinsic DC nature of these components, interfaced to the AC system through power electronics converters, is unlocking the possibility for new distribution topologies based on AC/DC networks. This paper analyzes the evolution of AC distribution systems, the advantages of AC/DC hybrid arrangements and the active role that the new distributed agents may play in the upcoming decarbonized paradigm by providing different ancillary services.Ministerio de Economía y Competitividad ENE2017-84813-RUnión Europea (Programa Horizonte 2020) 76409

    Enhanced Electric Vehicle Integration in the UK Low Voltage Networks with Distributed Phase Shifting Control

    Get PDF
    Electric vehicles (EV) have gained global attention due to increasing oil prices and rising concerns about transportation-related urban air pollution and climate change. While mass adoption of EVs has several economic and environmental benefits, large-scale deployment of EVs on the low-voltage (LV) urban distribution networks will also result in technical challenges. This paper proposes a simple and easy to implement single-phase EV charging coordination strategy with three-phase network supply, in which chargers connect EVs to the less loaded phase of their feeder at the beginning of the charging process. Hence, network unbalance is mitigated and, as a result, EV hosting capacity is increased. A new concept, called Maximum EV Hosting Capacity (HC max) of low voltage distribution networks, is introduced to objectively assess and quantify the enhancement that the proposed phase-shifting strategy could bring to distribution networks. The resulting performance improvement has been demonstrated over three real UK residential networks through a comprehensive Monte Carlo simulation study using Matlab and OpenDSS tools. With the same EV penetration level, the under-voltage probability was reduced in the first network from 100% to 54% and in the second network from 100% to 48%. Furthermore, percentage voltage unbalance factors in the networks were successfully restored to their original values before any EV connection.Peer reviewedFinal Accepted Versio

    Flexibility Services Provision by Frequency-Dependent Control of On-Load Tap-Changer and Distributed Energy Resources

    Get PDF
    Distribution network connected distributed energy resources (DER) are able to provide various flexibility services for distribution system operators (DSOs) and transmission system operators (TSOs). These local and system-wide flexibility services offered by DER can support the frequency ( f ) and voltage ( U ) management of a future power system with large amounts of weather-dependent renewable generation and electric vehicles. Depending on the magnitude of frequency deviation, other active network management-based frequency control services for TSOs could also be provided by DSOs in coordination with adaptive control of DER. This paper proposes utilisation of demand response based on frequency-dependent HV/MV transformer on-load tap-changer (OLTC) operation in case of larger frequency deviations. The main principle underlying the proposed scheme lies in the voltage dependency of the distribution network connected loads. In this paper, it is also proposed to, simultaneously with frequency-dependent OLTC control, utilise reverse reactive power -voltage ( QU ) - and adaptive active power -voltage ( PU ) -droops with distribution network connected DER units during these larger frequency deviations, in order to enable better frequency support service for TSOs from DSO networks. The effectivity and potential of the proposed schemes are shown through PSCAD simulations. In addition, this paper also presents a holistic and collaborative view of potential future frequency control services which are provided by DSO network-connected resources for TSOs at different frequency deviation levels.This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    Smart Loads for Voltage Control in Distribution Networks

    Get PDF
    This paper shows that the smart loads (SLs) could be effective in mitigating voltage problems caused by photovoltaic (PV) generation and electric vehicle (EV) charging in low-voltage (LV) distribution networks. Limitations of the previously reported SL configuration with only series reactive compensator (SLQ) (one converter) is highlighted in this paper. To overcome these limitations, an additional shunt converter is used in back-to-back (B2B) configuration to support the active power exchanged by the series converter, which increases the flexibility of the SL without requiring any energy storage. Simulation results on a typical U.K. LV distribution network are presented to compare the effectiveness of an SL with B2B converters (SLBCs) against an SLQ in tackling under- and over-voltage problems caused by EV or PV. It is shown that SLBCs can regulate the main voltage more effectively than SLQs especially under overvoltage condition. Although two converters are required for each SLBC, it is shown that the apparent power capacity of each converter is required to be significantly less than that of an equivalent SLQ

    Impact of cyber-attack on coordinated voltage control in low voltage grids

    Get PDF

    Coordinated Control of PV Inverters in Distribution Grid Using Local and Centralized Control

    Get PDF

    Optimal power flow based coordinated reactive and active power control to mitigate voltage violations in smart inverter enriched distribution network

    Get PDF
    Voltage violations are the main problem faced in distribution networks (DN) with a higher penetration of inverter-based generations (IBG). Active and reactive power control from smart inverters (SI) can mitigate such violations. Optimal power flow (OPF)-based control provides more accurate operating set points for the coordinated operation of SIs. Therefore, this paper presents a three-phase OPF-based control on SI-enriched unbalanced distribution networks. To consider this, first three-phase model using the current injection model (CIM) is developed. Later, the optimal active and reactive power set points for SIs are obtained by solving a quasi-dynamic optimization problem. The uniqueness of the proposed method is that it regulates the voltage at the affected nodes by obtaining the optimal set points for the smart inverter. The OPF is implemented with a mathematical CIM in Pyomo and solved using the Knitro solver. The proposed method is compared with the sensitivity-based Volt-Var Control (VVC), Volt-Watt Control (VWC), and combined VVC and VWC methods. The effectiveness of the proposed method is verified in a European low-voltage and CIGRE medium-voltage distribution network with 100% penetration. The analysis shows that the OPF-based control optimizes with less network loss and can maintain voltage violations with less reactive power support
    corecore