911 research outputs found

    Renewable hydrogen supply chains: A planning matrix and an agenda for future research

    Get PDF
    Worldwide, energy systems are experiencing a transition to more sustainable systems. According to the Hydrogen Roadmap Europe (FCH EU, 2019), hydrogen will play an important role in future energy systems due to its ability to support sustainability goals and will account for approximately 13% of the total energy mix in the coming future. Correct hydrogen supply chain (HSC) planning is therefore vital to enable a sustainable transition, in particular when hydrogen is produced by water electrolysis using electricity from renewable sources (renewable hydrogen). However, due to the operational characteristics of the renewable HSC, its planning is complicated. Renewable hydrogen supply can be diverse: Hydrogen can be produced de-centrally with renewables, such as wind and solar energy, or centrally by using electricity generated from a hydro power plant with a large volume. Similarly, demand for hydrogen can also be diverse, with many new applications, such as fuels for fuel cell electrical vehicles and electricity generation, feedstocks in industrial processes, and heating for buildings. The HSC consists of various stages (production, storage, distribution, and applications) in different forms, with strong interdependencies, which further increase HSC complexity. Finally, planning of an HSC depends on the status of hydrogen adoption and market development, and on how mature technologies are, and both factors are characterised by high uncertainties. Directly adapting the traditional approaches of supply chain (SC) planning for HSCs is insufficient. Therefore, in this study we develop a planning matrix with related planning tasks, leveraging a systematic literature review to cope with the characteristics of HSCs. We focus only on renewable hydrogen due to its relevance to the future low-carbon economy. Furthermore, we outline an agenda for future research, from the supply chain management perspective, in order to support renewable HSC development, considering the different phases of renewable HSCs adoption and market development

    Green Technologies for Production Processes

    Get PDF
    This book focuses on original research works about Green Technologies for Production Processes, including discrete production processes and process production processes, from various aspects that tackle product, process, and system issues in production. The aim is to report the state-of-the-art on relevant research topics and highlight the barriers, challenges, and opportunities we are facing. This book includes 22 research papers and involves energy-saving and waste reduction in production processes, design and manufacturing of green products, low carbon manufacturing and remanufacturing, management and policy for sustainable production, technologies of mitigating CO2 emissions, and other green technologies

    Advances in Theoretical and Computational Energy Optimization Processes

    Get PDF
    The paradigm in the design of all human activity that requires energy for its development must change from the past. We must change the processes of product manufacturing and functional services. This is necessary in order to mitigate the ecological footprint of man on the Earth, which cannot be considered as a resource with infinite capacities. To do this, every single process must be analyzed and modified, with the aim of decarbonising each production sector. This collection of articles has been assembled to provide ideas and new broad-spectrum contributions for these purposes

    A Novel Reinforcement Learning-Optimization Approach for Integrating Wind Energy to Power System with Vehicle-to-Grid Technology

    Get PDF
    High integration of intermittent renewable energy sources (RES), specifically wind power, has created complexities in power system operations due to their limited controllability and predictability. In addition, large fleets of Electric Vehicles (EVs) are expected to have a large impact on electricity consumption, contributing to the volatility. In this dissertation, a well-coordinated smart charging approach is developed that utilizes the flexibility of EV owners in a way where EVs are used as distributed energy storage units and flexible loads to absorb the fluctuations in the wind power output in a vehicle-to-grid (V2G) setup. Challenges for people participation in V2G, such as battery degradation and insecurity about unexpected trips, are also addressed by using an interactive mechanism in smart grid. First, a static deterministic model is formulated using multi-objective mixed-integer quadratic programming (MIQP) assuming known parameters day ahead of time. Subsequently, a formulation for real-time dynamic schedule is provided using a rolling-horizon with expected value approximation. Simulation experiments demonstrate a significant increase in wind utilization and reduction in charging cost and battery degradation compared to an uncontrolled charging scenario. Formulating the scheduling problem of the EV-wind integrated power system using conventional stochastic programming (SP) approaches is challenging due to the presence of many uncertain parameters with unknown underlying distributions, such as wind, price, and different commuting patterns of EV owners. To alleviate the problem, a model-free Reinforcement Learning (RL) algorithm integrated with deterministic optimization is proposed that can be applied on many multi-stage stochastic problems while mitigating some of the challenges of conventional SP methods (e.g., large scenario tree, computational complexity) as well as the challenges in model-free RL (e.g., slow convergence, unstable learning in dynamic environment). The simulation results of applying the combined approach on the EV scheduling problem demonstrate the effectiveness of the RL-Optimization method in solving the multi-stage EV charge/discharge scheduling problem. The proposed methods perform better than standard RL approaches (e.g., DDQN) in terms of convergence speed and finding the global optima. Moreover, to address the curse of dimensionality issue in RL with large action-state space, a heuristic EV fleet charging/discharging scheme is used combined with RL-optimization approach to solve the EV scheduling problem for a large number of EVs

    Planning and Operation of Hybrid Renewable Energy Systems

    Get PDF
    • …
    corecore