4,106 research outputs found

    Decentralized control with communication between controllers

    Get PDF
    The paper presents the problem of decentralized control with communication between controllers. It differs from the regularly considered decentralized control problem in that the controllers can communicate information. Major questions are then: What? When? and To Whom? to communicate information. The problem instances of decentralized control with communication between controllers for discrete-event systems and for finite-dimensional linear systems are described in detail

    Unconditional decentralized structure for the fault diagnosis of discrete event systems

    Get PDF
    International audienceThis paper proposes an unconditional decentralized structure to realize the fault diagnosis of Discrete Event Systems (DES), specially manufacturing systems with discrete sensors and actuators. This structure is composed on the use of a set of local diagnosers, each one of them is responsible of a specific part of the plant. These local diagnosers are based on a modular modelling of the plant in order to reduce the state explosion. Each local diagnoser uses event-based, state based and timed models to take a decision about fault's occurrences. These models are obtained using the information provided by the plant, the controller and the actuators reactivity. All local diagnosis decisions are then merged by a Boolean operator in order to obtain one global diagnosis decision. Finally, the diagnosers are polynomial-time in the cardinality of the state space of the system. This approach is illustrated using an example of manufacturing system

    The Complexity of Codiagnosability for Discrete Event and Timed Systems

    Full text link
    In this paper we study the fault codiagnosis problem for discrete event systems given by finite automata (FA) and timed systems given by timed automata (TA). We provide a uniform characterization of codiagnosability for FA and TA which extends the necessary and sufficient condition that characterizes diagnosability. We also settle the complexity of the codiagnosability problems both for FA and TA and show that codiagnosability is PSPACE-complete in both cases. For FA this improves on the previously known bound (EXPTIME) and for TA it is a new result. Finally we address the codiagnosis problem for TA under bounded resources and show it is 2EXPTIME-complete.Comment: 24 pages

    Fault detection for discrete event systems using Petri nets with unobservable transitions

    Get PDF
    In this paper we present a fault detection approach for discrete event systems using Petri nets. We assume that some of the transitions of the net are unobservable, including all those transitions that model faulty behaviors. Our diagnosis approach is based on the notions of basis marking and justification, that allow us to characterize the set of markings that are consistent with the actual observation, and the set of unobservable transitions whose firing enable it. This approach applies to all net systems whose unobservable subnet is acyclic. If the net system is also bounded the proposed approach may be significantly simplified by moving the most burdensome part of the procedure off-line, thanks to the construction of a graph, called the basis reachability graph

    Fault-tolerant supervisory control of discrete-event systems

    Get PDF
    In this dissertation, I introduce my study on fault-tolerant supervisory control of discrete event systems. Given a plant, possessing both faulty and nonfaulty behavior, and a submodel for just the nonfaulty part, the goal of fault-tolerant supervisory control is to enforce a certain specifcation for the nonfaulty plant and another (perhaps more liberal) specifcation for the overall plant, and further to ensure that the plant recovers from any fault within a bounded delay so that following the recovery the system state is equivalent to a nonfaulty state (as if no fault ever happened). My research includes the formulation of the notations and the problem, existence conditions, synthesizing algorithms, and applications

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: ñ€ƓHow should we plan and execute logistics in supply chains that aim to meet todayñ€ℱs requirements, and how can we support such planning and execution using IT?ñ€ Todayñ€ℱs requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting todayñ€ℱs requirements in supply chain planning and execution.supply chain;MAS;multi agent systems

    Unattended network operations technology assessment study. Technical support for defining advanced satellite systems concepts

    Get PDF
    The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network
    • 

    corecore