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Abstract

In this paper we present a fault detection approach for discrete event systems using Petri
nets. We assume that some of the transitions of the net are unobservable, including all those
transitions that model faulty behaviors. Our diagnosis approach is based on the notions of
basis marking and justification, that allow us to characterize the set of markings that are
consistent with the actual observation, and the set of unobservable transitions whose firing
enable it. This approach applies to all net systems whose unobservable subnet is acyclic.
If the net system is also bounded the proposed approach may be significantly simplified by
moving the most burdensome part of the procedure off-line, thanks to the construction of a
graph, called the basis reachability graph.
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1 Introduction

The diagnosis of discrete event systems is a research area that has received a lot of attention
in the last years and has been motivated by the practical need of ensuring the correct and
safe functioning of large complex systems. In the context of automata Sampath et al. [15, 16]
propose an approach to failure diagnosis where the system is modeled as a nondeterministic
automaton in which the failures are treated as unobservable events. In [15] they provide a
definition of diagnosability in the framework of formal languages and establish necessary and
sufficient conditions for diagnosability. Moreover, in [14] Sampath et al. present an integrated
approach to control and diagnosis. More specifically, the authors present an approach for the
design of diagnosable systems by appropriate design of the system controller and this approach
is called active diagnosis. They formulate the active diagnosis problem as a supervisory control
problem. In [7] Debouk et al. propose a coordinated decentralized architecture consisting of
two local sites communicating with a coordinator that is responsible for diagnosing the failures
occurring in the system. In [4] Boel and van Schuppen address the problem of synthesizing
communication protocols and failure diagnosis algorithms for decentralized failure diagnosis of
DES with costly communication between diagnosers. In [17] a state-based approach for on-line
passive fault diagnosis is presented.

More recently, Petri net models have been used in the context of diagnosis due to their intrin-
sically distributed nature where the notions of state (i.e., marking) and action (i.e., transition)
are local. This has often been an asset to reduce the computational complexity involved in solv-
ing a diagnosis problem. Among the first pioneering works dealing with Petri nets (PNs), we
recall the approach of Prock that proposes an on-line technique for fault detection that is based
on monitoring the number of tokens residing into P-invariants [13]. In [9] Genc and Lafortune
propose a diagnoser on the basis of a modular approach that performs the diagnosis of faults in
each module. In [2] Benveniste et al. present a net unfolding approach for designing an on-line
asynchronous diagnoser. In [1] Basile et al. present a diagnosis approach where the diagnoser
is built on-line by defining and solving integer linear programming problems. In [8], in order to
avoid the redesign and the redefinition of the diagnoser when the structure of the system changes,
Dotoli et al. propose a diagnoser that works on-line.

The main difference between the diagnosis approach presented here and the approaches cited
above is the concept of basis marking. This concept allows us to represent the reachability space
in a compact manner, i.e., our approach requires to enumerate only a subset of the reachabil-
ity space. More specifically, in this paper we deal with the failure diagnosis of discrete event
systems modeled by place/transition nets. We assume that faults are modeled by unobservable
transitions, but there may also exist other transitions that represent legal behaviors and are un-
observable as well. Thus we assume that the set of transitions can be partitioned as T = To ∪Tu

where To is the set of observable transitions, and Tu is the set of unobservable transitions. The
set of fault transitions is denoted Tf and satisfies Tf ⊆ Tu.

The set of fault transitions is further partitioned into r subsets, T i
f , i = 1, . . . , r, each one

corresponding to a fault class. We are not interested in distinguishing among transitions within
the same class, but we want to detect the class of faults that has occurred, or that may have
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occurred, given the observed behavior, i.e., the sequence of transitions that has been observed.

We associate two different sets to any observed word w, i.e., to any sequence of observed transi-
tions:

• L(w) is the set containing all sequences of transitions that are consistent with w, i.e., the set
of all possible firing sequences that produce observation w.

• J (w) is the set of justifications, i.e., the set of all minimal sequences of unobservable transitions
(namely those sequences of unobservable transitions whose firing vector is minimal) interleaved
with w and whose firing enables w1.

Note, in fact, that even if a word w ∈ T ∗o is observed, in general the sequence σ = w is not
firable on the net, i.e., it cannot occur at the initial marking: it is necessary to interleave it with
a sequence σu of unobservable events to obtain a firable sequence σ that produces the observed
word w. J (w) is the set of all sequences σu that are minimal, i.e., that have a minimal firing
vector.

Now, given a fault class T i
f and an observation w, we distinguish the following four cases, each

one corresponding to an increasing level of alarm (the diagnosis state varies from 0 to 3).

(0) No sequence in L(w) contains a transition in T i
f , thus no fault in the ith class has occurred.

(1) Some transitions in T i
f may have fired but none of them was contained in a justification of

w.

(2) Some transitions in T i
f may have fired and are contained in some of the justifications of w.

However, not all justifications of w contain transitions in T i
f .

(3) All justifications of w contain transitions in T i
f , thus a fault must have occurred.

We provide a fault detection procedure that enables us to evaluate, for any observed word and
any fault class, the corresponding diagnosis state. This procedure may be carried out by simply
performing matrix multiplications and evaluating the feasibility of certain integer constraint sets.
Such a procedure may be applied to all net systems whose unobservable subnet is acyclic. This
assumption, that is analogous to the classical hypothesis in the theory of automata where no cycle
of unobservable events can appear, allows us to: (a) study the reachability of the unobservable
subnet with the state equation; (b) give an easy algorithm for the computation of the firing
vectors relative to justifications. In particular, (a) implies that we can distinguish between the
diagnosis states 0 and 1 in an efficient way.

The most burdensome part of the proposed procedure consists in evaluating the feasibility of
a finite number of integer constraint sets. We show that in the case of bounded net systems
this computation may be performed off-line. An oriented graph, that we call basis reachability
graph (BRG) may be constructed, that summarizes all the information required for diagnosis.
Therefore, given any observable word w, for any fault class T i

f we may evaluate the corresponding

1A sequence σ ∈ T ∗u interleaved with w and enabling w is minimal if @σ′ ∈ T ∗u interleaved with w and enabling
w such that π(σ′) � π(σ), where π(σ)(π(σ′)) denotes the firing vector associated with σ(σ′).
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diagnosis state, by simply looking at the BRG.

This paper builds on our previous results in [6] where an observer for nets with silent transitions
was designed under two structural assumptions, namely the unobservable subnet is acyclic and
backward conflict-free. In such a case the set of markings that are consistent with the actual
observation C(w), namely the set of markings that can be reached from the initial marking firing
the observed word w interleaved with sequences of unobservable transitions that enable w, may
be characterized by a finite set of linear algebraic constraints whose structure is fixed, and does
not depend on the length of the observed word w. In this paper we show that a finite linear
algebraic characterization of the set C(w) may still be given, but the number of constraints is not
fixed and depends in general on the word w. This requires a generalization of the notion of basis
marking with respect to [6]. In particular, here we extend this notion to arbitrary nets. This
makes a completely different characterization necessary in terms of new original notions such as
justifications, minimal explanations. Moreover, no mention of the diagnosis problem was done
in [6].

2 Petri nets: main definitions

Petri nets are a family of models. In this paper we deal with the basic purely logic model called
Place/Transition nets or P/T nets.

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is a set of places;
T is a set of transitions; Pre : P × T → N and Post : P × T → N are the pre– and post–
incidence functions that specify the arcs; C = Post − Pre is the incidence matrix. We denote
as m = |P | and n = |T | the cardinality of the set of places and transitions.

A marking is a vector M : P → N that assigns to each place of a P/T net a nonnegative integer
number of tokens, represented by black dots. We denote M(p) the marking of place p. A P/T

system or net system 〈N, M0〉 is a net N with an initial marking M0.

A transition t is enabled at M iff M ≥ Pre(· , t) and may fire yielding the marking M ′ =
M + C(· , t). We write M [σ〉 to denote that the sequence of transitions σ = tj1 · · · tjk

is enabled
at M , and we write M [σ〉 M ′ to denote that the firing of σ yields M ′. We also write t ∈ σ to
denote that a transition t is contained in σ.

The set of all sequences that are enabled at the initial marking M0 is denoted L(N, M0), i.e.,
L(N, M0) = {σ ∈ T ∗ | M0[σ〉}.

Given a sequence σ ∈ T ∗, we call π : T ∗ → Nn the function that associates to σ a vector
y = π(σ) ∈ Nn, named the firing vector of σ, where y(t) = k if transition t is contained k times
in σ.

A marking M is reachable in 〈N, M0〉 iff there exists a firing sequence σ such that M0 [σ〉 M .
The set of all markings reachable from M0 defines the reachability set of 〈N, M0〉 and is denoted
R(N,M0). Finally, we denote PR(N, M0) the potentially reachable set, i.e., the set of all markings
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M ∈ Nm for which there exists a vector y ∈ Nn that satisfies the state equation M = M0+C·y, i.e.,
PR(N, M0) = {M ∈ Nm | ∃ y ∈ Nn : M = M0 +C ·y}. It holds that R(N,M0) ⊆ PR(N,M0).

A PN having no oriented cycle is called acyclic.

Theorem 2.1 [6] Let N be an acyclic Petri net.
(i) If the vector y ∈ Nn satisfies the equation M0 + C · y ≥ ~0 there exists a firing sequence σ

firable from M0 whose firing vector is π(σ) = y.
(ii) A marking M is reachable from M0 iff there exists a nonnegative integer solution y satisfying
the state equation M = M0 + C · y, i.e., R(N,M0) = PR(N,M0).

Note that in Theorem 2.1 obviously (i) implies (ii). Moreover, given a vector y ∈ Nn defined as
in (i), the problem of determining a sequence with firing vector y that is enabled at M0 may be
computationally demanding and its complexity highly increases with n and with

∑
t∈T y(t).

A net system 〈N, M0〉 is bounded if there exists a positive constant k such that, for M ∈ R(N,M0),
M(p) ≤ k. A net is said structurally bounded if it is bounded for any initial marking.

A P/T net is backward conflict-free if each place p ∈ P has at most one input transition.

We assume that the set of transitions T is partitioned in two subsets To and Tu, i.e., T = To∪Tu

and To ∩ Tu = ∅. The set To includes all transitions that are observable, while Tu includes
unobservable or silent transitions.

We denote as no (nu) the cardinality of set To (Tu), and as Co (Cu) the restriction of the incidence
matrix to To (Tu).

Definition 2.2 Let N = (P, T, Pre, Post) be a net with T = To ∪ Tu. We define the following
two operators.
— The projection over To is Po : T ∗ → T ∗o defined as: (i) Po(ε) = ε; (ii) for all σ ∈ T ∗ and t ∈ T ,
Po(σt) = Po(σ)t if t ∈ To, and Po(σt) = Po(σ) otherwise.
— The projection over Tu is Pu : T ∗ → T ∗u defined as: (i) Pu(ε) = ε; (ii) for all σ ∈ T ∗ and t ∈ T ,
Pu(σt) = Pu(σ)t if t ∈ Tu, and Pu(σt) = Pu(σ) otherwise. ¥

Given a sequence σ ∈ L(N, M0), we denote w = Po(σ) the corresponding observed word.

Definition 2.3 Let 〈N,M0〉 be a net system where N = (P, T, Pre, Post) and T = To ∪ Tu.
Let w ∈ T ∗o be an observed word. We define L(w) = P−1

o (w) ∩ L(N, M0) = {σ ∈ L(N, M0) |
Po(σ) = w}, the set of firing sequences consistent with w ∈ T ∗o . ¥

Definition 2.4 Let 〈N, M0〉 be a net system where N = (P, T, Pre, Post) and T = To∪Tu. Let
w ∈ T ∗o be an observed word. We define C(w) = {M ∈ R(N, M0) | ∃σ ∈ L(w) : M0[σ〉M} ,

the set of markings consistent with w ∈ T ∗o . ¥

In plain words, given an observation w, L(w) is the set of sequences that may have fired, while
C(w) is the set of markings in which the system may actually be.

Example 2.5 Let us consider the net system in Fig. 1. It represents a production line processing

5



 
 

 

ε7 

p2 ε3 ε4 ε5 ε6 p4 p3 p5 p6 

p7 ε8 ε9 ε10 
p9 p8 p10 p11 

p12 

t2 

ε13 

p13 
ε11 ε12 

p1 

t1 

2 

p14 

Figure 1: A PN modeling a part of a production line.

damaged parts, namely metallic slabs where two plates instead of one, have been placed in a
wrong decentralized position. When a damaged part is ready to be processed (tokens in p1) slabs
and plates are separated (transition t1) and the two plates are sent in the upper line (modeled
by places p2, p3, p4, p5, p6), while the slab is sent in the lower line (modeled by places p7, p8,
p9, p10, p11). In the two lines parts are processed, namely smoothed, cleaned up, painted and
polished (this corresponds to the firing of transitions ε3 to ε10). Finally one metallic plate is
inserted in the slab in the correct position (transition t2). The second plate is used again for
other slabs, but this part of the process is not modeled here.

We assume that To = {t1, t2} and Tu = {ε3, ε4, . . . , ε13}, where for a better understanding
unobservable transitions have been denoted εi rather than ti.

Assume no event is observed, namely w = ε. It holds that L(ε) = {ε, ε13, ε13ε5, ε13ε5ε6} and
C(ε) = {M0,M1,M2, M3}, where M0 is the initial marking, M1 = [1 0 0 1 0 0 0 0 0 0 0 0 1 0]T ,
M2 = [1 0 0 0 1 0 0 0 0 0 0 0 1 0]T and M3 = [1 0 0 0 0 1 0 0 0 0 0 0 1 0]T .

Now, assume t1 is observed. Transition t1 is enabled at the initial marking, thus the firing of
no unobservable transition is necessary to enable it. After the firing of t1 several sequences of
unobservable transitions are enabled, and several markings are thus consistent with the actual
behavior. In particular, all sequences t1ε3, t1ε3ε3, t1ε3ε3ε4, t1ε3ε3ε4ε4ε13, . . ., t1ε7, t1ε7ε8, . . .,
etc. may have fired given the actual observation, and C(w) includes all markings that are reached
firing the above sequences.

Now, let us consider w = t2. In such a case no sequence of unobservable transitions may enable
it. Therefore, C(t2) = L(t2) = ∅.

Finally, let us consider w = t1t2. In such a case we obtain L(t1t2) = {t1ε3ε4ε5ε6ε7ε8ε9ε10t2, ε13t1ε3ε4

ε5ε6ε5ε6ε7ε8ε9ε10t2, t1ε3ε11ε8ε9ε10ε13ε5ε6t2, ε13t1ε3ε7 ε8ε9ε10ε5ε6, . . .}, and

C(t1t2) =
{
[0 1 0 0 0 0 0 0 0 0 0 1 1 1]T ,

[0 1 0 0 0 1 0 0 0 0 0 1 1 0]T ,

[0 1 0 0 0 0 1 0 0 0 0 1 0 0]T ,

[0 1 1 0 0 0 0 0 0 0 0 1 1 0]T , . . .
}

,
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where dots denote all other sequences that may have fired and all other markings consistent with
t1t2, respectively (that have not been reported here for the sake of conciseness). ¥

Definition 2.6 Given a net N = (P, T, Pre, Post), and a subset T ′ ⊆ T of its transitions, we
define the T ′−induced subnet of N as the new net N ′ = (P, T ′, P re′, Post′) where Pre′, Post′

are the restriction of Pre, Post to T ′. The net N ′ can be thought of as obtained from N by
removing all transitions in T \ T ′. We also write N ′ ≺T ′ N . ¥

3 Basis markings and j-vectors

Let us first introduce some basic definitions that will be useful in the following.

Definition 3.1 Given a marking M and an observable transition t ∈ To, we define

Σ(M, t) = {σ ∈ T ∗u | M [σ〉M ′, M ′ ≥ Pre(·, t)}

the set of explanations of t at M , and we define Y (M, t) = π(Σ(M, t)) the e-vectors (or explana-
tion vectors), i.e., firing vectors associated to the explanations. ¥

Thus Σ(M, t) is the set of unobservable sequences whose firing at M enables t.

Among the above sequences we want to select those whose firing vector is minimal. The firing
vector of these sequences are called minimal e-vectors.

Definition 3.2 Given a marking M and a transition t ∈ To, we define

Σmin(M, t) = {σ ∈ Σ(M, t) | @ σ′ ∈ Σ(M, t)
: π(σ′) � π(σ)}

the set of minimal explanations of t at M , and we define Ymin(M, t) = π(Σmin(M, t)) the corre-
sponding set of minimal e-vectors. ¥

Similar definitions have also been given in [3, 11].

Theorem 3.3 [6] Let N = (P, T, Pre, Post) be a PN with T = To∪Tu. If the Tu-induced subnet
is acyclic and backward conflict-free, then |Ymin(M, t)| = 1.

An intuitive explanation to the above result can be given considering that the acyclicity assump-
tion is necessary to identify the set of reachable markings using the state equation of the net.
Finally, the backward conflict-freeness assumption implies that all places have at most one input
unobservable transition. Thus, if some tokens are necessary in a given place to enable the firing
of a given output transition, we can reconstruct how many times its single input unobservable
transition has fired. On the contrary, if a place has more than one input unobservable transi-
tion, in general the enabling of an output transition may be the consequence of several minimal
explanations.
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Different approaches can be used to compute Ymin(M, t), e.g., see [3, 11]. In [10, 5] we also
suggested an approach to find all vectors in Ymin(M, t) if applied to nets whose Tu-induced
subnet is acyclic. It simply requires algebraic manipulations, and is inspired by the procedure
proposed by Martinez and Silva [12] for the computation of minimal P-invariants.

Now, we introduce two of the most important concepts for our approach: basis markings and
j-vectors. A basis marking Mb is a marking reached from the initial marking M0 with the firing
of the observed word w and of all unobservable transitions whose firing is necessary to enable w.
A j-vector y ∈ Ymin(M0, w) is a firing vector of unobservable transitions whose firing is necessary
to reach Mb.

Definition 3.4 Let 〈N, M0〉 be a net system where N = (P, T, Pre, Post) and T = To∪Tu. Let
σ ∈ L(N,M0) be a firable sequence and w = Po(σ) the corresponding observed word. We define
the set of justifications of w as

J (w) = {σu ∈ T ∗u | [∃σ ∈ L(w) : σu = Pu(σ)]∧
[6 ∃σ′ ∈ L(w) : σ′u = Pu(σ′)∧
π(σ′u) � π(σu)]}

or, more shortly, J (w) are minimal elements of Puo ◦ P−1
o (w) for the partial order defined by π.

Moreover, we define Ymin(M0, w) = {y ∈ Nnu | ∃σu ∈ J (w) : π(σu) = y} the corresponding set
of j-vectors. ¥

In simple words, J (w) is the set of sequences of unobservable transitions interleaved with w

whose firing enables w and whose firing vector is minimal. The firing vectors of these sequences
are called j-vectors.

Definition 3.5 Let 〈N,M0〉 be a net system where N = (P, T, Pre, Post) and T = To ∪ Tu.
Let w be a given observation and σu ∈ J (w) be one of its minimal justifications. The marking
Mb = M0 + Cu · y + Co · y′, where y = π(σu), y′ = π(w), i.e., the marking reached firing w

interleaved with the minimal justification σu, is called basis marking and y is called its j-vector
(or justification-vector). ¥

Obviously, because in general more than one justification may exist for a word w (the set J (w)
is generally not a singleton), the basis marking may be not unique as well. Furthermore, two or
more j-vectors may correspond to the same basis marking.

Note however that under appropriate assumptions on the Tu-induced subnet, the uniqueness of
Mb may be ensured. In particular, in [6] we proved that this is true if the Tu-induced subnet is
acyclic and backward conflict-free.

Definition 3.6 Let 〈N, M0〉 be a net system where N = (P, T, Pre, Post) and T = To∪Tu. Let
w ∈ T ∗o be an observed word. We define

M(w) = {(M, y) | ∃σ ∈ L(w) : M0[σ〉M ∧
σu ∈ J (w) : σu = Pu(σ),
y = π(σu)}
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the set of couples (basis marking - relative j-vector) that are consistent with w ∈ T ∗o . ¥

Note that the set M(w) does not take into account the sequences of unobservable transitions
that may have actually fired. It only keeps track of the basis markings that can be reached and
of the firing vectors of the sequences of unobservable transitions that have fired to reach them.
Indeed this is the information really significant when performing diagnosis.

Let us now introduce the following result that will be useful in the rest of the paper.

Definition 3.7 Let 〈N, M0〉 be a net system where N = (P, T, Pre, Post) and T = To∪Tu. Let
w ∈ T ∗o be an observed word. We denote

Mbasis(w) = {M ∈ Nm | ∃ y ∈ Nnu and
(M,y) ∈M(w)}

the set of basis markings at w. Moreover, we denote asMbasis =
⋃

w∈T ∗o
Mbasis(w) the set of all

basis markings for any observation w. ¥

Obviously, if the net system is bounded, then the set Mbasis is finite.

We now show that our approach based on basis markings is able to characterize completely the
reachability set under partial observation.

We start with a result that characterizes the firing sequences. In the following theorem we show
that a sequence σ̃ is consistent with observation w if and only if there exists an equivalent sequence
(i.e., a sequence with the same firing vector) that is the concatenation of two subsequences:
the first one reaches a basis marking in M(w) and the second one contains only unobservable
transitions.

Theorem 3.8 Let us consider a net system 〈N, M0〉 whose unobservable subnet is acyclic. There
exists a sequence σ̃ ∈ T ∗ such that M0[σ̃〉M̃ with observable projection Po(σ̃) = w and firing vector
π(σ̃) = ỹ if and only if there also exists a couple (M,y) ∈ M(w) and an unobservable sequence
σ′′ ∈ T ∗u such that M [σ′′〉M̃ and ỹ = π(w) + y + π(σ′′).

Proof: We prove this result by induction on the length of the observed string w.

(Basis step) For w = ε the result is obviously true.

(Inductive step) Assume the result is valid for v. We prove it is also true for w = vt where t ∈ To.

(Only if). In fact, if there exists a sequence σ̃ ∈ T ∗ such that M0[σ̃〉M̃ with Po(σ̃) = w and
π(σ̃) = ỹ then there exist sequences σ′ and σ′′ such that

M0[σ′〉M ′[t〉M ′′[σ′′〉M̃

where Po(σ′) = v, and σ′′ ∈ T ∗u . By induction, there exists (M, y) ∈M(v) such that

M0[σ′a〉M [σ′b〉M ′[t〉M ′′[σ′′〉M̃ (1)

where Po(σ′a) = v, π(σ′a) = π(v) + y and σ′b ∈ T ∗u .
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By definition of minimal explanation, there exists a sequence σ′c ∈ Σmin(M, t) such that

M [σ′c〉M ′
c[t〉M ′

d (2)

with π(σ′c) ≤ π(σ′b) and (M ′
c, π(σ′c)) ∈M(vt) = M(w).

We now claim that there exists a sequence σ′d with π(σ′b) = π(σ′c)+π(σ′d) enabled at M ′
d. In fact

from eq. (1) it follows that

M ′′ = M + Cu · π(σ′b) + C(·, t)
= M + Cu · π(σ′c) + Cu · π(σ′d) + C(·, t)

while from eq. (2) it follows that

M ′
d = M + Cu · π(σ′c) + C(·, t).

The last two equations imply that

M ′′ = M ′
d + Cu · π(σ′d) ≥ 0

and since the Tu-induced subnet is acyclic by Theorem 2.1 it holds that

M ′
d[σ

′
d〉M ′′. (3)

Combining eqs. (1–3) we can write that

M0[σ′a〉M [σ′c〉M ′
c[t〉M ′

d[σ
′
d〉M ′′[σ′′〉M̃.

This proves the result.

(If). If there exists a couple (M, y) ∈ M(w) and a σ′′ ∈ T ∗u such that M [σ′′〉M̃ and ỹ =
π(w) + y + π(σ′′) then there exists σ′ ∈ T ∗ such that M0[σ′〉M [σ′′〉M̃ with Po(σ′) = vt = w and
hence M0[σ〉M̃ with σ = σ′σ′′.

Note that the if statement is true even if the unobservable subnet is not acyclic. ¤

Based on the above theorem we can prove that, for any w ∈ T ∗o the set of consistent markings
C(w) may be characterized in terms of a number of linear algebraic constraints. In particular,
the number of constraints depends on the number of basis markings at w.

Corollary 3.9 Let us consider a net system 〈N,M0〉 whose unobservable subnet is acyclic. For
any w ∈ T ∗o it holds that C(w) = {M ∈ Nm | M = Mb +Cu ·y : y ≥ ~0 and Mb ∈Mbasis(w)}.

Proof: Trivially follows from Theorems 2.1 and 3.8. ¤

The above result is particularly important in the case of bounded net systems because in such a
case the number of constraints is finite for any observation w.

We conclude this section with an important result that is a key issue when performing diagnosis.
Basically it consists in a restatement of Theorem 3.8 in terms of j-vectors.
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Corollary 3.10 Given a net system 〈N, M0〉 where N = (P, T, Pre, Post) and T = To ∪ Tu.
Assume that the Tu-induced subnet is acyclic. Let w = w′t be a given observation. The
set Ymin(M0, w) satisfies Ymin(M0, w) = {y ∈ Nnu | y = y′ + e : y′ ∈ Ymin(M0, w

′), e ∈
Ymin(M ′

b, t), M ′
b = M0 + Cu · y′ + Co · π(w′)}.

Proof: It follows from Theorems 2.1, 3.8. In particular, a formal proof can be obtained by
induction on the length of the observed string w, using the same arguments in the proof of
Theorem 3.8.

¤

In simple words, the set of j-vectors Ymin(M0, w
′t) can be recursively computed from the j-vectors

in Ymin(M0, w
′) that lead to a basis marking M ′

b that either enables t or enables a sequence of
unobservable transitions enabling t.

Example 3.11 Let us consider the net system in Fig. 1. Let M0 be the marking shown in the
figure.

Let us consider the observation w = t1. It holds that J (t1) = {ε} and Ymin(M0, t1) = {~0}, thus
the basis marking associated to w = t1 is Mb = M0 + C(·, t1) = [0 2 0 0 0 0 1 0 0 0 0 0 1 1]T

and its j-vector is ~0. Thus M(t1) = {(Mb,~0)}.

Now, let us consider w = t1t2. In such a case the set of justifications are J (t1t2) = {ε3ε4ε5ε6ε7ε8ε9ε10, ε3ε4ε5

ε6ε3ε11ε8ε9ε10, ε3ε11ε8 ε9ε10ε13ε5ε6, ε7ε8ε9ε10ε13ε5ε6, . . .} where dots denote all other sequences
(that have not been reported here for sake of conciseness) that are enabled at Mb and that have
the same firing vector of the previous ones. The set of j-vectors is Ymin(Mb, t2) = {[1 1 1 1 1 1 1 1 0 0 0]T , [2 1 1 1 0 1 1
1 1 0 0]T , [1 0 1 1 0 1 1 1 1 0 1]T , [0 0 1 1 1 1 1 1 0 0 1]T }.

Now, let e1 = [1 1 1 1 1 1 1 1 0 0 0]T , e2 = [2 1 1 1 0 1 1 1 1 0 0]T , e3 = [1 0 1 1 0 1 1 1 1 0 1]T , e4 =
[0 0 1 1 1 1 1 1 0 0 1]T }, the basis markings reached after the firing of w are:

M1
b = Mb + Cu · e1 + C(·, t2) =

[0 1 0 0 0 0 0 0 0 0 0 1 1 1]T ,

M2
b = Mb + Cu · e2 + C(·, t2) =

[0 0 0 0 0 0 1 0 0 0 0 1 0 1]T ,

M3
b = Mb + Cu · e3 + C(·, t2) =

[0 1 0 0 0 0 1 0 0 0 0 1 0 0]T ,

M4
b = Mb + Cu · e4 + C(·, t2) =

[0 2 0 0 0 0 0 0 0 0 0 1 1 0]T ,

thus M(t1t2) = {(M1
b , e1), (M2

b , e2), (M3
b , e3), (M4

b , e4)} and Ymin(M0, w) = Ymin(Mb, t2) being
Ymin(M0, t1) = {~0}. ¥
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4 Diagnosis states

Let us consider a system modeled as a Petri net whose transitions may either be observable or
unobservable (T = To ∪ Tu).

Assume that a certain number of anomalous (or fault) behaviors may occur in the system. The
occurrence of a fault behavior corresponds to the firing of an unobservable transition, but there
may also be other transitions that are unobservable as well, but whose firing corresponds to
regular behaviors. Then, assume that fault behaviors may be divided into r main classes (fault
classes), and we are not interested in distinguishing among fault events in the same class.

This can be easily modeled in PN terms assuming that the set of unobservable transitions is
partitioned in two subsets, namely Tu = Tf ∪ Treg where Tf includes all fault transitions and
Treg includes all transitions relative to unobservable but regular events. The set Tf is further
partitioned in r subsets, namely, Tf = T 1

f ∪T 2
f ∪ . . .∪T r

f where all transitions in the same subset
correspond to the same fault class. We will say that the i-th fault has occurred when a transition
in T i

f has fired.

In the following subsection we introduce the definition of diagnoser and diagnosis state.

4.1 Basic definitions

Definition 4.1 A diagnoser is a function ∆ : T ∗o ×{T 1
f , T 2

f , . . . , T r
f } → {0, 1, 2, 3} that associates

to each observation w and to each fault class T i
f , i = 1, . . . , r, a diagnosis state.

• ∆(w, T i
f ) = 0 if for all σ ∈ L(w) and for all tf ∈ T i

f it holds that tf 6∈ σ.

In such a case the ith fault cannot have occurred, because none of the firing sequences consistent
with the observation contains fault transitions of class i.

• ∆(w, T i
f ) = 1 if:

(i) there exist σ ∈ L(w) and tf ∈ T i
f such that tf ∈ σ but

(ii) for all σ ∈ J (w) and for all tf ∈ T i
f it holds that tf 6∈ σ.

In such a case a fault transition of class i may have occurred but is not contained in any justifi-
cation of w.

• ∆(w, T i
f ) = 2 if there exist σ, σ′ ∈ J (w) such that:

(i) there exists tf ∈ T i
f such that tf ∈ σ;

(ii) for all tf ∈ T i
f , tf 6∈ σ′.

In such a case a fault transition of class i is contained in one (but not in all) justification of w.

• ∆(w, T i
f ) = 3 if for all σ ∈ L(w) there exists tf ∈ T i

f such that tf ∈ σ.

In such a case the ith fault must have occurred, because all firable sequences consistent with the
observation contain at least one fault transition of class i. ¥
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The diagnosis states 1 and 2 correspond both to cases in which a fault may have occurred but
has not necessarily occurred. The main reason to distinguish between them is the following. In
state 1 the observed behavior does not suggest that a fault has occurred because all minimal
sequences leading to w are fault free. On the contrary, in state 2 at least one of the justifications
of the observed behavior contains one transition in the class.

In practice diagnosis state 1 represents a situation that is common in many real applications. As
an example, a break-down of a valve in a chemical plant may occur anytime thus all the states
reached without a fault never fall into the diagnosis state 0 but in the diagnosis state 1.

Example 4.2 Consider the net system in Fig. 1. Assume that two different fault behaviors
(fault classes) may occur: (1) either a plate is moved to the lower line or a slab is moved to the
upper line (T 1

f = {ε11, ε12}); (2) a plate of a different type (e.g., different material, or different
size) enters the upper line (T 2

f = {ε13}).

Finally, let all the other unobservable transitions belong to set Treg, this is Treg = {ε3, ε4, . . . , ε10}.

Consider ω = ε. It holds that J (ε) = {ε} and L(ε) = {ε, ε13, ε13ε5, ε13ε5ε6}. Then, we may
observe that transition ε13 ∈ T 2

f may fire at M0, while the other fault transitions are not enabled
at M0. Therefore, we conclude that ∆(ε, T 1

f ) = 0 and ∆(ε, T 2
f ) = 1.

Now, let us consider ω = t1. As already discussed in Example 3.11, one has J (t1) = {ε} thus no
fault transition may be contained in a justification of w. On the contrary, all fault transitions
are contained in at least one sequence in L(t1). Thus, ∆(t1, T 1

f ) = ∆(t1, T 2
f ) = 1.

Let us now focus on the observation ω = t1t2. By looking at Example 3.11, it is easy to conclude
that ∆(t1t2, T 1

f ) = ∆(t1t2, T 2
f ) = 2. In fact, all fault transitions are contained in at least one

sequence in J (t1t2), but there are also justifications of t1t2 that do not contain fault transitions.

Finally, let ω = t1t2t2. In such a case one has ∆(ω, T 1
f ) = ∆(ω, T 2

f ) = 3 because as it can be
easily verified, all justifications of w contain transitions of both classes. ¥

The on-line computation of the sets L(w) and J (w) may be computational demanding in large
scale systems, thus in the following we suggest two alternative procedures to compute diagnosis
states. These procedures are based on the notions of minimal explanations, minimal e-vectors,
and basis markings, that are presented in the following two sections. Both procedures apply to
net systems whose unobservable subnet is acyclic, and the second one also requires that the net
system is bounded.

4.2 Characterization of diagnosis states

In this subsection we provide some results that enable us to characterize the diagnosis states
starting from the knowledge of the setM(w). The following two corollaries basically restate the
definition of diagnosis states. In particular, the first one allows us to estimate the value of a
diagnosis state, reached after the observation of a word w, from the analysis of the set M(w)
defined in Definition 3.6.
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Corollary 4.3 Consider an observed word w ∈ T ∗o .

• ∆(w, T i
f ) ∈ {0, 1} iff for all (M,y) ∈M(w) and for all tf ∈ T i

f it holds that y(tf ) = 0.

• ∆(w, T i
f ) = 2 iff there exist (M, y) ∈M(w) and (M ′, y′) ∈M(w) such that:

(i) there exists tf ∈ T i
f such that y(tf ) > 0,

(ii) for all tf ∈ T i
f , y′(tf ) = 0.

• ∆(w, T i
f ) = 3 iff for all (M, y) ∈M(w) there exists tf ∈ T i

f such that y(tf ) > 0.

The analysis of M(w) determines the states {0, 1}, 2 and 3, while to distinguish between states
0 and 1 further analysis is necessary. The following corollary shows how the states 0 and 1 can
be distinguished with respect to the reachability of the unobservable net.

Corollary 4.4 Consider an observed word w ∈ T ∗o such that ∀(M, y) ∈ M(w) and ∀tf ∈ T i
f it

holds that y(tf ) = 0.

• ∆(w, T i
f ) = 0 if ∀ (M, y) ∈ M(w) and ∀tf ∈ T i

f there does not exist a sequence σ ∈ T ∗u such
that M [σ〉 and tf ∈ σ.

• ∆(w, T i
f ) = 1 if ∃ at least one (M,y) ∈ M(w) and a sequence σ ∈ T ∗u such that for at least

one tf ∈ T i
f , M [σ〉 and tf ∈ σ.

The above result follows from the fact that by Corollary 4.3 ∆(w, T i
f ) ∈ {0, 1} if all the minimal

justifications of w do not contain any fault transition of class i. However, by Definition 4.1, the
diagnosis state is equal to zero if at each basis marking M at w no fault transition of class i is
enabled. On the contrary the diagnosis state is equal to one if at least one fault transition of
class i is enabled at one basis marking M at w.

If the unobservable subnet is acyclic the following proposition allows us to distinguish between
the states 0 and 1 solving a trivial integer linear programming problem.

Proposition 4.5 For a PN whose unobservable subnet is acyclic, let w ∈ T ∗o be an observed
word such that for all (M,y) ∈M(w) one has y(tf ) = 0 ∀ tf ∈ T i

f .

Let us consider the constraint set

Ti(M) =





M + Cu · z ≥ ~0,∑

tf∈T i
f

z(tf ) > 0,

z ∈ Nnu .

(4)

• ∆(w, T i
f ) = 0 if ∀ (M,y) ∈M(w), Ti(M) is not feasible.

• ∆(w, T i
f ) = 1 if ∃ (M,y) ∈M(w) such that Ti(M) is feasible.

Proof: Follows from Corollary 4.4 and the fact that, by Theorem 2.1, if the unobservable subnet
is acyclic, Ti(M) characterizes the reachability set of the unobservable net. Thus, there exists a
sequence containing a transition tf ∈ T i

f firable at M on the unobservable subnet if and only if
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Ti(M) is feasible. ¤

Example 4.6 Consider again the net system in Fig. 1. Let w = ε. It holds that M(ε) =
{(M0,~0)}, thus by Corollary 4.3, ∆(ε, T 1

f ) = ∆(ε, T 2
f ) ∈ {0, 1}. To completely determine

the diagnosis states we need to verify if the integer constraint sets defined in Proposition 4.5
admit solutions. This is not true in the case of the first class, while it is the case for the second
class. Therefore we conclude that ∆(ε, T 1

f ) = 0 and ∆(ε, T 2
f ) = 1, that is in accordance with

Example 4.2. ¥

5 Diagnosis of bounded systems

In this section we focus on bounded PNs and we show how in such a case the most burdersome
part of the procedure can be moved off-line. In particular, we present an original technique to
design an observer to be used for on-line diagnosis.

5.1 Basis reachability graph

The proposed observer is based on the construction of a deterministic graph, that we call basis
reachability graph (BRG). As discussed later, the main advantage of using BRG is that it enables
us to move off-line most of the computations.

Definition 5.1 The BRG is a deterministic graph that has as many nodes as the number of
possible basis markings.

To each node is associated a different basis marking and a row vector with as many entries as
the number of fault classes. The entries of this vector may only take binary values: 1 if Ti(M)
is feasible for M equal to the basis marking, 0 otherwise.

Arcs are labeled with observable transitions and e-vectors. More precisely, an arc exists from
node containing the basis marking M to node containing the basis marking M ′ if and only if
there exists an observable transition t for which an explanation exists at M and the firing of t

and one of its minimal explanations leads to M ′. The arc going from M to M ′ is labeled (t, e),
where e ∈ Ymin(M, t) and M ′ = M + Cu · e + C(·, t). ¥

Note that the number of nodes of the BRG is always finite since the net system is bounded.
Moreover, the row vector of binary values associated to the nodes of the BRG allows us to
distinguish between the diagnosis state 1 or 0.

The following algorithm provides a systematic procedure to compute the BRG.

Algorithm 5.2 [Computation of the BRG]

Input: a net system 〈N, M0〉,
the set of unobservable transitions Tu,
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M0 [ 1 0 0 0 0 0 0 0 0 0 0 0 1 1 ]T

M1 [ 0 2 0 0 0 0 1 0 0 0 0 0 1 1 ]T

M2 [ 0 1 0 0 0 0 0 0 0 0 0 1 1 1 ]T

M3 [ 0 0 0 0 0 0 1 0 0 0 0 1 0 1 ]T

M4 [ 0 1 0 0 0 0 1 0 0 0 0 1 0 0 ]T

M5 [ 0 2 0 0 0 0 0 0 0 0 0 1 1 0 ]T

M6 [ 0 0 0 0 0 0 0 0 0 0 0 2 0 0 ]T

Table 1: The basis markings of the BRG in Fig. 2.

the fault classes {T i
f}i=1,...,r.

Output: the BRG.
1. Label the initial node (M0, x0) with ∀i ∈ {1, . . . , r},

x0(T i
f ) =

{
1 if Ti(M0) is feasible,
0 otherwise.

No tag is assigned to it.
2. While nodes with no tag exist

select a node with no tag and do
2.1. let M be the marking in the node,
2.2. for all t such that Ymin(M, t) 6= ∅, do
2.2.1. for all e ∈ Ymin(M, t), do

2.2.1.1. let M ′ = M + Cu · e + C(·, t),
2.2.1.2. if @ a node with M ′, then

add a new node labeled (M ′, x′)
with ∀i ∈ {1, . . . , r},

x′(T i
f ) =

{
1 if Ti(M ′) is feasible,
0 otherwise,

2.3. tag the node "old".
3. Remove all tags. ¥

The algorithm constructs the BRG starting from the initial node that is labeled by a pair (M0, x0)
where M0 is the initial marking and x0 is a binary row vector that specifies for each fault class
if a fault in that class may occur by firing only unobservable transitions. Now, we consider all
observable transitions for which a minimal explanation at M0 exists. For any of these transitions
t ∈ To we compute the marking resulting from firing t at M0 + Cu · e, for each e ∈ Ymin(M0, t).
If a marking not contained in the previous nodes is obtained, a new node is added to the graph.
The arc going from the initial node to the new node is labeled (t, e). The procedure is iterated
until all basis markings have been considered.

Example 5.3 In Fig. 2 we have reported the BRG of the net system in Fig.1. The notation used
in Fig. 2 is detailed in Tables 1 and 2. Each node of the graph contains a different basis marking
and a row vector that has two entries as the number of fault classes. As an example, the vector
[0 1] is associated to M0 because the constraint set Ti(M0) is not feasible for i = 1, while it is
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ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 ε11 ε12 ε13

e1 1 1 1 1 1 1 1 1 0 0 0
e2 2 1 1 1 0 1 1 1 1 0 0
e3 1 0 1 1 0 1 1 1 1 0 1
e4 0 0 1 1 1 1 1 1 0 0 1

Table 2: The e-vectors of the BRG in Fig. 2

M0, [0 1] 

M1, [1 1] 

1 0,t
r

 

M2, [1 1] 

M3, [0 1] 

M4, [0 0] 

M5, [1 0] 

M6, [0 0] 

2 1
,t e  2 3

,t e  

2 2
,t e  2 4

,t e  

2 2
,t e  

2 1
,t e  

42 ,t e  

2 3
,t e  

Figure 2: The BRG of the net in Fig. 1.

feasible for i = 2. Then, there is an arc labeled (t1,~0) from M0 to M1 because t1 is enabled at
M0 and its firing leads to M1. Note that in such a case Ymin(M0, t1) = {~0}. Furthermore, there
are four arcs exiting from node M1, all labeled t2 and containing minimal explanations e1, e2, e3

and e4, respectively, and leading to nodes containing markings M2,M3,M4 and M5, respectively.

Note that, by looking at the BRG we can also read all sequences of observable words, that is finite
in the case at hand, and equal to {ε, t1, t1t2, t1t2t2}. Moreover note that for all the j-vectors in
Table 2 the component associated to ε12 is equal to 0. This means that ε12 can never be detected.
¥

5.2 On-line diagnosis using BRG

The following algorithm summarizes the main steps to compute the diagnosis states by looking
at the BRG.

Algorithm 5.4 [Diagnosis using the BRG]

Input: a net system 〈N, M0〉,
the set of unobservable transitions Tu,
the fault classes {T i

f}i=1,...,r.
the BRG.
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Output: the diagnosis states.
1. Let w = ε.
2. Let M(w) = {(M0,~0)}.
3. Wait until a new transition t fires.
4. Let w′ = w and w = w′t.
5. Let M(w) = ∅, [Comp. of M(w)]
6. For all couples (M ′, y′) ∈M(w′), do
6.1. for all arcs exiting from node (M ′, x′)

in the BRG and labeled (t, e), do
6.1.1. let M = M ′ + Cu · e + C(·, t),
6.1.2. let y = y′ + e,
6.1.3. let M(w) = M(w) ∪ {(M, y)}.

7. For all i ∈ {1, . . . , r}, do [Comp. diag. state]
7.1. if ∀ (M, y) ∈M(w) and ∀tf ∈ T i

f

it holds y(tf ) = 0, then
if ∀ (M, y) ∈M(w) it holds that x(i) = 0,
where x is the binary vector
in the node M of the BRG, then

let ∆(w, T i
f ) = 0,

else
let ∆(w, T i

f ) = 1,
7.2. if ∃ (M, y) ∈M(w) and ∃(M ′, y′) ∈M(w)

such that:
(i) ∃tf ∈ T i

f such that y(tf ) > 0,
(ii) ∀tf ∈ T i

f , y′(tf ) = 0, then
let ∆(w, T i

f ) = 2,
7.3. if ∀ (M, y) ∈M(w) ∃tf ∈ T i

f

such that y(tf ) > 0, then
let ∆(w, T i

f ) = 3.
8. Goto step 3. ¥

Steps 1 to 6 of Algorithm 5.4 compute the setM(w). When no event is observed, namely w = ε,
then M(w) = {(M0,~0)}. Now, assume that a transition t is observed. We include in the set
M(t) all couples (M, y) such that an arc labeled t exits from the initial node and ends in a node
containing the basis marking M . The corresponding value of y is equal to the e-vector in the
arc going from M0 to M , being ~0 the j-vector relative to M0. In general, if w′ is the actual
observation, and a new transition t fires, we consider all couples (M ′, y′) ∈M(w′) and all nodes
that can be reached from M ′ with an arc labeled t. Let M be the basis marking of the generic
resulting node. We include in M(w) = M(w′t) all couples (M, y), where for any M , y is equal
to the sum of y′ plus the e-vector labeling the arc from M ′ to M .
Step 7 of Algorithm 5.4 computes the diagnosis state. Let us consider the generic ith fault class.
If ∀(M,y) ∈ M(w) and ∀tf ∈ T i

f it holds that y(tf ) = 0, we have to check the ith entry of all
the binary row vectors associated to the basis markings M , such that (M, y) ∈ M(w). If these
entries are all equal to 0, we set ∆(w, T i

f ) = 0, otherwise we set ∆(w, T i
f ) = 1. On the other
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ε3 

p1 

t1 
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t2 

p2 t1, 0 

t2, 1 

Figure 3: The PN of the Example 5.6 (a) and its BRG (b).

hand, if there exists at least one pair (M, y) ∈ M(w) with y(tf ) > 0 for any tf ∈ T i
f , and there

exists at least one pair (M ′, y′) ∈ M(w) with y(tf ) = 0 for all tf ∈ T i
f , then ∆(w, T i

f ) = 2.
Finally, if for all pairs (M, y) ∈M(w) y(tf ) > 0 for any tf ∈ T i

f , then ∆(w, T i
f ) = 3.

Example 5.5 Consider the BRG in Fig. 2 relative to the net system in Fig. 1, where T 1
f =

{ε11, ε12} and T 2
f = {ε13}. Let w = ε. By looking at the BRG we establish that ∆(ε, T 1

f ) = 0
and ∆(ε, T 2

f ) = 1, because the first entry of the row vector in the node M0 is 0, while its second
entry is equal to 1.

Now, let w = t1t2. In such a case M(w) = {(M2, y1), (M3, y2), (M4, y3), (M5, y4)}, where
y1 = ~0 + e1 = e1, y2 = ~0 + e2 = e2, y3 = ~0 + e3 = e3, y4 = ~0 + e4 = e4.

It holds that ∆(t1t2, T 1
f ) = 2 being y2(ε11) = y3(ε11) = 1 and y1(ε11) = y4(ε11) = yj(ε12) = 0 for

j = 1, 4. Analogously, ∆(t1t2, T 2
f ) = 2 being y3(ε13) = y4(ε13) = 1 and y1(ε13) = y2(ε13) = 0.

Finally, for w = t1t2t2 one has ∆(t1t2t2, T i
f ) = 3 for i = 1, 2. In factM(w) = {(M6, y5), (M6, y6)},

where y5 = y1 + e3 = y3 + e1, y6 = y2 + e4 = y4 + e2, and y5(ε11) = y6(ε11) = 1, y5(ε13) =
y6(ε13) = 1. ¥

In the previous example we considered a net that does not contain repetitive sequences and
the corresponding BRG is acyclic. In such a case, we could also determine off-line the j-vector
associated to each basis marking. However, our procedure applies to the more general case of
bounded PNs with repetitive sequences, to which a cyclic BRG corresponds. For this class of nets
we need to compute the j-vector of a basis marking on-line as shown in the following example.

Example 5.6 Consider the bounded PN shown in Fig. 3(a), where To = {t1, t2} and Tu = {ε3}.
We assume that the only fault that can occur is T f

1 = {ε3}. This net contains the repetitive
sequence t1ε3t2 that can fire infinitely often, hence its BRG is cyclic as shown in Fig. 5.6(b),
where the basis markings are M0 = [1 0 0]T and M1 = [0 1 0]T .

It is easy to verify that in this case we cannot associate off-line j-vectors to basis markings.
In fact when w = ε the j-vector associated to node M0, [0] is [0], hence the diagnosis state is
∆(ε, T f

1 ) = 0. On the contrary, after w = t1t2 fires we reach the same basis marking M0, [0] but
now its j-vector is [1], and the diagnosis state is changed to ∆(t1t2, T

f
1 ) = 3. ¥
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6 Conclusions and future work

In this paper we presented an approach for the on-line diagnosis of discrete event systems using
PNs. Faults are modeled as unobservable transitions, and legal behaviors as well may be modeled
as unobservable transitions. Different diagnosis states are defined, that correspond to different
degrees of alarm. Their computation are based on the notions of basis markings and j-vectors.
The advantage of our approach is even more evident in the case of bounded Petri nets. Indeed
in such a case, the most burdensome part of the procedure may be moved off-line thanks to the
definition of the basis reachability graph.

Note that the proposed results have several implications, not only related to diagnosis. In
particular, they may be useful when controlling a system with unobservable (or silent) events.

Our future work in this topic will follow several directions. Firstly, we want to extend the
proposed procedure to labeled PNs. In such a case a further form of nondeterminism should be
taken into account because two or more transitions may share the same label. Then, we would
like to extend the definition of basis reachability graph to unbounded net systems. Finally, we
plan to provide necessary and sufficient conditions for a language to be diagnosable.
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