9,681 research outputs found

    A randomized kinodynamic planner for closed-chain robotic systems

    Get PDF
    Kinodynamic RRT planners are effective tools for finding feasible trajectories in many classes of robotic systems. However, they are hard to apply to systems with closed-kinematic chains, like parallel robots, cooperating arms manipulating an object, or legged robots keeping their feet in contact with the environ- ment. The state space of such systems is an implicitly-defined manifold, which complicates the design of the sampling and steering procedures, and leads to trajectories that drift away from the manifold when standard integration methods are used. To address these issues, this report presents a kinodynamic RRT planner that constructs an atlas of the state space incrementally, and uses this atlas to both generate ran- dom states, and to dynamically steer the system towards such states. The steering method is based on computing linear quadratic regulators from the atlas charts, which greatly increases the planner efficiency in comparison to the standard method that simulates random actions. The atlas also allows the integration of the equations of motion as a differential equation on the state space manifold, which eliminates any drift from such manifold and thus results in accurate trajectories. To the best of our knowledge, this is the first kinodynamic planner that explicitly takes closed kinematic chains into account. We illustrate the performance of the approach in significantly complex tasks, including planar and spatial robots that have to lift or throw a load at a given velocity using torque-limited actuators.Peer ReviewedPreprin

    Quadrotor control for persistent surveillance of dynamic environments

    Full text link
    Thesis (M.S.)--Boston UniversityThe last decade has witnessed many advances in the field of small scale unmanned aerial vehicles (UAVs). In particular, the quadrotor has attracted significant attention. Due to its ability to perform vertical takeoff and landing, and to operate in cluttered spaces, the quadrotor is utilized in numerous practical applications, such as reconnaissance and information gathering in unsafe or otherwise unreachable environments. This work considers the application of aerial surveillance over a city-like environment. The thesis presents a framework for automatic deployment of quadrotors to monitor and react to dynamically changing events. The framework has a hierarchical structure. At the top level, the UAVs perform complex behaviors that satisfy high- level mission specifications. At the bottom level, low-level controllers drive actuators on vehicles to perform the desired maneuvers. In parallel with the development of controllers, this work covers the implementation of the system into an experimental testbed. The testbed emulates a city using physical objects to represent static features and projectors to display dynamic events occurring on the ground as seen by an aerial vehicle. The experimental platform features a motion capture system that provides position data for UAVs and physical features of the environment, allowing for precise, closed-loop control of the vehicles. Experimental runs in the testbed are used to validate the effectiveness of the developed control strategies

    Robust Execution of Contact-Rich Motion Plans by Hybrid Force-Velocity Control

    Full text link
    In hybrid force-velocity control, the robot can use velocity control in some directions to follow a trajectory, while performing force control in other directions to maintain contacts with the environment regardless of positional errors. We call this way of executing a trajectory hybrid servoing. We propose an algorithm to compute hybrid force-velocity control actions for hybrid servoing. We quantify the robustness of a control action and make trade-offs between different requirements by formulating the control synthesis as optimization problems. Our method can efficiently compute the dimensions, directions and magnitudes of force and velocity controls. We demonstrated by experiments the effectiveness of our method in several contact-rich manipulation tasks. Link to the video: https://youtu.be/KtSNmvwOenM.Comment: Proceedings of IEEE International Conference on Robotics and Automation (ICRA2019

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation

    Get PDF
    A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed are: (1) capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) investigation and simulation of various control methods including manual force/torque and active compliances control; (5) evaluation and implementation of three obstacle avoidance methods; (6) video simulation and edge detection; and (7) software simulation validation

    Learning Task Constraints from Demonstration for Hybrid Force/Position Control

    Full text link
    We present a novel method for learning hybrid force/position control from demonstration. We learn a dynamic constraint frame aligned to the direction of desired force using Cartesian Dynamic Movement Primitives. In contrast to approaches that utilize a fixed constraint frame, our approach easily accommodates tasks with rapidly changing task constraints over time. We activate only one degree of freedom for force control at any given time, ensuring motion is always possible orthogonal to the direction of desired force. Since we utilize demonstrated forces to learn the constraint frame, we are able to compensate for forces not detected by methods that learn only from the demonstrated kinematic motion, such as frictional forces between the end-effector and the contact surface. We additionally propose novel extensions to the Dynamic Movement Primitive (DMP) framework that encourage robust transition from free-space motion to in-contact motion in spite of environment uncertainty. We incorporate force feedback and a dynamically shifting goal to reduce forces applied to the environment and retain stable contact while enabling force control. Our methods exhibit low impact forces on contact and low steady-state tracking error.Comment: Under revie
    • …
    corecore