74 research outputs found

    SAFDetection:Sensor Analysis based Fault Detection in Tightly-CoupledMulti-Robot Team Tasks

    Get PDF
    This dissertation addresses the problem of detecting faults based on sensor analysis for tightly-coupled multi-robot team tasks. The approach I developed is called SAFDetection, which stands for Sensor Analysis based Fault Detection, pronounced “Safe Detection”. When dealing with robot teams, it is challenging to detect all types of faults because of the complicated environment they operate in and the large spectrum of components used in the robot system. The SAFDetection approach provides a novel methodology for detecting robot faults in situations when motion models and models of multi-robot dynamic interactions are unavailable. The fundamental idea of SAFDetection is to build the robots’ normal behavior model based on the robots’ sensor data. This normal behavior model not only describes the motion pattern for the single robot, but also indicates the interaction among the robots in the same team. Inspired by data mining theory, it combines data clustering techniques with the generation of a probabilistic state transition diagram to model the normal operation of the multi-robot system. The contributions of the SAFDetection approach include: (1) providing a way for a robot system to automatically generate a normal behavior model with little prior knowledge; (2) enabling a robot system to detect physical, logic and interactive faults online; (3) providing a way to build a fault detection capability that is independent of the particular type of fault that occurs; and (4) providing a way for a robot team to generate a normal behavior model for the team based the individual robot’s normal behavior models. SAFDetection has two different versions of implementation on multi-robot teams: the centralized approach and the distributed approach; the preferred approach depends on the size of the robot team, the robot computational capability and the network environment. The SAFDetection approach has been successfully implemented and tested in three robot task scenarios: box pushing (with two robots) and follow-the-leader (implemented with two- and five-robot teams). These experiments have validated the SAFDetection approach and demonstrated its robustness, scalability, and applicability to a wide range of tightly-coupled multi-robot applications

    Robot Cooperation without Explicit Communication by Fuzzy Signatures and Decision Trees

    Get PDF
    This paper presents a novel action selection method for multi robot task sharing problem. Two autonomous mobile robots try to cooperate for push a box to a goal position. Both robots equipped with object and goal sensing, but do not have explicit communication ability. We explore the use of fuzzy signatures and decision making system to intention guessing and efficient action selection. Virtual reality simulation is used to build and test our proposed algorithm

    A macroscopic analytical model of collaboration in distributed robotic systems

    Get PDF
    In this article, we present a macroscopic analytical model of collaboration in a group of reactive robots. The model consists of a series of coupled differential equations that describe the dynamics of group behavior. After presenting the general model, we analyze in detail a case study of collaboration, the stick-pulling experiment, studied experimentally and in simulation by Ijspeert et al. [Autonomous Robots, 11, 149-171]. The robots' task is to pull sticks out of their holes, and it can be successfully achieved only through the collaboration of two robots. There is no explicit communication or coordination between the robots. Unlike microscopic simulations (sensor-based or using a probabilistic numerical model), in which computational time scales with the robot group size, the macroscopic model is computationally efficient, because its solutions are independent of robot group size. Analysis reproduces several qualitative conclusions of Ijspeert et al.: namely, the different dynamical regimes for different values of the ratio of robots to sticks, the existence of optimal control parameters that maximize system performance as a function of group size, and the transition from superlinear to sublinear performance as the number of robots is increased

    Response threshold models and stochastic learning automata for self-coordination of heterogeneous multi-task distribution in multi-robot systems.

    Get PDF
    This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-selection of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested in a decentralized solution where the robots themselves autonomously and in an individual manner, are responsible for selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-task distribution problem and we propose a solution using two different approaches by applying Response Threshold Models as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithms, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results

    Pedipulate: Enabling Manipulation Skills using a Quadruped Robot's Leg

    Full text link
    Legged robots have the potential to become vital in maintenance, home support, and exploration scenarios. In order to interact with and manipulate their environments, most legged robots are equipped with a dedicated robot arm, which means additional mass and mechanical complexity compared to standard legged robots. In this work, we explore pedipulation - using the legs of a legged robot for manipulation. By training a reinforcement learning policy that tracks position targets for one foot, we enable a dedicated pedipulation controller that is robust to disturbances, has a large workspace through whole-body behaviors, and can reach far-away targets with gait emergence, enabling loco-pedipulation. By deploying our controller on a quadrupedal robot using teleoperation, we demonstrate various real-world tasks such as door opening, sample collection, and pushing obstacles. We demonstrate load carrying of more than 2.0 kg at the foot. Additionally, the controller is robust to interaction forces at the foot, disturbances at the base, and slippery contact surfaces. Videos of the experiments are available at https://sites.google.com/leggedrobotics.com/pedipulate.Comment: Project website: https://sites.google.com/leggedrobotics.com/pedipulat
    • …
    corecore