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A B S T R A C T 

This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses 
the self-selection of heterogeneous specialized tasks by autonomous robots. In this paper we focus on 
a specifically distributed or decentralized approach as we are particularly interested in a decentralized 
solution where the robots themselves autonomously and in an individual manner, are responsible for 
selecting a particular task so that all the existing tasks are optimally distributed and executed. In this 
regard, we have established an experimental scenario to solve the corresponding multi-task distribution 
problem and we propose a solution using two different approaches by applying Response Threshold 
Models as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness 
of the algorithms, perturbing the number of pending loads to simulate the robot's error in estimating the 
real number of pending tasks and also the dynamic generation of loads through time. The paper ends with 
a critical discussion of experimental results. 

1. Introduction 

Autonomous Multi-robot Systems are an outstanding applied 
area of Artificial Intelligence that has witnessed remarkable 
growth since its inception and that has developed significant 
progress in several applications [1]. More specifically, within 
Multi-robot Systems, optimal task/job allocation or assignment is 
an active research problem [2], in which several global or central 
allocation methods have been proposed so far [3,4]. Some authors 
have also introduced autonomous or decentralized solutions, in 
particular inspired in the social labor observed in some species of 
social insects [5,6]. 

In this paper we take a specifically distributed or decentralized 
approach as we are particularly interested in experimenting with 
truly autonomous and decentralized techniques in which the 
robots themselves are responsible for choosing the tasks in an 
autonomous and individual manner. Under this approach we can 
speak of multi-task selection instead of multi-task allocation as the 
agents or robots select the tasks instead of being assigned a task by 
a central controller. 

In previous work we have already experimented with different 
techniques. First, we applied the well-known threshold models 

inspired by the labor division of social insects [7]. Afterwards, in 
a recently published paper [8] we applied ant colony optimization 
for coordinating multiple robots in the above mentioned problem 
of multi-task selection and compared its performance with the 
threshold model-based approach. 

In this paper we introduce a novel approach by means of 
stochastic reinforcement learning algorithms based on Learning 
Automata theory [9] and we also compare their performance in 
comparison with the threshold models approach. The remainder 
of the paper is organized as follows: Section 2 presents the 
formal description of the general problem of decentralized 
distribution of multi-tasks/jobs in a multi-robot system, as well as 
a formal description of the experimental scenario. Section 3 briefly 
describes the response threshold models approach. Section 4 
presents a brief introduction and basic definitions concerning the 
stochastic reinforcement learning algorithms based on Learning 
Automata theory. Afterwards, in Section 5 we discuss the 
comparative experimental results obtained in applying both 
methods. The paper ends with the conclusions and some remarks 
on future work. 

2. Formal definitions 

2.1. Formal description of the problem 

The optimal multi-task allocation problem in multi-robot 
systems can be formally defined as follows: "Given a robot team 



Fig. 1. Experimental scenario. 

formed by N heterogeneous robots, and given K different types of 
heterogeneous specialized tasks or equivalently, given K different 
robot's roles or robot's jobs and given a particular time-dependent 
load or number of tasks to be executed L = {h(t), l2(t),..., k(t)}, 
obtain an optimal distribution of the K tasks among the N robots 
in such a way that the robots themselves, autonomously and in an 
individual manner, select a particular task such that all the existing 
tasks are optimally executed". 

Let I = [hit), l2(t),..., lK(t)} be the different specialized 
tasks. Each (, e L has a number of j sub-tasks or pending loads. 
Let R = [r\, r 2 , . . . , rN) be the set of N heterogeneous mobile 
robots. To solve the problem, we have supposed that all members 
R = [r\, r2 , . . . , rN) are able to participate in any sub-task (,. 

2.2. Experimental scenario 

We have established the following experimental scenario 
(Fig. 1) in order to analyze a particular strategy or solution for 
the coordination of multi-robot systems as regards the optimal 
distribution of the existing tasks. Given a set of N heterogeneous 
mobile robots in a region, achieve an optimal distribution for 
different types of tasks. The set of N robots will form sub-teams for 
each type of task (,. The sub-teams are dynamic over time, i.e. the 
same robots will not always be part of the same sub-team, but the 
components of each sub-team can vary depending on the situation. 

Most of the proposed solutions in the technical literature are 
of a centralized nature, in the sense that an external controller 
is in charge of distributing the tasks among the robots by 
means of conventional optimization methods and based on 
global information about the system state [10]. However, we are 
mainly interested in truly decentralized solutions in which the 
robots themselves, autonomously and in an individual and local 
manner, select a particular task so that all the tasks are optimally 
distributed and executed. In this regard, we have experimented 
with response threshold models and stochastic reinforcement 
learning algorithms based on Learning Automata theory to tackle 
this hard self-coordination problem as described in the following. 

3. Response threshold models 

3.1. A brief introduction 

Insect societies are characterized by the division of labor, 
communication between individuals and the ability to solve 
complex problems [11], and these characteristics have long been 
a source of inspiration and the subject of numerous studies, 
acquiring great relevance for many researchers both in the field of 
robotics as in biology. On the one hand, the biologists are trying to 
prove their theories of social insects on robots, and on the other 
hand, researchers in the discipline of robotics seek solutions to 
problems that cannot be solved by a single robot. 

Seeley et al. [12] have considered the following experiment to 
study the collective behavior in a colony of insects, focusing on 
the work performed by bees to get honey. Two food sources are 
presented to the colony at 8:00 A.M. at the same distance from 
the hive: source A is characterized by a sugar concentration of 
1.0 mol/1 and source B by a concentration of 2.5 mol/1. Between 
8:00 A.M. and noon, source A has been visited 12 times and source 
B, 91 times. At noon, the sources are modified: source A is now 
characterized by a sugar concentration of 2.5 mol/1 and source B 
0.75 mol/1. Between noon and 4:00 P.M., source A has been visited 
121 times and source Bonly 10times.lt has been shown that a bee 
has a relatively high probability of going to a good food source and 
abandoning a poor food source. 

3.2. Model 

Based on these observations, these simple rules of behaviors 
allow the bees to select the best quality source; Bonabeau 
et al. have proposed a simple mathematical model of response 
thresholds for the regulation of the division of labor in insect 
societies [ 13]. In this model we assume that each task is associated 
with a stimulus or set of stimuli, so that individuals can detect 
information on each of the different stimulus intensities, and 
therefore, can assess the demand for a particular task when they 
are in contact with the associated stimulus. 
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Fig.2. Semi-logarithmic plot with different thresholds (8 = 1, 5, 20, 50) and with 
n = 2. 

Let s be the intensity of a stimulus associated with a particular 
task; s can be a number of encounters, a chemical concentration, or 
any quantitative cue sensed by individuals. A response threshold 
9, expressed in units of stimulus intensity, is an internal variable 
that determines the tendency of an individual to respond to the 
stimulus s and perform the associated task. More precisely, 9 is 
such that the probability of response is low for s < 9 and high 
for s > 9. This mathematical model that satisfies this requirement 
is given by: 

Toii{si) = ^-{n>\) (1) 

where n > 1 determines the steepness of the threshold. Fig. 2 
show several such response curves with n = 2, for different values 
of 9. More clearly: for s < 9, the probability of engaging task 
performance is close to 0, and for s > 9, this probability is close 
to 1. Then, the probability that an individual will perform a task 
depends ons. 

The underlying idea is very simple, when a stimulus exceeds 
the threshold of response of an individual, that individual is 
likely to respond to stimuli, and engage in the task because 
the level of the stimulus associated with that task exceeds its 
threshold. The intensity of a stimulus decreases as the individual 
performs the task; therefore, individuals with high thresholds are 
unlikely to perform the task when other individuals, with lower 
thresholds, maintain the stimulus intensity below their thresholds. 
However, when individuals with low thresholds do not perform 
the task, individuals that have high thresholds may engage in the 
task performance because the stimulus intensity exceeds their 
thresholds. 

The tasks can be constant or can be a time-dependent variable. 
Stimuli associated with each task can vary considerably from one 
task to another depending on the nature of tasks, task demand and 
by the number of robots that are executing the task. Each task is 
associated with the demand expressed in the form of a stimulus, 
as when a robot performs a task it tends to reduce the intensity 
of the associated stimulus, and as a result, modifies the intensity 
of the stimuli for tasks that are not running. Each robot {r} has a 
set response threshold 9r = [9\, 92,..., 9L). Each threshold 9rj 
corresponds to a task type (, = {/1; l2,..., /;} that the robot is 
capable of. The initial values of the threshold are randomized to 
ensure that their roles are not predetermined; the performance of 
a given task induces a decrease in threshold of the robots: 

9™'> = 9°l1 - o. (2) 

And conversely, the lack of performance of a given task induces: 

9™» = Off + a (3) 

where a > 0. 

4. Learning automata methods 

4.1. A brief introduction 

Learning automata have made a significant impact and have 
attracted considerable interest in the last few years [14]. The 
first research on learning automata models were developed in 
Mathematical Psychology, that describe the use of stochastic 
automata with updating of action probabilities which result in a 
reduction in the number of states in comparison with deterministic 
automata. They can be applied to a broad range of modeling 
and control problems, control of manufacturing plants, pattern 
recognition, and path planning for manipulators, among others. An 
important point to note is that the decisions must be made with 
very little knowledge concerning the environment, to guarantee 
robust behavior without the complete knowledge of the system. In 
a purely mathematical context, the goal of a learning system is the 
optimization of a function not known explicitly [15]. 

Learning is defined as any permanent change in behavior as a 
result of past experience, and an automata is a machine or control 
mechanism designed to automatically follow a predetermined 
sequence of operations or respond to encoded instructions [16]. 
The objective of stochastic learning automata is to determine how 
the choice of the action at any stage should be guided by past 
actions and responses, so when a specific action is performed the 
environment provides a random response which is either favorable 
or unfavorable [17]. 

4.2. Basic definitions 

A learning automaton is a sextuple (x, Q, u, P(t), C, ffl), where 
x is the finite set of inputs, Q = [q^,q2,..., qm] is a finite 
set of internal states, u is the set of outputs, P(t) = {pi(t), 
p 2 ( t ) , . . . , pm(t)} is the state probability vector at time instant 
t, C : Q -> u is the output function (normally considered as 
deterministic and one-to-one), and ffl is an algorithm called the 
reinforcement scheme, which generates P(t + 1) from P(t) and 
the particular input at a discrete instant t. 

The automaton operates in a random environment and chooses 
its current state according to the input received from the 
environment. The new state probabilities distribution P(t + 1) 
reflects the information obtained from the environment. The 
random environment has a set of inputs u and its set of outputs 
is frequently binary {0, 1}, with '0' corresponding to the reward 
response and '1' to the penalty response. If the input to the 
environment is ut the environment produces a penalty response 
with probability ct. 

Fig. 3 shows the feedback configuration of a learning automaton 
operating in a random environment. At each instant t the 
environment evaluates the action of the automaton by either a 
penalty '1' or reward '0'. The performance of the automaton's 
behaviors is the average penalty 

* m 

I(t) = -Y/Pi(t)ci (4) 

which must be minimized. In order to minimize the expectation 
of penalty (1), the reinforcement scheme modifies the state 
probability vector P. The basic idea is to increase pt if state qt 

generates a reward and to decrease pt when the same state has 
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Fig. 3. Interaction of learning automaton with random environment. 

produced a penalty. A great number of reinforcement schemes for 
minimizing the expected value of the penalty have been studied 
and compared. One of the most serious difficulties that arise 
in learning automata is the dichotomy between learning speed 
and accuracy. If the speed of convergence is increased in any 
particular reinforcement scheme, this action is almost invariably 
accompanied by an increase of convergence to the undesired 
state [18,19]. 

4.3. Stochastic reinforcement algorithms in learning automata theory 

In the technical literature a widely used stochastic reinforce­
ment algorithm is LR_(, which stands for the Linear Reward-
Inaction algorithm. 

Let us suppose that the action chosen by the automaton at 
instant t is <fiit then for the LR_( the updating of the action 
probabilities is as follows: 

Pi(t + l)=Pi(t)+A.j8(t)[l-p,(t)] (5) 

Pj(t + 1) = Pj(t) - kp(t)PjQ) VJV i, 1 < J < N (6) 

where 0 < X < 1 is the learning rate and 0(t) is the environment's 
response: 0 = 1 (favorable response or reward) or 0 = 0 
(unfavorable response or penalty in which case the algorithm do 
not change the probability, i.e. inaction). 

Let's suppose that there are K different specialized tasks, then 
we designate by p,j(t), the probability at instant t that robot rt 
selects task (, these probabilities hold: 

N 

0 < P S ( t ) < l ; ^ p y ( t ) = 1; 
i=i 

i = 1, 2 , . . . , N robots; j = 1, 2 , . . . , K tasks. (7) 

Initially, without the previous robot's experience these proba­
bilities are initialized at the "indifference" position as follows: 

Py(0) = ^ f o r i = l , 2 , . . . , N 

robots and j = 1,2,... ,K tasks. (8) 

Afterwards it starts the learning process in which each robot 
updates its selection probabilities according to the following 
conventional updating rule: 

Pij(t + 1) = Pij(t) + Xf5(t) [1 - Pij(t)] (9) 

where 0 < X < 1 is the learning rate with a fixed value of 0.2; 
0(t) is the usual reward signal generated by the environment of 
the learning automata with the following interpretation: 0(t) = 1; 
reward if and only if for the corresponding task (, at instant t it 
holds that #Rj(t) < #Lj(t), i.e. the number of robots performing 

task/j is lower than the number oftasks/j to be executed;/3(t) = 0; 
penalty if and only if #Rj(t) > #L,-(t); i.e. when the number 
of robots performing task (, is greater than the number of tasks 
lj or whenever there are no pending tasks to be executed the 
automata receives a penalty signal. In other words: at each instant 
t the environment evaluates the action of the automata; when 
the response generated by the environment is 1 it means that the 
action is "favorable" and if the response value is 0 it corresponds 
to "unfavorable" as follows: 

n r r t _ £ K / _ f l f < l then reward 0 = 1 
J ~ #Lj ~ {if > 1 then penalty 0 = 0. { ' 

5. Experimental results 

We have conducted several experiments to evaluate the system 
performance index by applying response threshold models as well 
as Learning Automata-based probabilistic algorithms to solve the 
optimal distribution of the tasks among the N robots, so that all of 
them are executed by means of the minimum number of robots. 
The ideal objective is that the performance index or learning curve 
corresponding to the load (,(t) of each task tend asymptotically to 
zero for all curves in the minimum time and using the minimal 
possible number of robots for task execution. 

In the simulations we have considered some variants such 
as: the multi-robot system size, different loads (,(t) for each 
type of task, two different ways to carry out the task selection, 
the additive noise generation to simulate the robot's error and 
the dynamic generation of tasks (,(t) over time. According to 
the results obtained with Eqs. (1) and (9) we have employed 
for response threshold models and for the learning automata-
based probabilistic algorithms two different mechanisms for the 
selection of tasks: 

1. Maximum principle: at each instant t choose the task that has 
the highest probability for all Tgtj(Sj) and p,j(t). 

2. The strictly random method: using the probabilities Tgtj(Sj) and 
Pij(t) in the strict sense of the word, it generates a random 
number with uniform distribution (0 — 1) and it selects the 
appropriate task for the value obtained by the method of 
inversion of discrete probability distributions. 

5.1. Evaluation of the performance index: by noise or error estimation 

To evaluate the evolution of the performance index we have 
introduced additive noise, perturbing the number of pending loads 
to simulate the robot's error in estimating the real number of 
pending tasks. The noise generated is modeled using a normal 
distribution ("white noise") as follows: 

Noise = R + R*S = R(1 +S) (11) 

where Noise is the noise generated by the number of pending loads 
/j(t), which is proportional to the amplitude of the noise R without 
perturbing, and S is a Gaussian distribution with a mean of '0' and 
a typical deviation '0.005': N(0, 0.005). 

Figs. 4 and 7 show the evolution of the system performance 
index obtained for self-selection of heterogeneous specialized 
tasks through response threshold models as well as learning 
automata-based probabilistic algorithms, using both mechanisms: 
maximum principle and the strictly random method, with a team 
of robots formed by 20-30 heterogeneous robots and 4 types 
of heterogeneous specialized tasks with different loads. Each 
experiment has been run 10 times and the results shown are the 
mean of all of them. 

Fig. 4 shows the performance index through threshold response 
models for the two task selection mechanisms mentioned above 
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Fig. 4. Learning curves with the evolution of the system performance index for self-selection of tasks using Response Threshold Models for different values of noise. 

and for different values of noise, it can be noted that in all cases 
the generation of additive noise does not affect the performance 
of the approach; on the contrary, in most cases better results are 
obtained with the generation of noise. 

Similarly, Fig. 7 shows the performance index using Learning 
Automata-based probabilistic algorithms for both mechanisms and 
for different values of noise, it can be observed that learning curves 
corresponding to the load (,(t) of each task tend asymptotically 
to zero for both methods. However, when additive noise in this 
approach is introduced it can be clearly seen that in some cases 
more time is required for the execution of tasks. 

According to previous results it can be observed that system 
performance with the learning automata approach is more affected 
with the introduction of noise versus the results shown in the 
response threshold models approach. 

5.2. Evaluation of the performance index: by dynamic taslis genera­
tion 

In the previous experiments, the number of loads for each type 
of task is determined from the beginning of the simulation and 
there is no change until the end of the execution. To evaluate the 
performance of the algorithm we have generated dynamic tasks. 
This idea was rescued from classical models of queue simulation, 
so we have used a Poisson distribution to determine the probability 
of generating a number of tasks through time: 

/('<; A.) 
exXk 

liT' 
(12) 

Specifically we will have a different distribution for k = 1 to 100. 
Each X is a positive real number representing the number of tasks 
expected to be generated during a time interval. For that expected 
number of tasks generated to be decreasing, and therefore the 
system is stable, we have parameterized this constant X as follows: 

X(t) • a * t (13) 

where a is the initial value (for example, 10 or 20) and a is a factor 
of "reduction tasks" that initially we have defined as 1. Finally, t 
corresponds to the time of execution at each instant. 

Figs. 5 and 6 show the evolution of the system performance 
index with dynamic tasks generation through time using the 
Poisson distribution. Experiments have been performed 10 times 
and the results shown are the mean of all of them. We have 
also additive noise generated in the loads with the maximum 
principle and the strictly random method. In the results it can be 
observed for dynamic tasks generation, the task number generated 
is decreasing over time. All learning curves tend to zero in both 
mechanisms and do not affect the performance for any approaches. 

6. Conclusions and further research work 

In this paper we have proposed an experimental scenario for 
the self-coordination problem of multi-robot systems in the het­
erogeneous multi-task distribution to be executed by a team of 
heterogeneous mobile robots and we have applied two different 
approaches for this problem by applying Response Threshold Mod­
els as well as Learning Automata-based probabilistic algorithms. 
To carry out the selection of tasks in both approaches we used two 
mechanisms: maximum principle and the strictly random method 
and, in most experiments the best results are obtained with max­
imum principle instead of the strictly random method. We have 
generated additive noise to evaluate the robustness of both ap­
proaches, perturbing the number of the pending load, to simulate 
the robot's error in estimating the real number of pending tasks. 
According to the results obtained the noise generated does not af­
fect the performance of the response threshold models approach 
since the best result are obtained by generating noise in the pend­
ing loads. However, by applying learning automata-based prob­
abilistic algorithms in some cases more time is required for the 
execution of tasks. We have also studied the performance index 
with dynamic generation of loads through time and the results 
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confirm that the robots are capable of selecting in an autonomous 
and individual manner the existing tasks without the interven­
tion of any global and central task scheduler. We have shown 
that both approaches can be efficiently applied to solve this self-
coordination problem in multi-robot systems obtaining truly de­
centralized solutions. 
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